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to earlier attempts at decameter wavelengths. We describe this data acquisition system
and processing procedures in Chapter 2.

In Chapter 3 we present average properties o pulsars observed at 34.5 MHz. For
a possible study d alarge sample of pulsars at low frequency, we carefully selected pulsars
from the catalog of known pulsars. Their flux densities at 34.5 MHz were estimated by
a suitable extrapolation from available measurements at higher frequencies and alowing
for the possibility of a spectral turnover. The detectability was assessed after taking into
account the background sky temperature, dispersion, and scattering in the direction of the
pulsar. About 40 pulsars qualified as detectable (signal at a 5a levd or higher) with our
telescope assuming a reasonable duration of observations and a bandwidth of 1-MHz. This
sample of pulsars was monitored over a period of 4 months during March-June, 1997. Each
pulsar was observed for an effective duration of typically 2000 seconds. The data were
analysed for possible pulsar detections. The results were consistent with our improved sen-
sitivity and a total of 10 pulsars were detected from these observations. We present average
pulse profiles for al the detections, together with the modulation indices of fluctuations
and the behavior of linear polarization in afew cases.

We studied pulse-to-pulsefluctuation properties of a few 'bright pulsarsin our sam-
ple. In order to achieveareasonable signal-to-noiseratio in such an analysis, alarge number
of continuous sequences o single pulses (typically 500-1000) were required. We observed a
few bright pulsars several times, with each observation of duration ~ 20 minutes, during
Feb-Apr 1999. The fluctuation spectra d 8 pulsarsin the decameter wave band, presented
in Chapter 4, are believed to be first such reliable spectra reported in the literature at
these low radio-frequencies. Apart from fluctuation spectra, a number of other tools were
used to study thefluctuation phenomena in these pulsars. We describe these toolsin detail
and present the results of our analysisfor a total of 8 pulsars. Wefind that, in keeping with
thetrend from higher frequencies, all pulsarsexhibit an enhanced modulation at 34.5 MHz.
In the case of pulsar B0943+10, the spectral modulation features have a high-Q (~ 250),
which compares well with the steady drift behavior seen at meter wavelengths. The fre-
quencies of the modulation features seen in the spectra are consistent with those seen at
higher frequencies.

Our primetarget for adetailed analysis o single pulsesequenceswas pulsar B0943+10
(Chapter 5). A recent detailed study o drifting-subpulse emission from this pulsar, using
430 MHz and 111 MHz data, identified the origin o the stable and steady drift with a
system of 20 distinct subbeams of emission rotating steadily around the magnetic axis of
thestar. We describe the technique o ‘Cartographic Transformation’, where every sample
from each single pulse is uniquely mapped onto the polar region of the pulsar, which pro-
vides new means of probing emission processes using single-pul se sequences. We have used
this technique to map the regions of observed decameter emission on the pulsar polar cap.
We have shown, that:

e Thefluctuation spectra at decameter wavelengths also display a narrow feature, close
to 0.5¢/P; (P, isthe pulsar spin period) and with a high Q, which isrelated to the
'drifting' character of its subpulses.

e This fluctuation feature in the longitude-resolved spectra is aliased and the true
frequency of the primary phase modulation is somewhat higher than 0.5¢/P;.



e A system of 20 subbeams, rotating around the magnetic axis of the star with a
circulation time Ps of about 37 P, is responsible for the observed stable subpulse-
modulation behavior.

e Compared with the higher frequency maps, the 35-MHz maps sample the subbeams
much more completely. However, the 35-MHz subbeams, on the whole, show much
less uniformity in their positions and intensities.

e Both at 35 MHz and at higher frequencies, the intensities of individual subbeams
fluctuate, with the subbeams maintaining a stable brightnessonly for afew circulation
times. The stability time-scale of the entire pattern at 35 MHz and 430 MHz appears
roughly comparable.

Thissimilarity between our (34.5 MHz) maps and those at 430 MHz, combined with
the 'radius-to-frequency mapping’, implies that the regions of radio emission correspond
to a well-organized system of plasma columns in apparent circulation around the magnetic
axisof star, and acommon 'seed' activity islikely to be responsible for both the generation
and motion of thisrelativistic plasma. We expect this basic picture of subbeams and their
apparent circulation to be valid in other pulsars as well, although the viewing geometry and
other quantitative details may differ. The apparent nature of the modulation/fluctuation
would depend largely on the viewing geometry.

We followed our previous work with a similar analysis on the pulsar B0834+4-06. We
have unambiguously determined the circulation time of the polar emission pattern and its
drift direction and studied the polar emission maps. Heretoo, asystem of discrete subbeams
in steady rotation around the magnetic axis was found responsible for the observed single-
pulse fluctuations. The emission beams in the case of B0834+06 are discrete, but they are
not uniformly spaced along the hollow cone of emissionand they al differ from each othkr in
their appearance. The subbeams appear broader in radial cross-section, with Ap/p 2 25%,
and seem to fluctuate around their average position and intensity more than what was
observed in the case of B0943+10. The increased jitters in the subbeam position could
result in the low Q-value of the observed fluctuation features.

We also made maps from successive subsections of the pulse sequence and viewed
them in a'movi€e-like fashion. For all the datasets of B0943+10 and B0834-+06 discussed, it
was noticed that only afew subbeams (different ones at different times) usually dominated
in intensity over a few circulation times. Overall, the brightness d a given subbeam was
observed to fluctuate by up to about a factor of 4 over the length of the sequence. Given
the above, it is tempting to suggest that (a) an inhibition d emission (or the underlying
sparks) occurs over the rest of the polar cap due to the active subbeams, or (b) A critical
combination of parameters required for stable, uniform subbeams.

B0834-+06 happensto be the only other case where such a treatment has been possi-
ble based on our decameter-wavelength observationsalone. The single-pulse fluctuations in
this case are general modulation of component amplitudes, unlike the stable 'drift' patterns
observed in the case of B0943+10. Even such a general amplitude modulation appears to
be related to a well-defined rotating pattern of discrete entities in the polar cap region.
Various other issues related to the fluctuation phenomena d this pulsar are discussed in
the thesis and are compared with the high-frequency behavior.



The next part o thisthesis concernsour attemptsto search for radio pulsationin the
directions of two high-energy pulsars. The gamma-ray pulsar Geminga attracted attention
o the astronomers recently, with the reported detection of its pulsed radio emission by three
Russian groups at 102 MHz. Since Geminga, one of the brightest Gamma-ray sourcesin the
sky, is the only known gamma-ray pulsar that has not been detected at radio wavelengths,
confirming its pulsed radio emission and determining the reasons for its radio weakness
are essential to understand the relationship between pulsar gamma-ray and radio emission.
Geminga s aso important as it may be a prototype for a growing class of radio-weak or
radio-quiet high-energy pulsars and isolated neutron stars. Searches for a pulsed radio
emission from Geminga have been carried out earlier by other groups with none o them
confirming the Russian clam of detection (thisalso included a search at 35 MHz using the
GEETEE). These negative results meant that the pulsar was either weak and undetectable
at the other frequenciesd observation (detectable only at 102 MHz), or isa transient source
and highly variable. Refractive scintillation could also make its detection difficult. Hence,
we attempted near-simultaneous observations of this pulsar at 35 MHz and 102 MHz using
the GEETEE and the Puschino Observatory, Russia. Since both the telescopes are transit
instruments, there was a difference of about ~ 3 hours in between two recorded data sets.
In such a scheme if a pulsed signal was detected at Puschino, then we could confirm the
same in our 35-MHz data. If the pulsar is an intermittent source of a’few intense pulses
similar to the Crab pulsar, we may detect such a signature in our data set. Though the
initial analysis o Puschino dataindicated some pulsed emission, there was no detection o
a pulse in the 35-MHz data on the corresponding days. Our tentative upper limit on the
averageflux of Geminga at 35 MHz is 350 mJy (3¢) using data obtained on 3 days. Shorter
intervals of data were searched for a possible intermittent emission, again providing a null
result. Our observations, analysis procedure, the fina results, and their interpretation are
described in Chapter 6.

Typical radio pulsars are magnetized neutron stars that are born rapidly rotating
and dow down on timescalesof 10 to 100 million years. However, millisecond radio pulsars
(MSPs) spin very rapidly even though many are billionsdf years old. The most compelling
explanation is that they have been 'spun up' by the transfer of angular momentum during
accretion o material from a companion star in so-caled low-mass X-ray binary systems,
LMXBs. The recent detection of coherent X-ray pulsationswith a millisecond period from
a suspected LMXB system SAX J1808.4-3658 appears to confirm this link. An exciting
possibility is that this object will, at some point, turn on as a radio pulsar, producing
pulsed radio emission characteristic of MSPs. We observed in the direction o this system
in the X-ray quiescent state to look for a possible pulsed radio signal at 327 MHz using the
Ooty Radio Telescope. The pulsar was observed for 10 minutesin each run to minimizethe
effect of period variation due to the pulsar's orbital motion, a total of 10 such successive
scans were analysed. Thissearch wastuned for the known parametersd the binary system,
where the effects of binary acceleration on pulsar periodicity, and some possible extra
dispersion due to the passage o the radio pulse through the extended wind from the
companion, were alowed for. Our search was optimized for about 50% duty cycle (that
is, a roughly sinusoidal signal), and we searched up to a maximum DM of 250pc/cm?®.
No radio pulsations were detected at 327 MHz, which translates into a flux density upper
limit of 0.8mJy (3¢) if al the data sets are combined. We discuss our upper limit and its
implicationsin Chapter 6.
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