
Chapter 4 

Experiment a1 and Numerical 
Studies on Imbibition 

4.1 Introduction 

In this chapter we study a non-equilibrium classical statistical mechanics problem 

by experiment and numerical simulation. The study concerns the static as well as 

dynamic properties of the interface formed as a result of the seepage of fluid through 

a random porous medium. Interface growth phenomena have been studied in a va- 

riety of systems [I ,  2, 3, 4, 51. The main interest is to understand the morphology 

of the interface. 

The basic aim here is to study the effect of various factors in shaping the roughness 

of the interface. There are several kinds of interfaces in nature. Examples of the in- 

terface motion in disordered media are (1) fluid flow in porous media (2) propagation 

of flame fronts and (3) pinning of flux lines in High Temperature Super-conductors 

by random impurities. In a deposition process, one can have (i) atom deposition 

and (ii) roughening in Molecular Beam Epitaxy. Rough interfaces are formed in 

biological systems as well e.g. growth of a bacterial colony. 

In this chapter, we study the interface generated by a fluid imbibed into a random 

porous medium. The main motivation for studying these interfaces is to understand 

the underlying mechanism which leads to roughening of the interface. This might 

help in characterizing a random medium. The roughening process is studied through 



scaling. The exponents obtained under this scaling are independent of 'many7 de- 

tails of the system. This allows one to understand the roughness of the interface 

of different systems even though these systems differ in the detailed mechanism by 

which the interface is formed. From the point of view of statistical modeling, one 

would like to classify a large number of theoretical models developed for various 

contexts into a small number of universality classes. 

The various sections of this chapter are organized as follows. In section 2 we de- 

scribe the imbibition process in random porous medium. After a brief introduction 

to characteristics of the rough interface, we critically comment on the existing mod- 

els for imbibition. Then, we describe our experimental setup and the results. In 

section 6, we present our model to study imbibition. A numerical study of the 

model and comparison of the results with that of experiments is given in section 7. 

Self-organized criticality (SOC) and the multi-affinity in this model have also been 

discussed in subsequent sections. In section 10, we present a comparative study of 

our model with other growth models. Finally, in section 11 we give our conclusions. 

Imbibition in Porous Medium 

We describe here a process where a dark staining fluid is sucked into a 2D random 
a- 

porous medium. For example, if a paper is fixed with the bottom end dipped into 

a solution, then the fluid is imbibed into the pores of the paper by capillary action. 

An interface is formed by the wet front which rises steadily. On microscopic length 

scales, paper is an extremely disordered substance formed by long fibers which are 

randomly distributed and randomly connected [6]. The randomness present in the 

paper and evaporation of the fluid from the bulk of the paper tends to arrest the 

motion of the wetting front. The motion of the wet front is also affected by the ratio 

of the size of the molecules present in the solution to  the pore size and viscosity of 

the fluid. Since evaporation takes place from the sides of the paper as the fluid rises, 



the front gets dried up. The front stops moving when the fluid at  the boundary 

has completely evaporated. Finally, a rough interface results. These experiments 

provide a simple laboratory system to study flow through a random porous medium. 

This study is of relevance to thin layer and paper chromatography. They could also 

provide good "table top " systems to study pattern formation [7, 81. 

There are distinct qualitative differences between this interface formation in im- 

bibition and other growth processes. For example, the rough interface in deposition 

process arises when particles are deposited randomly over a surface. But, the rough- 

ness of the interface in imbibition is solely due to the disorder in the paper. If there 

is no blocking of the pores, the interface will be smooth a t  any rate of evaporation. 

However, the disorder experienced by the fluid is indirectly affected by the evapora- 

tion. There could be many paths through the fibers of the paper to reach a particular 

site. When the evaporation is small, the fluid can take even longer paths to reach 

a site. This changes the effectiveness of the randomness of the medium making the 

interface rough. For the same amount of randomness, the number of paths will be 

less when the evaporation is higher, because higher evaporation eliminates longer 

paths. 

4.3 Characterization of the Interface 

In our experiment and simulation, a one-dimensional interface is formed by fluid 

flow through a 2-dimensional random porous medium. 

The surface can be instantaneously described by its height h(x) as a function of 

x, where x is a spatial coordinate. As the surface evolves in time, h(x, t )  depends 

on both space and time. Let us define W(1, t) ,  the correlation of the fluctuations in 

the height at  two points x and x + I at a fixed time t as 

where (...), denotes an average over x. Experimental observation indicates that 



W (1, t) satisfies a scaling law : 

The exponent a, and P quantify the static and dynamic roughness of the interface. 

The two limits of the scaling function are: f (u) .- up for u << 1 and f (u) - const. 

for u >> 1. We also study the correlation function 

where (...),,, denotes an average over x as well as a time average over a time scale 

short compared to the relaxation time. For 1 << L (system size) , C(1,O) -- 1"; while 

for short times, C(0, r) N rp. Note that C(1, r) scales similarly with W(1, t ) .  In the 

subsequent section we denote C(1,O) and C(0, r) by W (I) and C(T) respectively. 

It is known that the roughness of the wet front can be described as a self-affine 

fractal [2]. Self-similar fractals are invariant under isotropic dilation while the self- 

affine ones are statistically invariant under an anisotropic dilation. Mathematically, 

the self-affine interface is invariant under the transformation x + bx and h + bah 

(with a # 1). This self-affinity of the interface implies a bound on the roughness 

exponent a. The self-affine interface looks flat when viewed at  a sufficiently large 

length scale. ThiS means immediately a < 1. In fact in our experiment as well as 

in simulation, we always obtain a < 1. 

4.4 Review of Previous Work on Imbibition 

In 1994, Amaral et. al. [6], in an experiment using paper towels and coffee found 

the roughness exponent to be 0.65 f .05. They pointed out that this exponent is 

robust in the sense that it does not depend on the evaporation, concentration of 

the solution and the kind of paper used. A directed percolation depinning (DPD) 

model [9] was developed to study the interface roughening of interfaces in porous 

medium. This model is defined as follows (see figure (4.1)). On a square lattice of 



Figure 4.1: A Schematic Diagram for Directed Percolation Model 

size L with periodic boundary condition, a fraction p of the cells is blocked (marked 

by 'B'). A blocked cell does not allow the interface to grow while the interface is 

allowed to advance through an unblocked cell. At t = 0, the bottom row is filled 

with fluid (shaded) and the interface is a horizontal line. At t = 1, one cell ( say 

'X') from the unGocked cells that are nearest neighbours (U-cells) to the interface is 

chosen randomly. This cell 'X7 becomes wet; in addition, all cells (regardless of type 

) below it in the same column also get shaded. This process is then repeated. For 

p values below a critical threshold p,, the interface propagates without stopping. 

While if the density of blocked cells is high enough (p > p,), the interface will 

eventually get pinned. This happens when it meets a directed percolating string of 

blocked cells that runs across the lattice from left to right. To include evaporation, 

a variant of this DPD model was proposed [6]. In this model (DP) [6], evaporation 

was incorporated phenomenologically by a steady increase (Ap) at each time step 



in the probability p of blocking the pores. Such an increase in p naturally drives the 

system into a percolation threshold p,, wherein a cluster of blocked cells spanning 

across the system is obtained. In other words, in this model the effective density 

of pinning centers increases as the distance between the interface and the source 

increases. 

Such a spanning path (see figure (4.1)) is characterized by two correlation lengths; 

one ((1, ) is parallel to the interface and the other one (IL) is perpendicular to it. 

These two correlation lengths diverge with different exponents vll and u l  near p,. 

The static exponent obtained in this [6] simulation in two dimensions was 0.63f 0.02. 

An analytical argument was given for the static exponent 0.63 obtained in numerical 

simulation by identifying the Ill(" (p - pc)-"11) with I and (p - pc)-"1) with 

W '. Therefore, 

It is known [lo] from numerical calculation on directed percolation in (2 + 1) dimen- 

sion that vll = 1.733 and v l  = 1.097. This immediately gives cr = ul/vll = 0.63. A 

variant of the DPD model with global updating called the self-organized depinning 

(SOD) model has been recently developed by Sneppen [ l l ] .  In this model (SOD), 

the interface grows on the site at which the pinning force is the smallest. The con- 

straint on the slopes of the height variable (Jh(y) - h(y - 1)1 < 1) acts after the least 

pinned site is moved. The static roughness exponent in this model was found to be 

0.63 f 0.02 which is the same as that found in DPD model. 

4.5 Experiment 

We will now describe our experimental setup to study imbibition in porous medium. 

We use Whatman No:l filter paper as the porous medium and ink as the dark 

'This identification is valid so long as there is a single transverse characteristic length for 
directed percolation clusters. 
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Figure 4.2: Schematic Diagram of Experimental Setup (Vertical Geometry) 

staining fluid. The experiments can be carried out in two geometries as shown in 

figure (4.2) and figure (4.3). In figure (4.2), the paper was held vertically and the ink 

rises through the pores. In another geometry (figure (4.3)) , the paper was spread 

horizontally over a glass plate. In this case, the ink rises through the capillary 

tube and then spreads horizontally in the paper. As is evident here, all positions 

in the paper are equivalent under gravity. So, the effect of gravity drops out in 

this horizontal geometry. The size of the paper taken for the vertical geometry was 

28.5cm x 23cm while for the horizontal geometry 16cm x 22cm. We here present 

the experimental result [12] for the vertical geometry. 

The evaporation rate was varied by changing the room humidity and temperature 

(by using a room air conditioner). Initially, the water front and the dye in the ink 

solution emerge together, but after 15-20 seconds or so the water front moves ahead 

of the dye front. This could be due to the fact that the organic dye molecules are 

larger than the water molecules. After an hour or so both the fronts again meet 

together and move jointly since the movement of water is now reduced considerably 

by evaporation. And finally, the ink stops at a particular height. The darkening 
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Figure 4.3: Schematic Diagram of Experimental Setup (Horizontal Geometry) 

of the interface indicates this stoppage of growth. This darkening is due to the 

following reason. As the ink rises water evaporates from the paper. As a result, 

the dye molecules carried by the water get deposited at the interface continuously 

causing a darkening of the boundary. The paper was taken out from the solution 

and dried when this darkening took place. The interface was photographed with a 

Philips CCD camera ( 56472 CCIR) and the image was digitized using a DT-IRIS 

2851 frame grabber card. The image was analyzed using the software provided 

with the frame-grabber. The CCD camera has an image area 6mm. x 4.5mm. 

containing 604 x 588 pixels. We divided the horizontal length of the paper into 

several segments and each segment was digitized accordingly. A typical image of 

the interface obtained from the experiment is shown in figure (4.4(a)). 

Since altering conditions in the room is found to change the roughness of the 

interface even after it is dried, the humidity and temperature of the room was kept 

constant till the image was digitized. In figure (4.4(b)), we also show the interface 

generated from the simulation of our model described below. Figure (4.5) shows the 

behaviour of W(1) against 1 for two different values of evaporation rate. The data 



Figure 4.4: (a) A digitized image of the interface from experimental set-up of vertical 
geometry. (b) A typical result of the simulation obtained using the model. 

were averaged over 10 experiments. 

We find the value of a to be .45 f .05 and .66 =t .02 for higher (humidity 50.0% 

and temperature 21.0°C) and lower evaporation (humidity 60.0% and temperature 

23.0°C) respectively. However, we do not have a quantitative measurement of the 

evaporation. Thus, a is very different for the two cases. 

In a recent experiment by T. H. Kwon et. al. [9] with paper-towel wetting with a 
I 

red food dye solution, the static roughness exponent was found to be 0.67 f .04. A 

dependence of a on the external parameter is also exhibited by DPD [9] models when 

the growth is stopped before it reaches p,. There the exponent crosses over to the 

Kardar-Parisi- Zhang(KPZ)2 [14] value. The change in a shown by the experiments 

above is different from this crossover since we see values of a below KPZ (a = .5) and 

above DPD (a = .63). This shows that unlike the results of reference [6],  a is not 

quite robust against the external parameters. Varying exponents (0.62 - 0.78) have 

also been observed in experiments by Family et. al. [15]. Notice the exponents are 

21n its one-dimensional version, the KPZ equation reads as = vV2h + $ ( ~ h ) ~  + C(x, t). The 
noise has the following correlations; < C >= 0 and < C(x,t)C(xl, t') >= D6(x - x1)6(t - t'). 



Figure 4.5: The  experimental values of height-height correlation function W(1) plot- 
ted against the distance of separation 1 after the interface stopped growing. Points 
marked with * fa l l  onto a curve with exponent .45 f .05. For lower evaporation the 
points (marked o)  correspond to  an  exponent .66 f .02. 

not the same as obtained from Edwards and Wilkinson Model [16] and Restricted 

Solid on Solid model [17]. (see Appendix B for a comparison of the exponents 

obtained in various experiments.) 

4.6 The Cellular Automaton Model 

To understand the dependence of the various parameters affecting the growth of 

interface in imbibition of a dark staining fluid into 2D random porous medium, we 

present the following model. Before discussing the model used in the simulation 

let us try to understand the problem from a microscopic point of view. In the 

experiments described above paper was used as the random medium. A paper is 

made of criss-crossed fibers. Ink flows both through the paper and through regions 



in between the fibers. Disorder stems mainly from the random orientation and 

length of these fibers. This disorder in the paper does not change with time, so 

a quenched disorder is appropriate for the description of the theoretical model. 

Thus, at a microscopic level one can regard the paper as a randomly disordered 

medium [6] with a time independent probability p for the pores to be blocked. So, . 

the interface growth phenomena described here can be modeled as the propagation 

of fluid particles through this disordered medium. The wetting front of the fluid 

particles propagates due to the capillary forces. The disorder in the medium and 

the evaporation tend to arrest this growth. It should be noted that for p < p, (i. e. 

when at  any given time there is a nonzero number of paths normal to  the interface 

) this pinning is possible only when the evaporation is present. 

Evaporation constantly decreases the number of fluid particles in the wetting 

front. This makes it more difficult for the fluid to overcome the obstacles. The front 

stops when the number of fluid particles goes to zero. To see it more clearly, we can 

associate a dimensionless internal driving force with the interface with the property 

that this force vanishes as the interface stops growing. The front stops moving when 

f + 0 at a critical height. This is substantiated by the fact that in the experiments 

for smaller evaporation, we observe larger critical height. 
# 

In our model [12] the porous medium is considered as a square lattice with 

disorder being incorporated by blocking some cells randomly with a probability 

p < p, (see figure (4.6)). The maximum capacity of each cell is fixed to No number 

of particles i.e. the cells are of fixed volume and the fluid is incompressible. At 

every time step, evaporation was explicitly modeled by the loss of n number of 

particles from a cell. At time t=O,  at the bottom edge of the lattice a horizontal 

line of wet cells with No particles is created. At t = 1 the particles are imbibed into 

all unblocked cells which are nearest neighbours to the wet region. The wet cells 

are however, not depleted due to replenishment from the source below. If N is the 



Figure 4.6: Example of the multiple connectivity of the model for a 6x6 lattice. The  
blocked cells are shown black. Note that the cell (4,4) gets particles from both (4,3) 
and (4,5). Also when a cel 1 (i,,j) i s  wet all the other cells (i,j) with i < is are wet 
as well. 

number of particles in a wet cell then it transfers N - n particles to all its unblocked 

nearest neighbours i.e. each of the neighbours gets N - n particles, n being the 

loss due to  evaporation. This updating is done in parallel i.e. all cells which are 

nearest neighbours to  the front are updated simultaneously. When a cell transfers 

to  its nearest neighbours the number of particles it contains remains the same due 

to  the replenishment from the source below. If a cell has more than one wet nearest 

neighbour, it gets particles from all of them subject to  a maximum number No. We 

also apply the rule that every cell blocked or unblocked below a new wet cell becomes 

wet [6] as well with No particles. This is to  avoid the presence of overhangs. We 

use periodic boundary condition in horizontal direction x by identifying the cells a t  

the edges of the lattice. In the vertical direction, the lattice is semi-infinite (Typical 

numbers: L, = 6000, No = 150, n = 20, p = -45.). 



In this model, a change in concentration of the fluid can be modeled by changing 

the maximum allowed number of fluid particles in a cell No. 

We can apply an external bias which could be present due to gravity or anisotropy 

in the medium. This bias was incorporated in the model by introducing a difference 

in the number of fluid particles transferred to the vertical and horizontal neighbours 

of a given cell. 

There are two independent parameters in the model. They are (i) the blocking 

probability p and (ii) the ratio q = n/No.  

The model is different from that of reference [6], in the sense that here the effect 

of evaporation is incorporated in an explicit way. Unlike the directed percolation 

model, where the interface stops only when it is pinned by a connected cluster of 

blocks, in our model it can also stop when the wetting front runs out of fluid due to 

evaporation. When this happens, a connected cluster of dry cells (which could be 

blocked or unblocked) forms at the boundary. It should be noted that there is no 

analogue of the stopping of growth in DPD model by running out of fluid. In DPD 

growth model, the wetting front does not stop for p < p,. However, in our model 

for all values of evaporation, the interface stops, forming a connected cluster of dry 

cells. 
C 

The model is also different from Eden3 growth [18] in the sense that all the sites 

in the boundary move at the same time i.e. here the growth process by itself 

does not cause interface roughness. The model can be used to study th in  layer 

chromatography wherein a mixture of different chemical compounds are made to 

diffuse through a porous medium resulting in their separation. 

3The model was originally introduced for the formation of cell colonies, such as bacteria or 
tissue cultures. In its prototype lattice version, a seed particle is placed at the origin. A new 
particle is added on any randomly chosen perimeter site of the seed, forming thereby a two site 
cluster. The process is iterated to generate a rough perimeter. To study the interface properties of 
the model, it is convenient to start the growth from an entire line of seeds instead of from a single 
seed. 



Figure 4.7: The simulated correlation f inction W(1) plotted against the distance 
of separation 1 after the columns stopped growing. The  parameters are p = .45, 
L = 6000 and Q = .12 to  .I48 i n  equal intervals of .004 from top. 

4.7 Simulation Results and Discussion 

Unless specified the simulations are done on a lattice of horizontal length GOO0 units. 

The results are averaged over 500 realizations. 

4.7.1 Static and Dynamic Exponent 

In figure (4.7) we show the behaviour of W(1) as a function of I for different values 

of evaporation for a fixed value of p and lattice size L. The simulations show the 

existence of a crossover length 1 ,  such that the height - height correlation function 

W N la for 1 << l x .  Whereas for 1 >> l,, W saturates to a constant value 

WSat. The exponent a is a function of evaporation q while the value of WSat and 

1 ,  depend on both the system size L and evaporation q. The dependence of a and 

WSat on evaporation is consistent with that found in the experiment as can be seen 

by comparing figures (4.5) and (4.7).  



Figure 4.8: The data collapse of W(1) vs I for various values of evaporation. The  
parameters are p = .45 and L = 6000. The x direction scale has been rescaled with 
respect t o  No = 150. The exponent a and y was found to  be 0.5 and 3.0. 

The saturated correlation Wsat depends upon the evaporation 7 as 

So, in the region where a is independent of 7 one can obtain a scaling form (from 

the simulated data) 

.+ W(L 7 )  la f ( 1  7"7 (4.6) 

where f ( x )  -+ const. as x + 0 and f (x) + x-a as x + oo. The data collapse is 

shown in figure (4.8). It has been verified numerically that the scaling form (4.6) 

holds over a narrow range of evaporation ( q ranges from .I34 to .I47 ) with expo- 

nents a depending explicitly on evaporation. 

We will see how the height - height correlation exponent a changes with time. 

This is depicted in figure (4.9) . At short times (transient regime) a shows a rapid 

increase. At late times a saturates to a value asat which depends on evaporation. 

This establishes the fact that the roughness of the interface is controlled by evap  

oration and that the reason for the dependence of a on 7 is not due to  the lack of 



Figure 4.9: The growth of exponent a as a function of time forp = .2 and L = 6000. 
The three regimes are marked I, II and III. The lines are for q = .286, .295, .300 
respectively. The behaviour of asat with evaporation 77 in this three regime is shown 
in the inset. 

time for the interface to saturate. 

We find that there are two critical values4 of evaporation ql and q2 (see figure (4.9)). 

For low values of evaporation the mean height increases without stopping (regime 

I). Above the critical evaporation ql (regime 11) the mean height stops after a finite 

time. We find in,this region (ql < q < q2) a = 0 .  5 and y = 3.0. Note that this 

value is not the same as the exponent obtained in DPD simulation. The scaling 

plot shown in figure (4.8) is in this region. Above the second critical evaporation 

rate q2, this scaling breaks down. For q > 72 (regime 111), the exponent a decreases 

continuously with q as can be seen from the inset of figure (4.9). For p = .45, we 

obtain ql = .I24 and 72 = .134. And for p = .2, we get higher values of 71 and q2 as 

is seen from the inset of figure (4.9). This shows that the critical values of vl and 72 

increase with decreasing p. This dependence of a on evaporation is consistent with 

41t should be mentioned that the non-zero value on q1 is due to the rule that when a cell having 
m particles transfers to its q neighbours it transfers n to all of them subject to the maximum 
capacity No. We find q~ = 0 if we impose the rule that the cell transfers mlq to all the neighbours. 
But this does not change the qualitative behavior of the dependence of exponent on evaporation. 



Figure 4.10: The  simulated t ime correlation function of height for various values of 
7 and other parameters same as figure(4.6). The various symbols denote the values 
of 7. The  dotted line corresponds t o  a slope of 0.5. 

the experimental results described above. 

In this model we can apply an external bias which could be present due to gravity 

or anisotropy in the medium. This bias was incorporated in the model by intro- 

ducing a difference in the number of fluid particles transferred to the vertical and 
/ 

horizontal neighbours of a given cell. The different regimes described above were 

also observed in this case for a fixed value of 7 and p as the bias was varied. 

In the model the fluid particles have more than one path to reach a particular cell. 

The effective number of paths available to reach a cell decreases as we increase evap- 

oration. This is due to the fact that the increased evaporation suppresses the longer 

paths. For 7 < 71, the number of fluid particles that a cell loses through evaporation 

is more than compensated by the inflow because of the many paths available, hence, 

in this regime the effective evaporation is zero and the values of exponents become 

greater than 0.5. As the number of paths become less, the particles get stuck at ob- 



stacles for a longer time inducing a transition into a regime with exponents 0.5 [14]. 

On further increase of evaporation, the exponents becomes less than 0.5. In the 

case of biased random walk, this region is known to have exponents which change 

continuously with bias [19]. 

The dependence of the dynamical exponent P on evaporation is the same as that of 

a. In figure (4.10) we show the behavior of C(r )  for various values of q for a fixed 

value of p. We see that in regime I all the curves have a slope greater than 0.5. This 

slope changes continuously to 0.5 in regime 11. In regime 111, the slope decreases 

with q. 

4.7.2 Internal Driving Force 

The average number of particles in the wetting front can be considered as the reduced 

internal driving force f .  In the model, we compute this internal driving force as 

follows. If Ni is the number of particles at  i-th cell, then the average number in 

the front at  any instant is defined as m(t) = & Ni(t). Similarly, we define 
- 1 Nc = ~ k - ~  Ni(t + m) as the average number of particles in the steady state. 

Then, the reduced internal driving force is defined as 

Evaporation continuously reduces this driving force. Depending on the behaviour 

of the driving force as a function of time, the growth behaviour of the interface also 

changes qualitatively. 

To get an insight into the dependence of the roughness exponent a and saturated 

height-height correlation WS,, on the parameters mentioned above, we plot ih figure 

(4.11) the change in reduced driving force f as a function of time 1201. It is shown 

that for the range of q considered f can be fitted to the following form 



Figure 4.11: A plot of the reduced driving force f for q = .136, p = .45 and L = 6000. 
The continuous line is the fit to equation(4.8) with t, = 10.0 and A = 29.0. 

Here A = A(q, p), B(q, p) , tc(q, p) are all functions of evaporation q and the blocking 

probability p. Changing p does not change the behaviour of f qualitatively but will 

change the values of A and t,. This nonlinear dependence of f on time is certainly 

different from the DPD model in ref. [6]. This could be a reason for the change 

in the roughness yxponent a, as a function of evaporation. However, more careful 

analysis is needed to establish this point. 

The driving force f drops to a value f, at  t N 2t,. This value f, as a function of 

q is given in figure (4.12) a t  t = 2tc. We would like to emphasize that changing q 

does not change t, but merely changes the value of f, a t  which the system is driven 

for a long time before it stops and A which sets the transient time scale. We find 

that there are two critical values of q, ql and q2 a t  which the slope of the fs(q) 

curve changes drastically. The interface behaves differently in these three regions as 

discussed before. The static exponent a, can be computed when the driving force 

saturates. It was found that the exponent a ( calculated at  t = 4tc ) changes 



Figure 4.12: The reduced driving force f ,  = f (2t,) showing two critical values of r]  

for p = .45. The system size in  this case is 6000. 

continuously with r].  

4.7.3 Finite Size Scaling 

In this section we perform a finite size scaling for a fixed value of evaporation r ]  and 

p. In figure (4 .13) ,  we show the dependence of W(1) on the system size L. We find 

that the saturated correlation WSat of W(1) depends on the system size as 

with the correlation function W(1, L )  satisfying a finite size scaling form 

where x = .34 and v = .68 for p = .2 and r ]  = .293 in regime 11. The data collapse 

obtained with this scaling is shown in figure (4.14).  

As implied by equations (4.2) and (4 .10) ,  we find the exponents X ,  v and a satisfies 



Figure 4.13: The  simulated height-height correlation function W(1) plotted against 
the distance of separation I after the columns stopped growing for system sizes L = 
125, 250, 500, 750, 1000, 1250, 1500, 1750, 2000 from bottom, p = .2, 7 = .293. 

Figure 4.14: The  data collapse with the finite size scaling (see equation (4.10)) for  
x = .34 and v = .68. The other parameters are same as figure (4.13). 



Figure 4.15: Distribution of connected cluster of dry cells calculated at t = t ,  to  t = 
8tc. Note that the distribution approaches to  a power law given by P(<) - T h e  
parameters are same as figure (4.11). 

the scaling relation [21] 

since for the given value of p and q, a = .52. This system size scaling establishes 

that there is no single characteristic length scale in the problem. This implies that 
0 

the function W(1, L) obeys a power law relation given by equation (4.2) [21]. 

4.7.4 Distribution of Cluster of Dry Cells 

It was mentioned earlier that the interface stops moving when all the boundary 

cells dry up. Thus, a connected cluster of dry cells is formed at the boundary. 

We show [20] in figure (4.15) that the length distribution of this connected clusters 

approaches a power law distribution, 

as t >> t,. This power law dependence is typical of scale invariant systems. 

69 



4.8 Self-organized Criticality (SOC) 

In 1987, Bak, Tang and Wiesenfeld introduced the notion of self-organized critical- 

ity [22] in an investigation of extended dissipative dynamical systems. These dy- 

namical systems naturally evolve into a "critical state" through a self-organization 

process. There is no external tuning parameter that must be adjusted to reach this 

critical state. This critical state is characterized by no intrinsic length or time scales. 

Bak, Tang and Wisenfeld suggested that sandpiles were a particularly clear exam- 

ple of a self-organized system. The grains are dropped onto a pile one by one, and 

the pile ultimately reaches a stationary critical state in which its slope fluctuates 

about a constant angle of repose. Each new grain added is capable of inducing an 

avalanche on any size scale. 

Many models based on cellular automata have the property of self-organized criti- 

cality. The aim of this section is to study this self-organization process in interface 

growth. Even though there is a substantial amount of work in this field, till now 

there is no general agreement on the origin and characterization of SOC in different 

systems. In fact, conservation laws were believed to be necessary for the appearance 

of SOC [23]. However, there are also models which are nonconservative but still 

shows SOC [24,25]. The model presented here belongs to this class of nonconser- 

vative systems exhibiting SOC. In our model it appears [20] that the rapid decay 

and subsequent slow reluxation of the driving force to zero is responsible for SOC. 

As mentioned before, Sneppen [26] was the first to introduce a self-organized depin- 

ning (SOD) model. The main difference between the DPD model and SOD one is 

that SOD does not require a tunable driving force. Instead, the growth rules are 

enough to self-tune the interface to the critical point F, - in this sense SOD model 

exemplifies the ideas of self-organized criticality. The scaling properties of SOD co- 

incide with those of DPD model [27, 281. To establish the SOC of the interface in 

our model, it is necessary to obtain the length and time distribution of avalanches 



Figure 4.16: Spatial and t m p d  dMbutionfrnrdions ofthe uvdundres shown for 
the parameters same as in figurn (4-11) 

[29]. When the interface stops moving, a connected duster of dry cells is formed 

at the boundary. We then fill one of these dry cells with No number of fluid parti- 

cles. This results in further maeeme;art &the htdice. This is rnotkxted from the 

usual sandpile model in SOC where a grain of sand is added to study the resultant 

avalanches at all length scales. The distribution of spatial and temporal extents 1, 

and t ,  of these avalanches is shown in 5gme (416). Theee distzihtions are found 

to obey the power laws 

where P,(l.) is the frequency of occurrence of an avalanche of length 1, and Pt(ta) is 

the frequency of occurrence of an avalanche lasting a time t,. The exponent 6 has 

a universal value equal to 1.0 for ql < q < qz. It has been argued recently by Boer 

et al. that the mere existence of power law correlations is not sufficient to establish 

SOC [29]. They take the non-normalizability of the temporal distribution function 

to be the criterion of SOC. The corresponding argument here is the following. For an 

infinite lattice, the finiteness of the integral J,M P(ta)dta means that points infinitely 



far from the origin of avalanche do not participate in the avalanche process. If 

the interface is critical, it is robust against any disturbance; i.e. an avalanche 

should leave the interface unchanged. This is possible only if all the points on 

the interface has a nonzero probability of participating in the avalanche indicating 

P(t,) as t ,  +- oo to be significant. This results in the divergence of the integral. 

The value of 6 = 1.0 in our simulation satisfies this criterion establishing the SOC 

of the interface. There exists a simple relation between the exponents rc and a given 

by K = 1.0 + cu . This can be seen from the following. The total area covered by an 

avalanche of size la is $" lgdla - 1:+". Since the probability of finding a blocked site 

is uniform, the probability of the avalanche of size 1, is I;('+"). The same argument 

applies for the distribution P([) shown in figure (4.15). To understand this critical 

behaviour of the interface we examine the form of the driving force. Note that 

(see figure (4.11)) the time dependence of the driving force is of the form given in 

equation (4.8). This means that the interface is driven by a force F - F, for a long 

time. It should be noted that the tuning of the driving force to F, is done by the 

system internally. This is a characteristic feature of self organizing systems, wherein 

the system is driven in a region close to criticality by itself [30]. This shows that in 

this region of q the interface exhibits self-organization. It is now quite established 
1 

[31] that this type of slow driving force underlies most (if not all) models of SOC. 

Mult i-affinity 

As mentioned earlier, the self-affine interfaces are invariant under an anisotropic 

scale change. This self-affine interface is characterized by a single exponent. In this 

section, we demonstrate that the scaling properties of the interface generated from 

our model is described by an infinite set of exponents and thus the model obeys 

multi-affine scaling. In other words, higher moments of height-height correlation do 

not scale with the same exponents. In the context of interface growth, the concept 



Figure 4.17: The exponent a, has been plotted against q. Parameters are p = .45, 
7 = .I36 and L = 6000. 

of multi-affinity was first introduced by Barabhi et. al. [32]. To check for this 

multi-scaling of the interface, one has to compute the exponents of the q-th order 

height-height correlation function defined by 

Numerical simulation shows that cq(E) - lQa9. Notice that c2(l)  is related to the 

height-height correlation function W ( 1 )  defined in equation (4.1) by c2 ( 1 )  = [W (1)12.  

In the model simulation [32] of the evolution of height variable h(x ,  t )  in (1+1) 

dimensions with power law distributed noise , it was shown that exponents a, 

decrease with q. It was also noticed [32] that the exponents change with the order 

q continuously with a sharp change of the exponents at  q - 3 indicating a phase 

transition. 

5Starting from a flat surface h = 0 at t = 0, the system evolves up to time t, performing t times 
the following rules. (a) The noise C(x, t )  is added to every site; (b) each site takes a new value 
h(x, t + 1) equal to the maximum of itself and its two nearest neighbours. The noise C was taken 
from a power-law distribution of the form P(C) - [-(l+j') for C > 1 and P(C) = 0 otherwise. 



Here, we study [20] the q-th order correlation function of height differences in our 

model. In our computation of c,( l ) ,  only positive moments are considered. They 

indicate the multi-affinity of the interface if a, # constant for all values of q. 

The exponents a, for various values of q are shown in figure (4.17). As is well 

known for multi-affine surfaces, we find a, to change continuously with q. Thus, this 

variation of a, with q strongly suggests that the distribution of height differences 

is multi-affine. It is evident from the figure (4.17) that a, is a decreasing function 

of q. It is interesting to note in this connection that for a continuous Brownian 

motion, the exponent a, = 112 for all positive values of q. Even the Lorentzian and 

exponential distributions fall into this self-affine class having a, = 1 for all positive 

values of q. 

There is another way for displaying the set of infinite exponents. This method 

is common in statistical as well as disordered electronic systems. We carry out 

this multi-fractal analysis using the height distribution N(j) [33, 341. Here, j is 

the deviation of height of the columns from the mean h. We define a normalized 

probability distribution 

and its m-th power Wm(j) as 
P 

Then, the singularity spectrum f (8) is defined6 as 

1 M 

and 

this definition, both positive and negative values of m (including zero) have been considered. 
This has been depicted in figure (4.18) explicitly. 



Figure 4.18: f (8) versus 8 spectrum for the same parameters as figure (4.17). 

Equations (4.17) and (4.18) define a function f (8)  parametrically, where m is the 

parameter. In figure (4.18), we depict the smooth dependence of f (8) on 8. Note 

that for ordinary fractals, f (8) is a constant. For multi-affine fractals, f (8) is as 
0 

shown in figure (4.18). . 

4.10 Cornparision with KPZ and DPD Models 

A crossover of a from .63 to 0.5 is seen in the DPD model [9]. However, the 

dependence of the exponents on evaporation seen in the present model is different 

from this crossover. This is supported by the following arguments. 

1. In both simulation and experiment, we find the exponent a to vary from a 

value below 0.5 (KPZ) to one above 0.63 (DPD). 



2. The dynamic exponent ,B obtained from the simulation is not the same as the 

KPZ value in the region where a = 0.5. 

3. Unlike the crossover region observed in DPD models, here the exponents'are 

measured only after the growth stops by forming a cluster of dry cells a t  the 

interface. 

4. KPZ type of behaviour is expected when the interface is moving with a con- 

stant velocity, like driving DPD model with p < p,. But in the present model 

even though p < p,, evaporation continuously decreases the velocity to zero. 

These points show that the underlying physics here is different from that of the 

DPD and KPZ models. Another two interesting points which distinguish the present 

model from DPD model are the following. (i) the DP model is driven to p, linearly 

whereas the present model has a nonlinear driving force leading to the stoppage 

of the interface growth and most importantly (ii) we find the avalanches to show 

a power law distribution within a range of evaporation while the avalanches in 

the DPD model shows no interesting scaling behaviour and has an exponential 

distribution [28]. This power law distribution shows that evaporation does not set 

any length scale in contrast to the DPD model wherein there is a length scale set by 

the value of Ap. In Appendix B, we present a comparative study of the exponents 

obtained in various models and experiments. 

Conclusion 

It is to be noted that the results are presented for a particular choice of parameters 

in the model. A change in the parameters does not alter the gross features. The 

main points of this chapter can be summarized as follows. 

(i) We have shown from experiments conducted at  two different conditions that 

the exponent a in imbibition is not the same as obtained in previous experiments. 



(ii) A model for imbibition which includes the effect of evaporation through loss 

of fluid particles on transfer is presented. 

(iii) The model shows that the static height - height correlation exponent a 

depends on the evaporation which is partly consistent with our experiments. 

(iv) The interface is shown to exhibit power law distribution of avalanches for a 

region of evaporation. 

(v) It is shown that the driving force tunes itself close to the critical value for all 

values of evaporation < q < m. This slow driving of the system close to  pinning 

can be understood as the reason for the existence of a power law distribution of 

avalanches. 

(vi) The interface also shows multi-affinity. 

To conclude, imbibition experiments show that the roughness exponents depend 

on evaporation. A first principles cellular automaton model for imbibition gives re- 

sults in qualitative agreement with experiments. Also the model exhibits properties 

much richer than the already known models of imbibition. 
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