
Chapter 5 

Conclusion and Outlook 

5.1 Introduction 

In this thesis, we have addressed three different problems in low dimensional con- 

densed matter physics. The first one is a field theoretic treatment of the magnetic 

properties of charged spinless Bosons. The second one concerns the disordered elec- 

tronic states in an external magnetic field. And the third is interface growth in 

a random porous medium. In this final chapter, we would like to highlight some 

features of these problems and indicate some possible extensions. 

5.2 Diamagnet ism of Charged Spinless Bosons 

In chapter 1, we Kave reviewed the magnetic properties of charged particles as back- 

ground for our work described in chapter 2. In particular, we have described the 

original proof of diamagnetism of spinless Bosons. We observe that the free energy 

of spinless Bosons in an external magnetic field is higher than the free energy with- 

out the magnetic field. This diamagnetism is a universal property of spinless Bosons 

in the sense that it holds regardless of whether the external magnetic field is homo- 

geneous or inhomogeneous or whet her the system is interacting or non-interacting . 

This proof is a non-perturbative one. In this chapter, we also review an alternative 

proof of this diamagnetic inequality. This alternative proof uses a connection be- 

tween Brownian motion and magnetism. The inequality follows from an interesting 



relation between the area distribution in a Brownian motion and the partition func- 

tion of a magnetic system. The magnetic field is used here as a counter to measure 

the area enclosed in Brownian motion. 

In chapter 2, we have done a field theoretic generalization of the diamagnetism of 

spinless Bosons. In the first part, we have discussed the response of free charged 

scalar fields in an external constant magnetic field in two dimensions. Here, we have 

used mode matching to regularize the divergent free energy. We have shown that 

the difference between the free energy with and without the magnetic field is finite, 

cut-off independent and positive definite. 

In the interacting case it turns out that the partition function and hence the free 

energy cannot be evaluated in closed form but still one can show the diamagnetism 

of charged scalar fields. We have integrated out only those field configurations which 

are within a sphere of fixed radius in the momentum space. The interaction between 

the scalar fields V(@*@) is gauge invariant. We have suitably redefined the measure 

of the integral through the inclusion of self-interaction. This has the advantage that 

the effects of self-interaction and interaction via a dynamical EM field have been 

separated. 

It is clear from the section on interacting case in chapter 2 that the proof of diamag- 

netic inequality is true for any dimension and independent of the self-interaction of 

the scalar field. The proof does not assume a specific form for the vector potential. 

This implies that the theory holds good even when the applied magnetic field is 

inhomogeneous. 

The diamagnetism of spinless Bosons is relevant to  current ideas on some of the 

macroscopic properties of Fractional Quantum Hall Effect [I] through the C o m -  

posite Bosons  idea [2, 31. In this body of work, composite Bosons are formed by 

attaching an odd number of flux quanta to each electron. This mapping of interact- 

ing Fermions to Bosons generates a statistical gauge field proportional to density 



of electrons in addition to the external magnetic field. An explanation of the Hall 

plateaus is sought in the Meissner effect of these Composite Bosons. 

5.3 2d Disordered Tight-Binding Hamiltonian in 
a Magnetic Field 

In chapter 3, we have discussed the eigenstates of a tight-binding Hamiltonian in an 

external magnetic field with on-site disorder. The classification of the eigenstates 

has been made by studying the GIPR and the multi-fractality of the eigenstates. 

We have looked here only the effect of disorder in the lowest energy eigenstate. It 

is also important from the point of view of Integer Quantum Hall Effect (IQHE) [I] 

to investigate the eigenstates in the center of the band. Characterizing this eigen- 

state will be useful in explaining the plateaus seen in the experiment. One can also 

investigate the effect of disorder and magnetic field on this eigenstate. Work in this 

direction is in progress, but not reported in this thesis. 

In this tight-binding Hamiltonian, one can estimate the localization length expo- 

nent via multi-fractality. In a system of finite size, the localization length < of the 

electronic states is larger than the system size L for a certain range of energies 

A E  (= E - E,) around the critical energy E,. In the thermodynamic limit, 
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Without computing fi from the finite size scaling of Hall conductivity [4], one can use 

multi-fractal analysis [5] to estimate it. This will help us understand the fluctuations 

of the eigenstates around the critical energies. In that situation one is interested in 

looking at  the q-th moment of the participation ratio as a function of the system 

size L and the distances from the critical energy E,. One finds [5] for a fixed system 

size L, 

P(q, L, E )  -- IE - E,I"(" (5.2) 



Using a finite size scaling ansatz, one finds 

The condition that P(q ,  L ,  E )  is finite for E # E, leads to the scaling relation 

In particular, for the inverse participation ratio, one finds 

Using D2 = 1.62f 0.02, Huckestein and Schweitzer [6] obtained 2.4f 0.3 in agreement 

with the result obtained from the finite size scaling of the localization length. It 

will also be interesting to look for an analytical calculation of this robust exponent 

fi starting from an appropriate disordered Hamiltonian. 

5.4 Imbibition of Solution through Random Porous 
Medium 

In chapter 3, we have studied the Imbibition problem both from experiment and 

numerical simulation. From our experiment conducted under two conditions, we 

have found the roughness exponent to be different. We have introduced a discrete 

cellular automaton model to explain the different exponents obtained in experiments. 

This model gives rise to a set of tunable exponents. The discrete model also shows 

power law avalanches and multi-affinity of the interface. 

5.4.1 On Experimental Aspects 

Our cellular automaton model suggests that roughness exponents are not univer- 

sal and depend on evaporation. It would be interesting to study experimentally the 

universality of the exponents. One can measure the roughness exponent of the grow- 

ing interface in an experiment. However, it turns out that with this simple-minded 



tabletop setup, it is difficult to measure the dynamic roughness of the interface. 

One has to digitize the image of the interface at  consecutive time intervals and then 

measure the correlation between the heights at  these two time intervals. The log-log 

plot of these correlations versus the time difference gives the dynamic exponent. 

This is the method which we have used to compute the dynamic exponent in our . 

model. 

Recently, employing this approach, Horvath and Stanley [7] have studied the grow- 

ing interface during imbibition of viscous liquids in filter paper. They compute the 

height-height auto-correlation using a constant driving force and find C(T) TP 

with p = 0.56 f 0.03. They also establish that the scaling of surfaces during rough- 

ening in the presence of quenched noise exhibits driving force independent scaling 

behaviour. 

Another sophisticated way of characterizing the roughness of the interface is through 

the established dynamical scaling [8] of the growing interface by an image scanner 

with an appreciable resolution. In this method one computes the root mean square 

value of the height fluctuation defined by 

e- 

The average height is defined as < h(L, t) >= x h(x, t) ,  where the summation 

extends over a: = 1,2 ,  .... L. This (global) width w is a measure of transverse corre- 

lation in the direction of growth. I t  was proposed by Family and Vicsek [8] that the 

width satisfies the following scaling relation 

This relation has been verified in numerous simulations of the interface growth 

phenomenon. The dynamic exponent z is defined by z = a lp .  For t << L", w(L, t )  

reduces to 

w(L, t) - tP (5.8) 



and, for t >> Lz, 

w (L, t )  - La 

Thus, the average width w(L, t) scales with time and the exponent ,B describes .the 

growth of the width along the growth direction. This dynamic scaling approach 

is a useful means of describing fluctuations far from equilibrium which cannot be 

described in terms of equilibrium statistical mechanics. This approach has been 

recently employed in the study of a growing self-affine interface formed in a paper- 

towel-wetting experiment [9] with a red food dye solution. 

5.4.2 On Theoretical Aspects 

Since the model presented here is not a discretization of any continuum partial 

differential equation, it would be interesting to investigate the non-linearity in the 

model. This can be done by introducing a helicoidal boundary condition [lo] which 

introduces a slope to the interface (m = Vh). In a discrete model, the helicoidal 

boundary condition is implemented by imposing h(L, t) = h(1, t) - m(L - 1). The 

nonlinearity of the corresponding continuum partial differential equation can be 

probed by studying the dependence of the front velocity. The velocity of the interface 

is computed from the heights measured at  subsequent time intervals. The variation 

of this velocity with the slope m is plotted and fitted with some polynomial. The 

coefficients of terms higher than or equal to 2 in the polynomial determine the non- 

linearities in the model. It is also important to note the signs of the non-linear 

coefficients which can help in understanding the growth process of the interface. 

It is known [Ill that the KPZ equation has a Galilean invariance1. This invariance 

enforces a strict identity between the static and dynamic exponent given by a, + 
z = 2 provided the noise has no temporal correlation. This identity is true in 

any dimension. However, in most of the experiments and numerical simulations 

'The transformation is defined by h' = h + EX, x' = x - Act, t' = t and E is the infinitesimal 
angle by which the interface has been tilted 



(including DPD and ours), it is found that a + z # 2 (see Appendix B). This 

could be due to the quenched disorder present in the medium. (In that situation, 

the coefficient of the non-linear term is expected to be renormalized. It would be 

interesting to derive such an identity in case of quenched disordered model.) 

We have studied the problem from a discrete cellular automaton model. There is 

another approach to the problem from a continuum partial differential equation. It 

would be interesting to formulate such a partial differential equation incorporating 

evaporation and quenched disorder explicitly. It would also serve as a starting point 

for a mean field approximation and for taking into account the effect of fluctuations 

systematically. One might also be able to develop some appropriate renormalization 

techniques. This will help in comparing the effect of evaporation on the roughness 

exponent with numerical and experimental observations. Work in this direction is 

in progress. 

One can study the asymmetry of the height configuration through a quantity called 

skewness. The skewness is defined as 

S = 
((h- < h >)3) 

((h- < h >)2)3'2 

The angular brackets here denote an averaging over samples. A non-zero value of 
.- 

s establishes the asymmetric configurations under vertical reflection h + -h. This 

implies that non-linear terms breaking the h + -h symmetry must be present in 

the large scale description of the surface. In other words, it also reflects the true 

non-equilibrium model of the growth. One can also compute the effective fourth 

cumulant given by 
((h- < h >)4) 

= ((h- < h >)2)2 
- 3 

A non-zero value of Q signals the asymmetry of the rough interface. These two 

quantities s and Q help one identify the non-linear terms in the stochastic growth 

equation. 



The existence of various universality classes is a powerful concept in modern sta- 

tistical mechanics, since jt allows us to understand the differences between various 

growth processes. The formulation of a continuum partial differential equation of 

the imbibition process taking into account the effect of evaporation will help one 

identify the universality class. 

In practical situations, there are a large number of effects shaping the actual mor- 

phology of the interface. However, out of these there are only a few that  actually 

determine the scaling exponents of the system. Identifying them allows us to  re- 

duce the problem to one of a few growth equations. In this fashion, a large number 

of seemingly unrelated phenomena may be seen to belong to the same universality 

class, even though there is no. apparent connection between them. 
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Appendix A 

Diamagnetic behaviour of Dirac 
electrons in 2d in an external 
homogeneous magnetic field 

In this appendix, we compute the renormalized energy difference of QED in an 

external homogeneous magnetic field. In case of QED vacuum in an external homo- 

geneous magnetic field, the energy levels for spin-up and spin down states are given 

In this case, equation (2.20) becomes 

Therefore, the energy Eo(B, L) in presence of the magnetic field becomes 

Note that there is a difference in sign relative to the vacuum energy in the 

spin zero case. This minus sign occurs because spin 112 particles satisfy the anti- 

commutation relation rather than commutation relations [I, 2, 31. The energy with- 

out the magnetic field is given by 



I t  can be easily shown by numerically plotting and comparing the two energies that  

Figure A.l: The curve is drawn for the function f (a)  = ( . l  + a)'I2. The dash-dot 
line is the chord joining the two end points of the curve. The area under the curve 
is more than thafunder the chord. Hence, the positivity of dl(B,  rn) is proved. 

For the sake of completeness we provide an analytical proof below. It is easy t o  

notice that the difference between the two energies can be written as 

Where dl(B, m) is given by 

where zl = (1 + 21p)/2p and p = is the dimensionless variable in the problem. 

Now, ndte that  the function f (a)  = is convex (see the figure A. 1). 



Hence, it follows that 

The convergence of this function can be proved easily as before. We note that 

Now, applying mean value theorem twice it is easy to show that 

Notice that the difference between the free energies varies with the cutoff as &. 
This shows that in the relativistic case the response of the vacuum of QED is Dia- 

magnetic in nature which is also in accord with reference [3] where the result obtained 

depends on the cutoff used in the theory. Our result uses a proper regularization 

scheme to deduce the diamagnetic behaviour of the renormalized vacuum. If one 

thinks in terms of virtual pairs of electrons and positrons which have spin, then one 

would naively believe that the vacuum will be paramagnetic. However, it turns out 

that it is diamagnetic. This behaviour is well known in the literature [3, 41 and has 

been explained as a consequence of Pauli exclusion principle. The QED vacuum in 
/ 

an inhomogeneous magnetic field as well as with finite chemical potential and finite 

fermion density has been discussed recently in the literature [5, 61. The highlight of 

this appendix is to prove the inequality exactly without any approximation. 
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Appendix B 

Scaling Exponents a and ,O from 
Various Theoretical Models and 
Experiments 

a+a/P-  
2 
2 
2.5 
2 

1.7 
2.07 
1.33 
< 2 

a + alp 

> 2 

3.46 

4 

P 
0.30 f 0.03 
0.33 
0.25 
0.33 

0.70 f 0.05 
0.95 f 0.05 
0.9 f 0.1 
0.50 - 0.60 

P 

0.29 - 0.40 
0.56 f 0.03 
0.24 f 0.02 

Theoretical 
1.Eden Model (1961,1985) 
2.Restricted Solid on Solid (Kim and Kosterlitz, 1989) 
3.Edwards-Wilkinson model (1982) 
4.Kardar-Parisi-Zhang model (1986) 
5.DPD model (Boston Group, 1992,1994) 
6.DPD Simulation, moving (Boston Group, 1992,1994) 
7(a).SOD Model A (Sneppen, 1993) 
7(b).SOD Model B (Sneppen, 1993) 
8.Cellular Automaton Model (Sunil Kumar and Jana, 1996) 
Experimental 
1.Paper wetting, pinned (Boston Group, 1992,1994) 
2.Paper wetting (Family et.al., 1992) 
3.Paper wetting (Horvath and Stanley, 1995) 
4.Paper-towel wetting (Kwon et. al, 1996) 
5(a).Paper wetting I (Sunil Kumar and Jana, 1996) 
5(b).Paper wetting I1 (Sunil Kumar and Jana, 1996) 

a 
0.50 f 0.01 
0.50 
0.50 
0.50 
0.63 f 0.02 
0.70 f 0.05 
1.01 f .O1 
0.63 f 0.02 
0.45 - 0.68 
a 
0.65 f 0.05 
0.62 - 0.78 

0.67 f 0.04 
0.66 f 0.02 
0.45 f 0.05 


