
Chapter 1 

Magnetism of Charged Particles 

1.1 Introduction 

All particles in nature can be divided into Bosons and Fermions according to their 

statistics. Electrons, protons and neutrons are all Fermions. An atom, which con- 

tains all three, can also be treated as a single (composite) particle. Whether the 

composite is Bosonic or Fermionic depends on the total number of its constituents. 

For example, He4 contains two electrons, two protons and two neutrons and thus it 

is a Boson. But the isotope He3 is a Fermion. Fermions obey the Pauli exclusion 

principle while there is no such restriction on Bosons. As a result, a collection of 

Bosons behaves quite differently from a collection of Fermions. A good example is 

the dramatic diffwence between a super-conductor and an ordinary metal. The elec- 

trical conductivity in ordinary metals can be understood in terms of the properties 

of Fermions (i.e. electrons); in contrast, super-conductivity can be understood in 

terms of Cooper pairs which are Boson-like. 

Here, we carefully analyze the response of Bosonic particles to an external mag- 

netic field. We discuss also the effect of the boundary on the partition function of 

the system. In this chapter, we restrict our discussion to N non-relativistic particles 

(interacting or non-interacting). As with any interacting many particle system the 

response is hard to compute exactly ; yet general arguments (due to B. Simon ) 

exist which show that the response of a system of N spinless Bosons in an exter- 



nal magnetic field is always diamagnetic. We conclude this section by pointing out 

an interesting connection between the diamagnetism of spinless Boson 51-stems and 

Brownian motion. This chapter is a summary of old results so as to introduce the 

background and motivate the work of chapter 2. 

1.2 Classical Approach To Magnetism 

Van Leeuwen's theorem [I] states that a classical gas of charged point particles is 

non-magnetic. First we will try to view this theorem pictorially [2] and later present 

a mathematical argument. The trajectory of a charged particle confinotl to a box 

Figure 1.1: 2d motion of a charged particle i n  a rectangular box in  u, ma!lnetic field. 
The internal orbits are traversed anti-clockwise sense while the bo~rndary orbits i n  
clockwise sense. 

and moving in an external magnetic field applied in the z direction is helical ; when 

projected onto a plane perpendicular to the z axis it is circular. As is evident 

from the figure (1.1)' there are two kinds of orbits ; one set of orbits is completely 



inside the rectangular box while the other set "bounces around" a t  the perfectly 

reflecting boundary. The circular orbits well within the box contribute a positive 

magnetic moment. However, there is a negative contribution from the orbits near 

the boundary which exactly cancels this positive magnetic moment resulting in a 

zero net magnetic moment. This result is true even if the particles are interacting 

and is known as the Bohr-Van Leeuwen Theorem. 

In statistical mechanics, the central quantity of interest is the partition function 

Z which is related to  the free energy F. Applying Boltzmann statistics, we get 

Here, the Hamiltonian in the presence of an external magnetic field is given by 

and V(r)  is a one body potential. The external magnetic field is related to  the 

vector potential A through = 9 x A. Now, changing the variable of integration 

p to f = f l -  $ ( note that the limits of integration -m to  m are not affected by 

this change of variables and the Jacobian of the transformation is unity.) it is easy 

to see that 

.- Z(A) = Z(0) 

Therefore, the magnetization vanishes because the free energy in the presence of the 

magnetic field is the same as without the magnetic field. I t  shows that an explanation 

of magnetic moment in thermal equilibrium must be sought in quantum mechanics. 

This argument presented above for a single particle extends easily to  the N 

particle case as follows. The N particle Hamiltonian is given by 

Here V(ri) is the one body potential and W(l6 - r ' j l )  is the two body pairwise 

interaction. 



The partition function of this system can be written as 

Again, with change of variables, this equation (1.5) becomes 

Therefore, the phase space distribution function PN(ri, ui) is given by 

Clearly, this distribution function is independent of the magnetic field B. T l i ~  same 

is true for the expectation value of any gauge invariant phase space filrlctioll (such 

as the current density a t  a particular point). In other words, the statistic*al mean 

of any function of the variables v, and r, which does not involw B cxl~licitly is 

unaltered by the application of a magnetic field. This complet,es the proof' of Van 

Leeuwen's theorem which states that classically the thermodynamic propert,ies of a 

collection of charged particles are unaffected by a magnetic field. 

1.3 Quantum Mechanical Approach To Magnetism 

The quantum mechanical solution of the single charged spinless particle Harliiltonian 

in an external magnetic field is due to Landau 131. The degenerate energy levels are 

En = hwc(n + 1/2),  wc = g. Here, we have neglected the motion along thr  2 direc- 

tion. The degeneracy is related to the translational symmetry in the problcm. The 

orbit may be located anywhere in the plane. The degeneracy (being a dimensionless 

L L quantity) is given by g = = @ ,, - - 2 +o,  where 1 = @ is the magnetic length. 

A is the area of the rectangular geometry of sides L, and L, and &, = hc / r  is the 

flux quantum. Notice that both the degeneracy and the cyclotron energy arc linear 



in B. Now, the partition function of a single particle is given by 

Z ( B )  - - - PPB 
z ( 0 )  sinh ( P p B )  

Here, p = 2mc is the magnetic moment. The free energy is defined as F ( B )  = ' 

-L 4 log Z(B) .  Hence, the magnetization is given by 

Notice that the diamagnetic contribution to magnetization vanishes in the classical 

limit (h  + 0 ,  p + 0) .  This can also be verified by replacing the sum (1.8) in the 

partition function by a continuous integral 

A simple scaling argument shows that the partition function is independent of the 

magnetic field, resulting in zero susceptibility. It  is easy to check from equation 

(1.9) that the diamagnetic susceptibility is non-zero and negative definite. In the 

limiting case /3pB << 1, we find x = -y, independent of B .  It is also interesting to 

note from equation (1.8) that Z ( B )  5 Z ( 0 ) .  We will see later that this is a general 

feature of spinless Bose systems. 

1.4 Electric Susceptibility vs Magnetic Suscepti- 
bility 

The response of a system to an electric field is quite different from the response 

of a magnetic field. In fact, Langevin theory of susceptibility predicts the electric 

susceptibility to  be positive [4]. Here, we will describe the use of thermodynamic 

perturbation theory [5, 61 to calculate the change in the free energy as a result of 
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the perturbation of its quantum energy levels by the electric field. The eltrctric field 

appears in the Hamiltonian as a potential. We treat this potential as a perturbation. 

The standard perturbation theory gives the energy levels of the Harliiltorlian H = 

where E: is the unperturbed energy level and Vn, are the matrix elernt~iits of the 

perturbing energy. Now, the free energy can be written as 

Therefore, the free energy is given by 

After a little algebra, the change in the free energy can be written as 

Here, the bar denotes a statistical averaging over the Gibbs distrib~it,ion w, = 

exp(-P(Ez - Fo)).  All the second order terms in this expression are negative, since 

(wm - w,) has the same sign as (Ez - Ek). Thus, the correction to  the frcv) energy in 

the second order approximation is negative and the zero field electric s~ i sc .~~t ib i l i ty  

is always positive. 

1.5 Diamagnetic Inequality for Spinless Bose Sys- 
tems 

Till now we have discussed the implication of quantum mechanics for a single par- 

ticle. In fact it is easy to carry out the analysis for N free particles. But for an 

interacting case one cannot analytically solve the energy spectrum. Howc~ver, there 

exist some exact results regarding the response of N spinless Bosons towards an 

external arbitrary (homogeneous or inhomogeneous) magnetic field. B. Simon [7] 
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showed quite generally the universal diamagnetic behaviour of interacting spinless 

Bosons. We reproduce his arguments below for the ground state (T = 0 limit). The 

interacting Hamiltonian in this case 

Let Q ( G , c ,  ....., FN) be the wave function. Since [ * I 2  = Q*Q, we note tha t  using 

3N-dimensional gradients 

Therefore, with x denoting the N vectors {c, .... F N }  

It follows that 

If we choose Q above to be the ground state wave function for H ( A ) ,  the R.H.S is 

equal to E(A),  whereas by the variational principle for ground state energies, the 

L.H.S is greater (han E (0). It follows that 

Therefore, the ground state energy of spinless Bose systems in the presence of an 

external magnetic field is always greater than that without the magnetic field. Notice 

that this result is really a very strong one in the sense that it is true for an arbitrarily 

interacting system in an arbitrary magnetic field (homogeneous or inhomogeneous). 

This result regarding the ground state has been extended to finite temperature case 

also [8]. An alternative proof of this result can be found in reference [9]. Notice that 

the above proof fails for Fermions. The replacement of \I, by I @ [ I I  used above is not 



allowed by Fermi statistics. Even spinless Fermions do not obey this inequality. For 

a counterexample choose a spherically symmetric potential V and concentrate on a 

particular eigenstate n = 1. Then, energies of I # 0 states decrease in lorest order 

perturbation theory for a suitable choice of i. This shows that the above inequality 

fails for Fermions. In chapter two, we generalize this diamagnetic inequalit!, for N 

particles to a field theory in two dimensions. 

1.6 Brownian Motion and Magnetism 

In this section we discuss the connection [9, 101 between Brownian motion and 

magnetism. This connection helps us compute the probability distribution of areas 

enclosed by the path of a particle diffusing on a plane and provides an altclrnative 

proof of the diamagnetic inequality for spinless Bosons. Here we sunimarize the 

work by Sinha and Samuel described in reference [9]. 

We consider a diffusing particle of mass m on a plane a t  time r = 0. If the particle 

returns to  its starting point a t  time T = P, it encloses an area. We want to compute 

the conditional probability that it encloses a given area A. The closed Brownian path 

in the plane can be designated by { Z ( T ) ,  0 5 r < P, Z ( 0 )  = Z ( P ) } .  Now. if A[?(?)] 

is the algebraic area enclosed by the path Z ( r ) ,  then the normalized probability 

distribution of areas P(A) is given by 

The angular bracket denotes that the expectation value is with respect to the Wiener 

measure. For example, the expectation value of any functional f [Z(T)] in this mea- 

sure is given by 

J  D[Z(T ) ]  f [?(.)I exp [- J[ (7 2 . g d r ) ]  
(f [.'(dl) = m d3c' (1.21) 

J D [ Z ( T ) ]  exp [- JL! ( T g  ' Zdr)]  



The generating function P ( B )  of the distribution is given by the Fourier transform 

of P(A)  
ieBA 

P(B)  = 1 P(A)  exp (c) d~ = (e-) 

Notice that BA can be expressed as 

where A(Z) is any vector potential whose curl is a homogeneous magnetic field. 

With all these ingredients, equation (1.22) can be written as 

Inspection reveals that 

where Z ( B )  is the partition function for a quantum particle in an external homoge- 

neous magnetic field. Therefore, the equation (1.25) relates Brownian motion and 

magnetism. This relation has been used to compute the distribution of solid angles 

for diffusion of particle on a sphere [9]. If the partition function of the magnetic 

system is known, then we can compute P(B)  and hence the distribution function 

P(A).  Also, notice that by definition P(B)  5 1 which immediately implies that  

and therefore 

Thus, the free energy in presence of the magnetic field is always higher than 

the free energy without the magnetic field. Note that this inequality was obtained 

without explicitly computing the partition function by using the analogy with Brow- 

nian motion. The zero-field susceptibility x = -d2 F(B) /aB2 l B = o  of the magnetic 



system is related to the variance of the distribution of areas in the diffusion problem 

as follows. 

Since, the variance is always positive, it follows that the zero-field susceptibility 

is negative. This alternative formulation of diamagnetic inequality through this 

Brownian motion has been used [9] to  prove the diamagnetism of N spinless Bosons. 

1.7 Conclusion and Discussion 

Diamagnetism is essentially a quantum effect. A single electron by itself will have 

a permanent magnetic moment arising from its spin and induced magnetic: moment 

from its orbital motion. Even for the simplest atom namely hydrogen, the orbital 

motion of the electron around the proton will give rise to  an induced diamagnetic 

susceptibility. The permanent moment arising from the same electron will give rise 

to paramagnetic susceptibility. The diamagnetic susceptibility cannot, of course, be 

measured separately, but can be estimated theoretically. 

From the pictorial proof of Van Leeuwen's theorem, it might appear that the role of 

a boundary is crucial. One might wonder then about the validity of this theorem in 

the case of a pariicle moving on a sphere (having no boundary) subject to  a rnag- 

netic field created by a monopole of quantized strength a t  the center of the sphere. 

However, an explicit computation on a sphere [9] confirms that the boundaries are 

unnecessary for the validity of Van Leeuwen's theorem. Following reference [9], the 

partition function for this case for a monopole of strength g/e can be written as 

2, = E;,,, ( 2 j  + 1) exp(-P/2U(j + 1) - g2] ) .  In the high temperature (,b -+ 0) 

classical limit the sum can be replaced by an integral and one finds that  2, = Zo 

and hence one recovers Van Leeuwen's theorem. 

To summarize, in this chapter we have reviewed the magnetic properties of par- 

ticles with emphasis on spinless Bosons. In particular, we have noted that  the free 



energy of a spinless Bose system in an external magnetic field is higher than the free 

energy without the magnetic field. 
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Chapter 2 

Field Theoretic Treatment of 
Charged Bosons in a Magnetic 
Field 

Introduction 

In the previous chapter, we have noted the diamagnetic inequality for N spinless 

Bosons. This diamagnetism of spinless Bosons is a universal property in the sense 

that it  is independent of whether the applied external magnetic field is homoge- 

neous or inhomogeneous. Also, this diamagnetism is independent of the interaction 

between particles at any finite temperature. In this chapter, we generalize this in- 

equality to field theory. 
.- 

In field theory (which describes systems with an infinite number of degrees of free- 

dom) charged spinless Bosons are described by complex scalar fields. One might 

therefore expect that charged scalar fields would also show diamagnetic behaviour. 

However, while this conjecture is plausible, the result is by no means obvious. In 

quantum field theory one has to deal with the problem of divergences and their 

regularization. In fact as we will see later (see Appendix A),  the QED vacuum 

is diamagnetic, contrary to what a naive argument would suggest. With this mo- 

tivation, we study the magnetic behaviour of scalar field theories in two spatial 

dimensions. 



This chapter is organized as follows. The first part deals with finite ttlmperature 

free scalar field theory in the presence of an external homogeneous nlag~ietic field. 

Here, we explicitly calculate the partition function and the free energy as ,I filnction 

of the applied magnetic field in two dimensions. This free energ- ~sprc.s\ion is for- 

mally divergent. Using a suitable regularization scheme, we compute t h c )  d7,Rerence 

in the free energy (with and without the magnetic field) and obtain a firlit(> answer. 

This difference is shown to be positive, thus establishing the diamagnetic b~haviour 

of free charged scalar fields. 

In section 3, we discuss the diamagnetism of interacting charged scalar fields. 

In this theory, we cannot evaluate the partition function explicitly. Scvortlicless we 

prove the universal diamagnetism of scalar fields by assuming a finito rrlolr~entum 

cutoff in the theory. This non-pertwrbative treatment can be adaptetl t o  m r -  number 

of spatial dimensions. In section 4, we give our conclusions. All t l ~ c  rcisults in this 

chapter have earlier been presented in [I]. 

2.2 Computation of Free energy in Free Field The- 
ory 

In this section we calculate the free energy of free scalar fields in thc pr.tlscnce of an 

external uniform magnetic field. For ease of presentation we \vork hero first in two 

spatial dimensions. The interesting physics takes place in the plane normal to the 

applied field. 

Let @ be a complex scalar field which describes charged spinless Bosons. The 

Lagrangian density of a free charged scalar field in the presence of a constant ho- 

mogeneous external magnetic field is given by 



where p = 0,1 ,2 ,  

and m and e are the mass and charge respectively. (We set h = 1 and c = 1). Now, 

we write the complex field in term of two real fields cP1 and a2. 

This theory has a global U( l )  symmetry and therefore a conserved Noether charge 

Q, given by 

where 

ni = aoai 

The Hamiltonian density of the system is given by 

where the current density j is given by 

We now suppose that the external magnetic field is uniform in the z - y plane. 

We choose the temporal gauge (Ao = 0). The constant magnetic field B is 

where A, and A, are independent of t .  

The action of this theory is 

= 1' / d2x d.r L(@, a*, A), 

where r is the imaginary time variable which runs from 0 to ,O (=l/(ksT)),  the 

inverse temperature. The action defined above is quadratic and so the partition 



function can be evaluated exactly. As is usual in finite temperature field theory [2],  

we impose periodic boundary conditions for Bosonic fields 

Now, the partition function of this theory can be written as 

Z(B) = J ~ [ n , ] v [ n ~ ]  J D [ ~ , ] D [ Q , ]  exp [J d r  r l 2 1  

Here p is the chemical potential associated with the conserved chargo' (2. We 

pick the gauge in which the vector potential A is (-By, O ) ,  and expand tlio complex 

scalar field in terms of modes adapted to the present situation. These n~odes  solve 

the Klein-Gordon equation in an external magnetic field. The eigenfiirictions are 

labeled by one discrete (1) and one continuous (p,) quantum number ant1 the spec- 

trum depends on 1 only. In the gauge we choose, the modes are plane nra\res in the x 

direction and harmonic oscillator (i.e. Gaussian) wave functions in the y ctircction. 

The spectrum is given by 

The degeneracy of these states is eAB/2x ( independent of l), where '4 is the area 

of the system. So, these modes can be thought of as quantized harmonic oscillators. 

Expanding the fields and in these modes the system reduces to ;I collection 

of harmonic oscillators with frequency wl. 

By standard manipulations [2],  we get the free energy as 

'The charge density (QIA, where A is the area of the system) has to be contrasted with the 
normal number density. The charge density refers here to the difference between the particle 
density and the anti-particle density and hence can take any sign while the number density, by 
definition, is always positive. In that sense p is not the usual chemical potential used in the Grand 
Canonical Ensemble. 



The first term in the square brackets corresponds to the zero point fluctuation 

of the vacuum and the other two terms are finite temperature contributions of the 

particles and anti-particles respectively. 

Notice that this zero point energy is divergent due to the summation of infinite 

number of modes (Landau levels). In conventional field theory, this infinite zero 

point energy is always discarded; since it can be re-absorbed in a suitable redefini- 

tion of the zero of energy. This is justified in the sense that the infinite zero point 

energy is unobservable. However, the change in zero point energy caused by changes 

in external parameters is finite and observable. So, according to Casimir's [3] idea, 

the physical vacuum energy can be defined as the difference between the zero point 

energy corresponding to vacuum configurations with constraints and the one corre- 

sponding to free vacuum configurations. This definition must be supplemented in 

general with a regularization prescription in order to obtain a convergent expression. 

2.2.1 Zero Temperature Field Theory 

The zero temperature free energy.of the system in the presence of a constant mag- 

netic field is given by 

where W; = m2 + (21 + . l )eB.  Obviously, this sum diverges. In order to obtain a 

finite answer, we need to impose a cutoff L in the sum (2.14). Then the free energy 

becomes 



The free energy in the absence of the magnetic field a t  zero temperaturo is given by 

the divergent expression 

We regularize this expression by imposing a cutoff A. Then the free cricrgy (2.16) 

becomes 

In order to compare the free energies in equations (2.15) and (3.17), we choose 

the cutoffs L and A in such a way that both systems have the same number of 

modes. Such a procedure can be justified on physical grounds if one iniagines that  

the magnetic field is turned on 2 .  

Counting the modes up to the L-th Landau level we find 

Similarly, for the momentum cutoff up to  A we get the modes without t,lic ruagnetic 

field as 

27rA in pdp = ?i All2 

Equating these gives us 

n2 = 2 eB ( L +  1) 

Now, the free energy in absence of the magnetic field ( which depends on magnetic 

field through the momentum cutoff) is given by 

The difference between the two free energies is given by 

'This idea of matching of modes is used in solid state physics to compute the specific heat of 
solids at low temperatures in the Debye model (see for example, Solid State PAysics by N. W. 
Ashcroft and N. D. Mermin (Hott, Rinehart and Wiston, 1976)). 



We define f (B)  = Fo (B, L)/2aA, J(B) = Fo (0, L)/2aA and A f (B) = f (B) - ?(B). 

Numerically evaluating these sum and integral (see figure 2.1 and figure 2.2) one 

can show that for finite L, Af (B)  the difference between two large quantities is 

positive. As the cutoff L goes to infinity, A f (B) becomes the difference between 

two infinities. In this limit we find that A f (B) tends to a finite value. Thus, the . 

susceptibility a t  zero temperature in the relativistic case is non-zero. This vacuum 

susceptibility can be physically interpreted as due to virtual currents. 

Free Energies for L=3 and m=.l 

Figure 2.1: T h e  functions f (B) and J(B) have been plotted against B for L = 3 and 
rn = .l. T h e  solid line is f ( B )  while the dotted line refers to  /(B). 

We now show analytically that A F ( B )  is positive i.e. the vacuum is diamagnetic. 

Note that 



where a l (B ,  m)  is given by 

Introducing a dimensionless quantity p = $ the above equation l~rconirs 

Difference of the Free Energy for L=3 and m=.l 

Figure 2.2: The functions A f (B) = f (B)  - J(B) has been plotted ogo i~~s i  B. The 
values of L and m are the same as figure 2.1. Note that the sca,le in t11,i.s ,figure in  y 
direction is much expanded compared to figure 2.1. 

The positivity of al(p) for each 1 can be proved geometrically. Dcfining xl = 

(1 + 21p)/2p and f (a) = Jm, the coefficient al(p) can be rewritten in terms 

1 
= f (112) - / da f (a ) .  "(P) = fi 0 

Since, the function f (a) is convex, the area under the tangent drawn at t r  = 112 is 

greater than the area under the curve (see the figure 2.3). But the area under the  



tangent is equal to the area under the dotted curve which is equal to f (112) .  This 

Graphical Plots to Prove the Relevant Inequality 

Figure 2.3: The  full line is  the curve f (a )  = (.l + a)'I2. T h e  dashed line i s  the  
tangent t o  the above curve at a = .5 .  It i s  straightforward to  see that the  area 
under  the curve is less than the area under the tangent. Also the area under  the  
tangent i s  the same as the area of  the  rectangle. The  area of this rectangle is  given 

by f (112)  x 1 = f (112).  Hence, the positivity of a ( . l )  is proved. Th i s  can be 
generalized to  a n i  positive value of q. 

shows that q (p )  is positive. 

To show the convergence of the sum (2.23), we note that 

Now, applying mean value theorem twice one can easily show that 



for some a. Thus, the coefficient q(p)  is positive for each 1 and tlic sun1 converges, 

hence the diamagnetic inequality is established. 

Low mass limit: 

In this section we want to discuss the behaviour of the leading tern1 of tlic free energy 

in the low mass limit and its consequences. This is defined by the condition p >> 1. 

It is easy to  see from the zero temperature free energy that the lilag~letization in 

the low mass limit is given by 

M(B) - -6 

So, the susceptibility in this limit is given by 

which diverges as B goes to zero. This divergence of the susceptibi1it~- is reflects 

the fact that the free energy F(B) N ~ ~ 1 ~ .  This variation of the fiec energy in 

the massless limit can also be understood from dimensional arguments as follo~vs. 

Since we are working in natural units li = 1 and c = 1, then [m] - [L]- ' .  Then 

the free energy density (i.e. per unit area ) varies as [L] -3 .  However. tlie dimension 

of B is [L]-2. SO, the massless limit restricts the free energy density variation with 

magnetic field B to ~ ~ 1 '  only. This feature of the susceptibi1it~- lias already been 

noticed in the magnetized pair Bose gas [4]. 

2.2.2 Finite Temperature Field Theory 

Now, for the finite temperature case one can regularize the free energ!. through the 

same mode matching method and write down the free energy difference in dimen- 

sionless form as before 

where, 

A F  (B) = F (B) - F (0) = 2 bl (p, 6, C) 
1=0 



The dimensionless variables are defined as S = Dm and = Pp.  

The coefficient g(p, 1 ,  a )  is given by 

log (1 - exp(-6( Jw + I))) . (2.33) 

Now, defining 21 = ,p we can rewrite the equation (2.33) as 

g(p, 1 ,  a) = log (1 - e x p ( - ( m  - 0)) + 

log (1 - exp(-(- + I))) . (2.34) 

The function g(p, 1, a) is convex, so the zero temperature argument applies un- 

changed. It follows that the free energy satisfies the following inequality 

Thus the response of the system to the magnetic field will be diamagnetic. 

2.3 Interacting Field Theory 

In this section we want to  extend the diamagnetic inequality to the self-interacting 

field theory case including the dynamical interaction between scalar fields. The 
, 

partition function of this charged self-interacting field theory in the presence of the 

magnetic field can be written as 

where the action S is defined as 

The action is not quadratic and Z ( B )  cannot be evaluated in closed form. Nev- 

ertheless, we can show that the response of the system to an external magnetic 

field is diamagnetic. Since the formal expression for the partition function may not 
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exist (the integrals may not exist) we impose a cut off in momentum space. The 

functional integral in (2.36) signifies that one only integrates over those field con- 

figurations whose Fourier transforms have support within a sphere of radius Al in 

momentum space. The partition function then explicitly depends on -I1. We do not 

explicitly indicate the Al and p dependence of Z(B,  Al  , p) below. 

We divide the action into two parts So and Sint, where So is the action in the 

absence of the external field. 

S = So + Sint, (2.38) 

where 

Notice that exp(-So) is a positive measure on the space of field configura- 

tions. The ratio Z(B)/Z(O) can therefore be regarded as the espectation value 

of exp(-Sin,). Since exp(-Sin,) is an oscillatory function whose modulus is less than 

or equal to  1, we conclude that 

This implies that 

This result is an exact and non-perturbative one. Hence, it is more general and 

stronger than perturbative results (see reference [5]). 

In this derivation, we have not assumed any form for the vector potential. So, 

the result derived above is true for both homogeneous or inhomogeneous magnetic 

fields of any strength. Since ,O is arbitrary, the result holds a t  all temperatures. The 

argument presented here works for any arbitrary interaction V(@*O) ( Generally, it 



is assumed that V(@*@) is a smooth function, for instance, a polynomial). Also, in 

field theory one would also require that the interaction V(@*@) be renormalizable. 

In two dimensions this would restrict the interaction to (Qj*@)p only. From simple 

power counting, one can notice easily that the value of p 5 3. In condensed matter 

physics, where a natural cutoff exists, higher order powers of (@*a) may also be 

present. 

Up to now we have considered the cases of charged scalar fields interacting 

through a potential. It is also possible to consider interaction mediated by a dynam- 

ical electromagnetic field A,. The fields in the system are now @ (charged scalar 

fields) and A,. If one applies an external magnetic field Aext then the full Lagrangian 

is given by 

where D, = a, - ieArt  - ieA, and Fpv = a,A, - a,A,. 

The argument given above can be modified as follows. The definition of So and 

Sint changes slightly with some additional terms. 

So = 1 1 d2x d r  [-a F~ + (a, - ieA,)@* (P + ieAp)@ 

+m2(@*@) + v(@*@)] , 

and 

Again one can repeat the same argument to establish the diamagnetic inequality by 

noting that exp(-So) is a positive measure and the ratio Z(B) /Z(O)  as an expecta- 

tion value of exp(-Sint). This universal inequality follows from basic principles and 

does not depend on the details of the interaction. 



2.4 Conclusion and Perspective 

The response of a system to an electric field is completely different from its response 

to a magnetic field. The basic difference between the responses of' a system on appli- 

cation of an electric field or a magnetic field lies in the structure of the Hamiltonian 

of the system. 

The Lagrangian of a system in the presence of an electric field can 1)e written as 

where 

Do = do - ieAo 

For statistical mechanics to make sense, the Hamiltonian H must bc. iiid(yendent 

of time. We choose the gauge so that  the vector potential is time independent and 

the Hamiltonian is 

'tl = (n*) ( n )  + (v@)* (v@) + m2 (@*a) + I/(@*@) 

-ie [(n*)(Ao@) - (n)(Ao@*)] (2.48) 

The electric field appears in the Hamiltonian through A. terms. Sow. from finite 

temperature second order perturbation [6] theory, one can show easil~, t,hat the free 

energy of the system always decreases with the electric field. Hence, the dielectric 

susceptibility is always positive in thermal equilibrium. 

But in the case of a magnetic field the Hamiltonian contains both linear and 

quadratic terms in A. The net effect of an applied magnetic field is not a priori 

clear. However, as our analysis makes clear, for charged scalar field theories the net 

effect is always diamagnetic. 

In the case of spinless Bosons, there is no spin magnetic moment and hence the 

system always has a higher energy in a magnetic field than in the absence of magnetic 



field. It has been already pointed out [7, 8, 9, 101 that there is no corresponding 

theorem for fermions. 

Let us consider some illustrative examples of Spinless Bose systems. One obvi- 

ous example in the laboratory is Cooper pair formation in super-conductors which 

shows perfect diamagnetism (known as the Meissner [ll] effect) below the critical 

temperature. Cooper pairs also exist in Neutron Stars [12] where the magnetic field 

is very high compared to any laboratory field. Of course, the operators which create 

and destroy Cooper pairs are not strictly Bose operators, so this is only an analogy3. 

Pions would be suitable candidates for application of our theory with T+ and T- 

regarded as the particles and anti-particles. Pions are massive (mc2 = 139.5673 

Mev), obey Bose-Einstein statistics and they possess no spin. 

Before we end we would like to comment on a recent work in the literature [5] on 

ultra-relativistic hot scalar plasma. The authors study the scalar electrodynamics 

by re-summation methods in perturbation theory. This treatment does not allow for 

self-interaction of the charged scalar field. By resumming a thermal loop expansion, 

they found that the magnetic permeability of this hot scalar plasma is diamagnetic 

at distances greater than a cutoff length scale determined by the charge and the 

temperature. This perturbative result is consistent with our results. However, our 

result of diamagnetism of a charged scalar field is more general in the sense that it 

takes self-interaction of the field into account and is non-perturbative. 

3The analogy mentioned here is at the following level. The (pairing) operators b; and b~ do 
satisfy the usual Bosonic commutation relations for k # k' but bkt  = b i  = 0 for k = k'. This is 
obviously the Pauli exclusion principle restriction. 
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