
Chapter 3 

Numerical Studies on 
two-dimensional Disordered 
Systems in a Magnetic Field 

3.1 Introduction 

Periodicity of crystals allows the classification of electronic wave-functions as Bloch 

waves. However, in real life, the ideal crystalline state is an exception rather than 

the rule. Disorder exists in varying degree, ranging from a few impurities or intersti- 

tials in an otherwise perfect crystalline host to  the strongly disordered limit of alloys 

or glasses. Recent years have seen tremendous progress in understanding disordered 

electronic system in their transport as well as their thermodynamic properties [I, 21. 
i 

Work has focussed both on continuum as well as discrete models. We study here a 

discrete model in two dimensions described by a 2d tight-binding Hamiltonian. 

This chapter describes the numerical study of the single particle electronic eigen- 

states in disordered systems in the presence of an external magnetic field. We char- 

acterize the two types of states, localized and extended, by means of Generalized 

Inverse Participation Ratio (GIPR). GIPR is a quantity which measures the spatial 

extent of the eigenstates. 

The Generalized Inverse Participation Ratio (GIPR) has been used extensively in 

numerical studies of metal-insulator transition[3, 41. For a continuum disordered 



model in a strong magnetic field [5, 61, this Inverse Participation Ratio (IPR) has 

been used to discuss various properties of disordered electronic states. 

This chapter is arranged as follows. In section 2, we introduce the tight-binding 

Hamiltonian. We compute the density of states in section 3 and discuss its {.ariation 

as we increase the strength of disorder. We use Generalized Inverse Participation 

Ratio as a tool to  distinguish between extended and localized states in scction 4. In 

this section, we also comment on the variation of IPR with flux. il'e compute GIPR 

for a Random Flux (RF) model. In section 5, we present a general scenario of the 

multi-fractal behaviour of the eigenstates in the localized regime. In tliis section, 

we comment on the general structure of GIPR exponents. In section 6. nrO give our 

conclusions. 

3.2 The Tight-Binding Model 

The model used in this simulation is a tight-binding model with nearest ~~eighbour  

interaction and on-site random disorder. When a magnetic field is applied, the 

constant hopping matrix element t in the Hamiltonian is replaced by [7] 

The 2d model Hamiltonian used here is 

Here c! (ci) are the Fermionic creation (annihilation) operators with i i j  > referring 

to  nearest neighbouring sites. A uniform magnetic flux per plaquettc. is given as 

q5 = Co AzJ = p / q ,  where the summation is over four links around a p l a c l ~ ~ t t e .  More 

specifically, we apply 113 flux quantum (in units of $o = 5) in each plarluette. We 

work in natural units where h = c = 1. In all our computations we set the hopping 

integral t to  unity. This is simply a choice of the unit of energy. T h t  first term 

in the Hamiltonian is responsible for the band structure. The second term is the 



on-site disorder one body potential generated randomly. The random numbers were 

generated from a uniform distribution in the interval [0, 11. We apply the periodic 

boundary conditions by identifying the appropriate edges of the lattice. 

Density of States 

In this section we discuss the density of states in the presence of disorder. We get 

the eigenvalues from the exact diagonalization of the model Hamiltonian for 113 flux 

quantum per plaquette. The typical lattice size in each case is 15x15 and we also 

perform a disorder average of energy eigenvalues over 100 realizations. The 113 flux 

quantum per unit cell of the lattice in this case is a commensurate flux. In figure 

(3.1), we show the density of states for various strengths of disorder. We start with 

the pure case where there is no disorder. In this case the density of states consists of 

three bands which is clear from figure (3.l(a)) and all the eigenvalues are symmetric 

about E = 0. We notice that the density of states remains statistically symmetric 

but about a shifted centre V/2 when we turn on a disorder potential of strength V 

(see figure 3.1 (b) and 3.1 (c)). 

3.4 Inverse Participation Ratio . 

.- 
We arrange the energy eigenstates in the order of their energies and compute the 

participation ratio of the ground state. A simple analytical argument shows that the 

highest energy eigenstate and the ground state have the same statistical behaviour. 

We have checked this also numerically by computing the participation ratio of the 

lowest and highest energy eigenstate and verify that they are the same. 

The generalized Inverse Participation Ratios are defined by the following relation 

- .. - 
Here, Qr is the i-th element of the r-th eigenstate and q is positive real number. We 

refer to Pr (q, L) as the q-th moment. PT (2, L) is the usual IPR. Here, the angular 



(a) V=O. Itl=l and 15x15 lattice 

(c) V=5, ItI=l and 15x15 lattice 
40 

(b) V=3, ItI=l and 15x15 latt~ce 
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(d) V=10. ItI=l and 15x15 lattice 
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Figure 3.1: Density of states for various strengths of disorder 



bracket (...) denotes a disorder averaging. L is the system size. We find numerically 

that PT(q,  L) scales with L, the system size as 

The scaling exponent r(q) is a measure of the spatial extent of the state XI!'. The 

most important participation ratio of these GIPRs is the IPR for q = 2 and this IPR 

is related to various fluctuations in a disordered system. Instead of r(q)  , sometimes 

i t  is convenient to discuss D, known as the generalized dimension, where D, is 

related to r(q)  by r(q) = (q - 1) D,. 

We study here the relationship of ~ ( q )  (computed from the system size depen- 

dence) with various moments in the disordered as well as in the ordered case. In 

figure (3.2(a)), we show a typical log-log plot of IPR (q = 2, r = 1) (the lowest 

state) versus the system size for two different strengths of disorder. All these data 

are averaged over 100 realizations of random potentials. The lattice size considered 

in figure (3.2(a)) is 15x15. I t  is evident from figure (3.2(a)) that  in the disorder 

dominated regime IPR for V = 5 is greater than that for V = 1 for all values of 

the system size. Notice also in figure (3.2(a)), for V = 5 the IPR does not change 

appreciably after some system size L. In fact, for very large values of the system size 

L, it is found that  the IPR remains almost constant, which characterizes a localized 

state. 

In figure (3.2(b)), we show the variation of ~ ( q )  vs q - 1 for two strengths of 

disorder. All points in this figure (3.2(b)) have been obtained through the above 

log-log fit (least square). Notice from the figure (3.2(b)) that for V = 1, D, is 

independent of q while for V = 5, D, does depend on q. The D, in figure (3.2(b)) 

for V = 1 is . 93 f  .02. For both cases (V = 1 and V = 5), we observe that  r (q)  always 

increases with q. We will present later an analytical argument for this behaviour of 

r(q)  with q. 

As we increase the strength of the disorder, the linear relationship between r (q)  



(a) Dependence of IPR on System Size.ltl=l.flux\plaquelte=1/3 
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(b) ItI=l, flux/plaquete=1/3 
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Figure 3.2: Figure (a)  represents a log-log plot of IPR with systenz size for two 
strengths of disorder potential. Figure (b )  i s  the variation of different moments  
for two different strengths of disorder (solid line is  for 17 = 1 and the other one 
for V = 5) and figure (c) is a typical uariation of the second m o m e n t  with the 
strength of disorder. T h e  solid line in figure (c)  i s  a Gaussian fit giveit b y  ~ ( 2 )  = 
.9938 exp(-0.0215 V2) + .5367. 



and q - 1 breaks down. Instead, they satisfy a non-linear relationship shown in 

the figure (3.2(b)). All moments of the eigenstates scale differently to  give this 

non-linear relation. This non-linear relationship is a characteristic of a disordered 

system. Since, ~ ( q )  is a non-linear function of q, the average moments cannot be 

described by a finite number of exponents. 

In figure (3.2(c)), we depict a typical variation of the second moment exponent 

with the strength of the disorder. The figure shows that the IPR exponents in the 

localized regime are less compared to the ones in the extended regime. This can 

also be seen in figure (3.2(b)) explicitly for all the moments. So, the exponent for 

an extended state for a given moment is more than that for a localized state. With 

the increase in strength of disorder, the IPR exponents continuously decrease. 

The solid line in figure (3.2(c)) is a Gaussian fit to the variation of the exponent 

with the strength of disorder. It is interesting to note that IPR exponents do not 

saturate to some value; instead they vanish smoothly in a Gaussian manner with 

the increase in disorder. 

Generally, it is the centre of the band eigenstates which has been studied exten- 

sively in the literature [8]. This is of importance from the point of view of Integer 

Quantum Hall Effect (IQHE) [9]. However, here we have concentrated on the lowest 

energy eigenstate to compute the Inverse Participation Ratio. This will provide a 

comparison between the behaviour of the eigenstates a t  the centre of the band and 

in other positions. 

3.4.1 Variation of IPR with Magnetic Flux 

In this subsection, we investigate the behaviour of IPR with fluxlplaquette for two 

different strengths of disorder. The IPR exponents were obtained for both V = 1 

and V = 5 from the log-log plot of IPR with system size as discussed before. The 

average was taken for 100 random realizations. In this computation, the largest 

lattice size was taken to be 10x10 and as before, a periodic boundary condition was 



Variation of IPR Exponents with Flux, Itl=l 
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Figure 3.3: Variation of IPR exponents with j?ux/plaquette fo7- T - = 1 a ~ ~ d  1 - = 5. 

imposed. A typical variation of IPR with fluxlplaquette is shown in figurc~ (3.3) for 

V = 1 and V = 5. The first thing to  notice is that the variation of IPR with 4 for 

both cases is reflection symmetric about 4 = 112 ; r ( 4 )  = r ( 1  - d). Sc)c.ondly, for 

both cases IPR exponents are minimum at  4 = 112. It is also interestin: to notice 

that for V = 5, the sharpness of IPR's minimum is more than that  for T - = 1. The 

IPR exponents for 1' = 5 are always less than that of V = 1 for the whole range of 

4. We have also checked for higher moments and found the same kind of' behaviour 

with a minimum at  4 = 112. The reflection symmetry can be understood simply. 

As has been mentioned before, the magnetic flux enters in the Hamiltonian in the 

phase of the hopping integral. This implies T($ + 1) = ~ ( 4 ) ,  since altering 4 by 

an integer does not affect the Hamiltonian. Under time reversal the Hanliltonian 

for a flux 4 H ( 4 )  transforms to  H(-4) and the eigenstates of H(-4)  are complex 

conjugates of the eigenstates of H(4) .  Since, the GIPR exponents depend only on 

)!PI, which is invariant under complex conjugation, i t  follows that  T(-4) = ~ ( 4 ) .  



GIPR Exponents in RF Model For Various moments 

Figure 3.4: The variation of GIPR exponents with different moments q for 4 different 
strength of disorder potential. The solid line, dotted line, dashed line and the dash- 
dotted line respectively refer to V = 0,1,5,10. The bottom two lines are a quadratic 
fit to the data while the top two lines linear fit. 

Combining these, we get ~ ( 4 )  = ~ ( 1  - 4) which proves reflection symmetry. 

3.4.2 GIPR Exponents in Random Flux Model 

In this subsection, we study the various moments of the eigenstates in a Random 

Flux Model. Instead of a finite constant flux in the hopping element, we apply a 

random flux in each cell of the lattice. These random fluxes are generated from a 

normal distribution having mean 0 and variance 1. The on-site disorder is as before 

generated from a uniform distribution in the interval [O, l ] .  We plot in figure (3.4) 

~ ( q )  vs q - 1 for 4 different sets of on-site disorder. We notice that for V = 0, the 

GIPR exponents satisfy a linear relationship among themselves. The D,s for V = 0 

and V = 1 in this random flux model are 1.05 f .04 and 1.29 f .04 respectively. 

This should be compared with the 113 flux case in figure (3.2(b)) where we obtain 

for V = 1 case D, = .93 f .02. With the increase in the strength of the disorder 



potential, this linear relationship breaks dowm. This signals the appearance of 

localized states. The important thing to notice is that all the exponents for V = 5 

and V = 10 are less than those of V = 0. The non-linear variation for I' = 5 and 

I/ = 10 can be seen explicitly if one plots them separately. 

For an extended state such as a plane wave (without the magnetic field) GIPR 

depends on the system size L in 2-dimensions as L-2(4-1). This implies ~ ( q )  = 

2(q - 1). However, for an extremely disordered state such as exponential wave 

function, GIPR does not depend on the system size L. 

An important point to notice in figure (3.2(b)) is that the slope of extended states 

is not equal to  2 but close to 1. In our case with 113 flux quantum per plaquette 

we find for V = 0, r(2)  = 1.65 f .O1 (and for V = 0, 4 = 1, r (2 )  = 1.76 i .02). 

This is consistent with the analytical expectation that ~ ( 2 )  5 2. Notice that r(2)  

for all disorder strengths strictly obey the inequality ~ ( 2 )  < 2. The slope 1 of 

~ ( q )  vs q - 1 curve for the extended states in (3.2((b)) can be understootl from the 

following point of view. In an external magnetic field problem in 2d, we kno~v  that  

the motion in one direction is a plane wave while other direction is a Gaussian. From 

this it follows that the r(q) is equal to q - 1 rather than 2(q - 1) for free magnetic 

field. To conclude this section, we notice that larger values of IPR indicate that  

the corresponding states are localized and smaller values of IPR indicate delocalized 

states. 

Multifractality of Eigenstates 

Multi-fractal analysis is a common tool to analyze the complexity of the disordered 

eigenstates [lo]. The universality of multi-fractality in Quantum Hall Effccst for a 

range of strengths of the disorder potentia1 has been established [Ill. 

There are two ways of determining the multi-fractal singularity spectrum. The 

indirect method to compute this spectrum is as follows. One computes first the 



exponents of the various moments of GIPR as a function of the system size and 

then plots the exponents as a function of order q as has been done in figure (3 .2(b) ) .  

This relation, has been denoted by ~ ( q )  = (q - l ) D q  as a function of the order 

q. Then, the multi-fractal spectrum is obtained through the following Legendre 

transform 

Here, the function f (a)  is to be expressed in terms of a by eliminating q from the 

expression for a ( q ) .  If r ( q )  is a linear function of q (as is the case with an extended 

state), the above Legendre transform becomes singular. 

The direct method [12, 131 takes the eigenstates explicitly for a fixed system size 

and then computes the f (a )  as a function of a without going through the Legendre 

transform defined above. This method has also been applied in disordered meso- 

scopic systems [14]. To compute the multi-fractal spectrum of the eigenstates by 

this method, one has to define a probability distribution function as follows. We 

define the normalized probability distribution function as 

where 9; is the j-th element of r-th eigenstate. 
?- 

Then, the singularity spectrum f (a)  is defined as follows. Let 

and 

where @[I' is normalized. Eliminating q between (3.7) and (3.8) gives f ( a ) .  With 

these definitions, it is easy to check that the function f (q)  satisfies the relation (3.5). 

To compare the two methods described above for computing the multi-fractal 

singularity spectrum, we notice that  the indirect method computes the spectrum 



(a) Singular~ty Spectrum from the data from fig (3.2(b)) for V=5 

0.5 5 
(b) Singularity Spectrum from the data from f ~ g  (3.2(b)) for V=l 

Figure 3.5: Multi-fractal singularity spectrum for a typical localized and extended 
states. 

(c) Singularity Spectrum for V=1000, abs(t)=l and 10X10 lattice (d) Singularity Spectrum for V=l, abs(t)=l and 10X10 lattice 
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through a Legendre transform after smoothing the ~ ( q )  curve. This involves two 

steps. The error bars from the smoothing procedure make the estimation of the 

error bar from the data itself more difficult. Besides, if the f (a) or ~ ( q )  curve exhibit 

any discontinuities, then this smoothing procedure usually causes one to miss some 

"phase transitions". The meaning of these "phase transitions" will be clear from 

the next section where we describe the analogy [15, 161 between multi-fractality and 

thermodynamics. However, in the direct method, since the multi-fractal spectrum 

is obtained from the eigenstates directly, no such problem arises a t  all. 

In figure (3.5(a)) we draw the multi-fractal spectrum for V = 5 from the data  

obtained in figure (3.2(b)) through the Legendre transform defined above. The 

multi-fractality spectrum shown in figure (3.5(b)) was drawn directly from the figure 

(3.2(b)) for V = 1. As is clear from figure (3.5(b)), the singularity spectrum is a 

single point. In figure (3.5(c)) we compute the singularity spectrum directly from 

the eigenstates for a 10x10 lattice for a relatively strong disorder (V = 1000 ). As 

was mentioned in the beginning of this section, for an extended state this spectrum 

is a point as can be seen from the figure (3.5(d)). This is basically a consequence of 

the linear relationship of the IPR exponents with the moments. Another important 

thing to note here for the two multi-fractal spectra is that in figure (3.5(a)) the 
/ 

function f (a )  starts from a negative value, then goes to  a positive value crossing 

zero and finally becomes negative again. In contrast, in figure (3.5(c)), the function 

f ( a )  always stays positive for all values of a. This behaviour is also seen for V = 1 

in figure (3.5(b)) and (3.5(d)). 

To summarize, we have shown here that the lowest energy eigenstates in the localized 

regime show multi-fractal behaviour. However, it is known [17] that the tail states 

in a disordered system do not show this multi-fractal behaviour; they have Poisson 

statistics. But in presence of an external magnetic field we see here their complex 

multi-fractal nature. 



3.5.1 Relationship of Multi-fractality to Thermodynamics 

In this section, we describe the connection between multi-fractality arid thermody- 

namics [15, 161. In a multi-fractal analysis, we compute various moments of the 

distribution function. We have seen earlier that for an extended state. all moments 

scale in the same way while for a localized state different moments scale in different 

way. The multi-fractal spectrum is the signature of the variation of these different 

moments. The distribution function can be described in terms of its moments via 

The set of numbers {pi) may be used to construct a histogram V(lnpi) of' "Density 

of States" versus ln(pi). The above equation (3.9) can be written as 

2, = C D(1n (p)) e-q(-ln (PI) 
1 4 ~ )  

Therefore, GIPR can be expressed in terms of a partition function with q playing 

the role of an inverse temperature ,B in statistical thermodynamics. The frec energy 

can be defined as F(P: L) = -%. This definition easily identifies ~ ( q )  with the 

free energy F (P )  = limL,, F ( P ,  L). The above analogy with the partition function 

suggests that the energy Ei can be defined as -9. This definition allolvs one 

to identify a with the energy E (a  = 21 = @ = E). Here, E is tllr average 
8, ap 

energy computed in the given distribution. In this language, entropy can he defined 

through the Legendre transform as S ( E ,  L) = PE(P, L) - F(P, L). This S ( E ,  L) 

can be traced back to f (a). In the same spirit, one can also define the speczfic heat 

C = -$ = -$. This completes the connection between multi-fract,ality and 

thermodynamics. To summarize, we notice 

At this point, we remind ourselves the fact that the "free energy" is a convex 

function of its arguments. This will be helpful in understanding the variation of 



various parameters in the context of multi-fractality. For example, this analogy 

enables us to understand the shape of the f ( a )  - a spectrum if one compares with 

the standard entropy S ( E )  versus energy E curve in thermodynamics. The convexity 

of S ( E )  allows one to understand the bell shape of the f ( a )  vs a curve. One can 

easily see (see 3.5.2) that ~ ( 9 2 )  > r(ql)  for 92 > q1. This justifies the statement , 

made in section (3.4) about the variation of GIPR exponents and is consistent with 

figure (3.2(b)). 

To conclude, the Legendre transform f ( a )  is the analog of the entropy while a 

is the analog of the energy E. Now, it is easy to understand the meaning of "phase 

transitions" in the context of the discussion in the previous section. One can simply 

relate the discontinuities of f ( a )  or ~ ( q )  to the discontinuities of entropy or the free 

energy respectively. 

3.5.2 Some General Properties of r(q) 

In this subsection we would like t o  discuss the analytic properties of r(q)  without 

invoking the thermodynamic analogy discussed in the previous subsection. From 

the definition of GIPR, we can define the probability Pi = lQiI2. Since, Pi 5 1, 

hence xi < (Ci Pi)' for q 2 0. This immediately implies that 

Repeating this argument, it is easy to note that r(q2) > r(ql)  for q2 > ql. This 

proves that ~ ( q )  is a monotonically increasing function of q. To prove the curvature 

of r(q) ,  we proceed as follows. We notice that 

where Z(q) = xi Pf and Z1(q) is the derivative of Z(q) with respect t o  q. If we 

impose the normalization condition on the probability, then the above equation 



(3.13) turns out to be 

Again the definition of Z(q) implies that Z1(q) 0 which in turn implies ci (q)  2 0. 

This proves the monotonicity of r (q)  referred to in the last section. Taking one more 

derivative with respect to q, we find 

This can be written from the definition of Z(q) as 

Here, the angular bracket denotes an average over the distribution defined 1)y Z(q). 

Since, the variance is positive, hence the curvature of ~ ( q )  is negative. 

3.6 Conclusion 

In this chapter we have studied 2d disordered systems in a magnetic field to distin- 

guish the extended and localized states. We have separated the eigenstates 1):- means 

of Inverse Participation Ratios and Multi-fractal analysis. We have also discussed 

the bounds on IF?-R for disordered eigenstates and have shown that in our discrete 

model the exponents do obey the bounds explicitly. The multi-fractal analysis of the 

eigenstates has been done by two different methods. The comparison of t,hese two 

methods has been discussed. We have also provided an explanation for the variation 

of ~ ( q )  with q and the shape of the f (a ) - a  curve. 
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