Chapter 3

DYNAMICAL TREATMENT OF
THE FLUX EXPULSION (FBE)

3.1 Introduction

The central concept in theflux expulsion scenario for the magnetic evolution o neutron
stars discussed in the previous chapter is the idea d the interpinning of the fluxoids
and the vortices. This is however an issue which is least explored so far. Hnning of
the quantized magnetic fluxoids to lattice defects and impuritiesin the case of type-II
laboratory superconductors is a key issuein explaining their magnetic properties. The
pinning is necessary in order for the so-called "hard" superconductors to be able to
support large supercurrents and magneticfields, asit prevents thefluxoids from moving
freely under the existing Lorentz forces acting on them (Anderson & Kim 1964). Also,
for the laboratory case d rotating superfluid *He pinning o the vortex lines to the
surface of the container results in new properties for the spin behavior o the fluid
as has been observed experimentally (see review by Sonin 1987). Pinning o neutron
superfluid vortices to nuclel in the crust d neutron stars has been invoked by Anaderson
& Itoh (1975) for explaining the observed jumps in the rotation rates o some radio
pulsars and the sow relaxations after such events, ie. glitches (see chapter 4). Less

clear is the interaction and pinning between the two different families of vortex lines
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coexisting in theinterior d a neutron star (see§ 1.2 and § 2.2.1).

In the original model d spin-down-induced flux expulsion (the SIF model) which
was adopted in the previous studies referred to earlier, the pinning was suggested to
result in a expulsion d the magnetic flux at a rate equal to the spin-down rate o the
star (Srinivasan et al. 1990). The fluxoids were therefore assumed to be continually
pulled out o the stellar core along with the outward moving vortices as the star spins
down. However, due to the existing resistance against the motion o fluxoids and
vortices and given the finite strength d the interaction energy associated with any
assumed pinning mechanism the fluxoids and the vortices might be expected to move
with different velocities, while "cutting” or "creeping” through each other. A more
refined treatment of the fluz expulsion out of the core of neutron stars would hence
require the dynamics of the fluzoid motion to be considered independently.

In the following, we discuss the various forces which act on the flwoids in the
interior of a neutron star, including a force due to their pinning interaction with the

moving neutron vortices. Other forces which we take into account are
e Viscous drag force due to magnetic scattering of electrons,
e buoyancy force, and
e curvature force.

The velocity of the outward motion of the fluzoidsisthus determined, for a given steady-
state spin-down rate of the star, from a solution of the Magnus equation requiring a
balance of the different forces acting radially on a unit length of a fluzoid. The derived
radial velocity d theflwoids at the core-crust boundary would then determinethe rate
d theflux expulsion out of thecore. Theoriginal SIF model assumes that the velocity of
thefluxoidsis awaysequal to that o the neutron vortices. Our attempt is analogous to
that o Ding, Cheng & Chau (1993) in their study d thefield evolution of single normal
pulsars. The main objective of the present work is however to investigate the results
d such a treatment o the flux expulsion scenario for the magnetic evolution d binary

pulsarsfor which the spin-down history d the neutron star is expected to be different



than that of the single pulsars considered by Ding et a. (1993). Furthermore, we have
explored other possibilities different than those assumed by Ding et al. (1993) about
the nature and magnitudes o the effective forces acting on the fluxoids. Alternative
modelsfor calculating the rate d the magneticflux expulsion in neutron stars are thus
realized. Predictions d the models for the magnetic evolution o binary as well as
single pulsars are then compared and tested against the available observational data.
We shall also compare the results o these more detailed studies d the flux expulsion
scenario with those obtained from the much simpler approach adopted in the SIF
model. This s particularly useful because the SIF model has been already shown to

produce acceptable and useful resluts, as mentioned earlier.

3.2 Dynamicsof Fluxoids

3.2.1 Neutron Superfluid Vortices

Inthesteady-state, the neutron vorticesin theinterior o arotating magnetized neutron
star are expected to be co-rotating at agiven rate 2 with the charged component of the
star, including the lattice o the proton fluxoids (Sauls 1989). The plasma in the core
has been snhown to be coupled to the crust over timescales <10 s, for the case o non-
superconducting protons (Easson 1979). The coupling mechanism is thought to be via
theformation of Ekman boundary layer at the core-crust interface as in ordinary fluids
(see eg. Greenspan 1969). In this process the boundary layer at the top and bottom
of thefluid (for an assumed idealized cylindrical geometry) serves to bring thefluid to
the new rotation rate d the container viaformation o a radial secondary flow toward
and away from the axis. Two types of boundary layers are possible in the case of core
fluid o aneutron star, depending on whether the magnetic field or the plasma viscosity
has the dominant effect. However for an assumed type-11 superconductor plasma in
the core d neutron stars most o the plasmaliesin regions where there is no magnetic
field and hence the coupling time scale in this case might be expected to be different

than the above case. Although model calculations for the superconductor case have



not been yet carried out, similar coupling time scales (~ 10 s) have been suggested
by Alpar, Langer & Sauls (1984) for this case, too, on the following grounds. They
argue that viscosity due to electron-electron scattering alone indicates an Ekman time
scale of 1-10 s, and fluxoids are coupled to the electron gas on time scales o 107 s
due to the magnetic scattering. Proton fluid outside the fluxoids on the other hand
should respond to the motion o electrons through an adjustment d the supercurrent
in accord with the new condition d the electron fluid motion. The latter process is
argued to proceed at the speed o light propagation giving atimescaled 10=* s. Thus
the coupling time scale between the crust and the plasma in the core of a neutron star
for the case of superconducting protonsis decided by the electron fluid viscosity as in
the the case of normal plasma. The time scale for relaxation of any relative velocity
between the plasma and the neutron vortices, on the other hand, due to scattering of
electrons off magnetic field of the vorticesis 520 s (Alpar et al. 1984b).

However, for a star which is spinning down at arate 2 the rotation of the vortices
would maintain a constant lag w behind the neutron superfluid bul k matter. Thelatter
is assumed to be rotating uniformly with a rate , so that w = Q, — Q2 > 0. For a
given superfluid spin-down rate €, (which, in the steady state, will be equal to the
spin-down rate of the rest of the star vis. §) the corresponding velocity of the vortex

outward motiony,, at the core boundary, is given by
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where we have approximated €2, by R, and R. is the radius o the core o a neutron
star. Substituting for R. = 9 x 10° cm, and f—‘,’— = ’—F",: where P, and P, are spin period

and its time derivative in units d seconds and s s™!, respectively, result in

P,
v, = 1.59 x 1072 P" cm s™} (3.2)

where P,, is the spin-down rate in units of s yr~'.

On the other hand, the rotational lag results in an outward Magnus force on the



vortices which is responsible for the outward migration of the vortices and hence a

reduction in their number density in a spinning down superfluid.

The Magnus force :

A vortex line in a rotating superfluid is expected to be carried along with the local
superfluid velocity according to Kelvin's circulation theorem applied to transport of
rectilinear vorticity in a2D flow (Fetter 1976; Putterman 1979). However the superfluid
may transmit a force to a vortex moving with respect to the local fluid which has the
form of the classical Magnus force acting on arotating cylindrical body movingthrough
afluid perpendicular to its axis (Batchelor 1967, p. 427). The relevance of a Magnus
force for quantized vortices has been shown both in the case of a rotating neutral
condensate (Hall & Vinen 1956) and also for a charged superfluid on fluxoids in a
type-11superconductor (Nozikres & Vinen 1966). The Magnus force per unit length of

avortex isgiven as
F;Magnus = Psfkt X ({;L - 651') - (33)

where pys is the superfluid density, £ is the vorticity of the vortex line directed along
the rotation axis, and v and vy, are the local superfluid and the vortex line velocities.
Note that in the case of superconductor fluxoids £ = %, where 50 is the magnetic
flux through the fluxoid and m. is the mass of the superconducting particles (Nozikres
& Vinen 1966).

Thelagw and the resulting outward radial Magnus force on the neutron vorticesin
the spinning-down core superfluid are necessary in order to balance the existing viscous
forces against outward motion of vortices. The latter forces are usually assumed to be
mainly due to the scattering o the electrons from the magnetized cores of the neutron
vortices in the interior o a neutron star (Sauls 1989). The requirement for vanishing
net force on vortices is due to the usual approximation of treating vortices as massless
fluid configurations (Sonin 1987). An effective mass is nevertheless attributed to a
moving vortex due to an additional flow ipduced by its motion which contributes to

the kinetic energy of the system. For the neutron and proton vorticesin a neutron star



the effective mass per unit length d the vortex m* isfound to be equal to the mass of
superfluid displaced by a unit length of the vortex, ie. m* = p,r¢? ~ 1072 g, wherep is
the density and ¢ isthe radius of the vortex (Baym & Chandler 1983). The associated
inertial force per unit length o the vortex would be extremely small (< 107* dyn)

for both neutron and proton vortices, compared to other forces considered, and will be

neglected.

The pinning force on the neutron vortices :

On the other hand, if afluxoid can pin on a vortex the associated pinning force on the
vortex could be in principle in either radial direction (inward or outward), depending
on the direction o the relative motion o the vortex and the fluxoid, and independent
of the actual direction o motion o the vortices. Hence the pinning force might either
contribute to the viscous forces against the outward motion o the vortices (which is
the case when they are moving faster than fluxoids) or in the opposite case it could
act as a "driving" force during a spin-down phase of the star (since in this case it
points along the direction of motion of the vortices). The viscous force on the vortices
due to the electron scattering is, however, expected to be many orders of magnitudes
smaller than the pinning force even for the largest steady-state spin-down rates of
interest and hence the largest possible vaues d v,. The force per unit length of a
vortex due to the pinning is typically expected to be >> 10'? dyn cm™!, while that
d the electron scattering (Alpar & Sauls 1988) is < 10° dyn cm ™! (and the buoyancy
force on the magnetized neutron vortices is even smaller than this; see § 3.2.3). The
Magnus force on the vortices should be therefore balanced only by the pinning forces
exerted by the fluzoids on them. An interesting consequence o this balance of forces
on the vortices in the interior of a neutron star is that the vortices might be rotating
faster than the neutron superfluid (w < 0) whileit is spinning down. Thisisin contrast
to the normal conditions of a superfluid spin-down phase where the vortices must be
rotating slower (w > 0), so that the viscous force on the outward moving vortices is

balanced by an outward "driving" Magnus force. In a neutron star, if the pinning force



due to the fluxoids is itself directed out war d during a spin-down episode it could play
the role o the "driving" force on the neutron superfluid vortices and the balancing
Magnus force has to be directed inward. The conditions for a negative rotational lag
(w="52, — 5 <0) aswdl as an inward Magnus force during a spin-down phase o the
neutron superfluid is therefore realized when the outward motion o the fluxoids is
faster than that o the vortices.

322 The Pinning Force on the Fluxoids

In any case, a pinning force o the same magnitude as, and in the opposite direction
to, that exerted by the fluxoids will be also acting on them, due to the reaction of the
vortices.

Throughout we will be considering the motion d the fluxoids only in the region
close to the core-crust boundary. The strength d the averagefield o the stellar core
is determined by the transport o these boundary fluxoids out of the core, and it is
assumed that the rest o thefluxoidsin theinterior regions will adjust their positions
and maintain a uniform density throughout the core. We will also neglect all the
projection effects due to an inclination between the two lattices of the vortex lines and
assume that all forces on the fluxoids as well as their velocities are directed radially in
the magnetic equatorial plane. The Magnus force on the vortices and their outward
velocitiesin the same region would however be co-linear with that o the fluxoids only
for those vortex segments which lie close also to the spin equator o the star. The
fractional size o such a region (of coincidence o the two equators) would be larger,
and hence our treatment o the radial velocities and forces for the fluxoids and the
vortices would be more accurate for smaller inclination angles.

It might, on the other hand, be argued that since the pinning interaction energy is
independent of a displacement o a neutron vortex parallel to the fluxoid pinned to it
the vortices might be able to slide aong the fluxoids without producing a large scale
movement o the fluxoids. It is noted that such a sliding might be realized for the vor-

tices only in some parts d the spin equator, namely for those lying at large magnetic



latitudes. Nevertheless this possibility does not by itself violate the assumption o a
radial reactiveforce acting on thefluxoids even in those regions where the sliding might
occur. The Magnus force on a sliding vortex would have the same magaituce and di-
rection as for the non-sliding vortices and its component in the direction perpendicular
to the fluxoid has to be balanced in any case with aforce due to the pinning which will
exert a reaction force on the fluxoid. Furthermore, since the assumed sliding cannot
be realized for all o the vorticesfor any assumed geometry of thelinesits partial oc-
currence, if at all, seemsto be further questionable on the account that it would result
in an azimuthally non-uniform vortex density distribution. This point will be further
discussed in chapter 4.

The pinning force:

Having said that the Magnus force on neutron vortices is balanced by the pinning force
on them exerted by the fluxoids, we now proceed to estimate the reaction force felt
by a unit length of a fluxoid. Equating the pinning forces communicated between the

two lattices per unit volume, the pinning force pa unit length of a fluxoid F, can be

expressed as
F, = Py (3.4)

wheren, = £ and n; = 2= are the number densities per unit cross section areas of the
vortices and the fluxoids, respectively, £ = 2 X 10~3cm?s? is the vorticity of a vortex
line, o = 2 x 10~"Gem? is the magnetic flux carried by afluxoid, B. is the strength of
the core field in units of G, and Fy is the Magnus force per unit length of a neutron
vortex at the core boundary. For the relative azimuthal velocity between vortices and
the neutron superfluid due to the lag w, the radial Magnus force is Fyy = p.xRew,

where p, is the neutron superfluid density (see Eq. 3.3). Substituting in Ec. 3.4 gives

2¢0 Ps ch%u't}_)g_)

dyn cm™ (3.5)
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where we have again approximated 2 = €1,, w_g is the superfluid lag w in units of
10%rad s™', B, = 10®Bs, and p, = 2 X 10'*gcm 2 has been used. Note that the sign
of w will determine the sign o F, for which, as well as for the other forces discussed

below, the outward direction will be reckoned as the positive sense.

The above derivation o F}, is however based on certain assumptions which need to
be clarified. The total Magnus force acting continuously on dl the neutron superfluid
vortices has been assumed to be communicated instantaneously to the fluxoids through
the reactive pinning force on them. This need not be always true since, in general, only
a small fraction of the vortices might be expected to be directly interacting with the
fluxoids at any instant o time. The remaining much greater fraction o them (of the
order of theratio of afluxoid-spacing tothesized a pinninginteraction region) would,
however, liein the inter-fluxoid spacings. Also, the assumed total force on theflwoids
has been divided equally among all fluxoids in spited thefact that at any given timea
majority d them would belocated in the inter-vortex regionsfar from any pinning site.
Nevertheless, the motion o the fluxoids (as well as the vortices) isfurther constrained
due to the mutual repulsive forces among themsalves. This would prevent them from
being swept independently and requires a uniform density o lines to be maintained in
the steady state. Consequently all fluxoids (whether being in an interaction region or
in a free region) are forced to move always together and the force acting on some of
them is shared equally among all, instantaneously. This argument fails however for the
neutron vortices sincefor them displacementsd some d them on scales o the order of
afluxoid-spacing (which is many orders d magnitudes smaller than the vortex-spacing)
is not prohibited by the above constraint o the uniform density (in a different context
Anderson & Kim 1964 have also remarked on this). For the same reason, any given
vortex which is not interacting with a fluxoid at a given time is expected to move
relativeto therest d the vortices and adjustsits position rapidly (within a distance of
a fluxoid-spacing) so that it also feels the same viscousforce due to the pinning with a
flwoid. Therefore, in a steady-state co-moying vortex-fluxoid phase all the vortices are

expected to be located within pinning interaction regions, and hence the total Magnus
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force on them has to be taken into account, as in Eq. 3.5.

However, such arestriction on the vortex positionscannot be guaranteed at all times
if the radial velocitiesd the vortices and the fluxoids are different, since the vortices
have to travel through the inter-fluxoids distances as well. The effective instantaneous
force per unit length d a fluxoid, F,, during such a state is therefore smaller than
that given in Eq. 3.5 and might be estimated by considering the time averaged force
on the fluxoids (or equivalently the average fractional number of the vortices that are
expected to be interacting with the fluxoids at any given time) which resultsin

F, = %’ (Z—:FM) (3.6)
where ds istheflwcoid-spacing, and dp istheeffectivesized a pinninginteraction region
around each fluxoid. For the assumed magnetic pinning mechanism (see below), the
effectivel ondon length  the proton superconductor Ay whichisacharacteristiclength
scale for the magnetic field around a neutron vortex line may be used for the size of
theinteraction region. Substituting for df = 2.3 x 10‘738'% cm, and dp = A; ~ 118 fm
in Eq. 3.6 and using Eq. 3.5 results in

W_g

Fa = 259x 107 =0

s

dyn cm™ (3.7)

It has to be noted that for evaluating the "averaged” value d F, as given in Egs 3.6
and 3.7 the velocity o a vortex while it is crossing through an interaction region has
been assumed to be same as that in the free space between the fluxoids; equal weights
have been therefore assigned to the corresponding periods of times .

Realistically the vortices might be expected to move much faster while they are in
the "free" regions than in the pinning regions because o the large difference in the
effective viscous forces acting on the them in the two regions (as discussed above). As
a consequence they tend to spend most d the time within the pinning zones and an
almost zero weight has to be considered for the time durations when no pinning forceis
acting on a vortex. Consequently the same estimatefor F, asin Eq. 3.5 might be used
even for the cases when the fluxoids and the vortices movewith different velocities and

cross through each other.



Each o the above derivations for F, as given in Eqg. 3.5 and Eqg. 3.7 might be
expected to represent a better approximation depending on the assumed behavior of
the neutron vortices regarding the creeping d the different pinned segments d a vortex.
If each pinned segment d a vortex could move independently (over the length scales
o about a fluxoid-spacing) then the above argument to justify Eqg. 3.4 (and Eq. 3.5)
for the creeping phases applies. In contrast, for a vortex line d infinite rigidity the
whole line moves always as a single piece and F, as in Eq. 3.6 (and Eq. 3.7) would
be appropriate. We will adopt both the above estimates for F, during phases when

vy, # vp i alternative models which we explore.

The “ critical lag" :

Themagnitude d theforce whichis exerted by a vortex on a fluxoid, and vice versa, at
each intersection (and hence F, ) islimited by a maximumvalue fp corresponding tothe
given strength o the pinning energy Ep and the finite length scale o the interaction,
namely Ep = fpdp. The Magnus force on the vortices which is assumed to be balanced
by the pinning force cannot thereforeexceed a corresponding limit whichin turn implies
also a maximum absolute value for the lag w (to recall w = Q, — Qr,, where €, is the
superfluid rotation rate and §2;, is the rotation rate o the vortices). The maximum
absolute value of the lag, the critical lag w, may be determined by equating the
Magnus force on unit length o a vortex (p,xR.w) with the maximum available pinning
force per unit length o the vortex (% = ﬁ;). The pinning energy, in the magnetic
interaction mechanism, arises because d the differencein the freeenergy d a fluxoid-
vortex pair whether they cross each other or not. For a fluxoid with an average field
Ep and a vortex having an average field ﬁn, the magnetic energy density when they
overlap at an intersection would include a term (2/87r)§p.}§n, in addition to the sum
d their contributions to the energy density when they are separate, ie. (B2 + B2)/8r.
The pinning energy per intersection may be thus estimated as (2/87r)1§p.1—5"n times the
interaction overlap volume ~ (2X;)(wA3?), which results in Ep ~ 107° ergs (see Jones

1991 for a more refined derivation). Using the associated value d dp ~ Aj, for the
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magnetic pinning, the maximum critical lag w,, is estimated as
we = 1.59x10¢ BY/* rad s™? (3.8)

where we have used the same expression as in Ding et al. (1993) in order for the
further comparison of the results. Thus during a co-moving state where the force
communicated between a vortex and a fluxoid at each pinning point is less than its
maximum value, fp, the lag might have any value within the range —we <w <w
However when the vortices movefaster or dower than the fluxoids, a constant value of
W =we OF W = —w,, Will be maintained, respectively.

We note that a different estimate for the pinning energy due to the proton density
perturbation gives a smaller value of Ep ~ 5 x 10~7 ergs. The pinning energy in
this case arises due to the difference in the condensation energy between the pinned
and the free configurations, which is in turn due to the change in the proton density
induced by the large velocity of the neutrons closeto the core o a neutron vortex. The
interaction volume for this mechanismis ~ ¢2£,, and the change in the free energy
density is estimated as nn%% E‘g:, where A is the condensation energy gap, Er the
Fermi energy, ¢ the coherence length, and n the number density; the subscripts p and
n refer to protons and neutrons respectively (Sauls 1989). Eventhough the value of the
pinning energy due to the density perturbation is smaller than that of the magnetic
interaction, however since the associated value of the interaction length - the London
penetration depth in the latter case - is also larger by about the same ratio than
for a pinning due to the density perturbation, similar values d fp, and hence we,
are expected for the both pinning mechanisms (Bhattacharya and Srinivasan 1991).
Also, since the magnetic interaction depends on the angle between the fluxoids and the
vortices at the intersection points the pinning due to the density perturbation might
indeed have the dominant effect in a neutron star with a nearly parallel geometry of
the vortices and fluxoids.

In this rather long subsection we have argued that the effectivevalue of the pinning
force on the fluxoids is (not the maximum possible value fp and is) decided by the

Magnus force on the neutron vortices, which in turn is determined by the rotational



lag between the vortices and the neutron superfluid. Two alternative estimatesfor the
pinning force were aso discussed, as well as the maximum absolute value d the lag due
to thefinite strength o the pinning energy. In our model calculations the value o F;
as given in Eqg. 3.5 will be used for a co-moving state of the fluxoids and the vortices.
However for states with different velocitiesd the two families o lines either o the two
estimates as in Egs 3.5 and 3.7 is adopted, aternatively, in different models (see Table
1 below).

3.2.3 Other Forces on the Fluxoids

In addition to the force F;, due to the pinning with the vortices, the fluxoids in the
interior o a neutron star are expected to be also subject to other forces which should
be taken into account in order to determine their outward radial motion in the stellar
core. We consider threeforce below: viscous drag force, buoyancy force, and curvature

force.

Thedrag force:
Anisolated fluxoid moving through the normal degenerate electron gas in the core of
a neutron star is subject to viscous drag forces due to scattering of the electrons by
the magnetic field of the fluxoid.

A simpleorder of magnitudecalculation o the drag force dueto magnetic scattering
o electrons might be given based on the geometrical and dynamical considerations as
follows (see also Harvey et al. 1986). Electrons in the core d a neutron star have
associated de Broglie wavelengths (A/2r ~ 3 X 1071® cm) much smaller than the
effectiveradius of afluxoid A, ~ 10~!' cm. Henceclassical trajectories can be assigned
to the electrons in their interaction with the fluxoids. The force on a unit length o a
fluxoid parallel and opposite to its velocity v, may thus be written as a product of the
flux o particles (~ 2X;n.vp) times the average change in momentum of an electron p.
being scattered through an angle § (~ p. < 1 — cosé >, where the bracket indicates

averaging over all possible scattering angles). Furthermore, the gyration radius of an



electron in thefield of afluxoid au; ~ 2 ~ EI%FT ~ 10~° cm is much larger than the

radius o the fluxoid, where H., = f%lnﬁeﬂ is the lower critical field o the type-11
proton superconductor which is aso the value o the field within a fluxoid (see eg. de
Gennes 1966, pp. 55-60), and where A, and ¢ are the London penetration depth and
the coherence length d the proton superconductor, respectively. Hence electrons are
deflected through small angles d order 6, ~ a—’;’? ~ 1072 upon scattering at each fluxoid.
Therefore the angular term < 1 - cosé >~ 1 — cos = 2sin* L ~ do? ~ (0—2&1)2 This

will give us an estimate for the viscous drag force per unit length d a fluxoid

- 2 n.e*di vy,
o~ 2 3.9
w2 Er)p ¢ (3.9)
A more refined estimate due to Jones (1987) gives
P o= 37 nee’ P vy
v 64 EFAp C
= —7.30 X 107 4, dyn cm™ (3.10)

where n. is the number density of the electrons, Er is the electron Fermi energy, vp
is the velocity of the radial outward motion of the fluxoids in units o cms~!, and
valuesd n. ~ 3. x 10*®cm=3 and Er ~ 88. MeV corresponding to total core density
p ~ 2. x 10"g cm~3, and neutron density n, ~ 1.7 X 1033cm~2 have been used. Jones
derivation is based on finding the change in electron distribution function from its
equilibrium isotropic form in momentum space away from a vortex due to interactibn
with the field o a vortex from a solution o the Boltzman equation. The associated
power dissipation dueto acceleration of electronsin theinduced electric field and hence
the corresponding viscous force is then calculated as given above.

The expression for F, in EQ. 3.10 is derived based on the assumption o independent
fluzoids motions. It has been argued that thisis not justified for the typical conditions
in theinterior of a neutron star (Harvey et al. 1986; Jones 1987). The mean free path of
the highly relativistic degenerate electrons dms, ~ €Ty, Where 7, = *fac Ta iIStheelectron
72 ~3x 10° G

is the upper critical fiedd d the proton superconductor , 7, ~ 2 X 102 T-? sis the

relaxation time in the case d proton superconductor core, He, =

electron relaxation time in the case of normal protons, T' is the temperature of the
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interior of the star. A typical value o T ~ 10% K gives dps, ~ 10 cm. On the other
hand, for scattering centers, namely fluxoids, each d a width A, ~ 10~*' cm having a
mean separation d d; ~ 107!° cm the mean distance between successive encounters d
electrons deyc ~ df% ~ 1078 cm. The polyhedra d the repeated deflections each d an
angle ~ 8, and of a polyhedral side ~ d... may be approximated by a circled aradius
rg such that de,c ~ 8y rg. Thus rg = %, which upon substituting for H.; ~ 3‘;—%,
and d} ~ £ may be reduced to r ~ & ~ 3 X 10~7 cm. The latter ezpression shows
that rg is same as the radius d gyration of eectronsin a uniform field same as the
average field of the core d the star. Hence, during a relaxation time, 7,., €ectrons
make ~ i"‘—:f ~ 10°% encounters with fluxoids and complete ~ ;’—;";’5 ~ 108 gyration
cyclesround the fluxoids. The lattice d fluzoids is therefore expected to be frozenin
the eectron gas as would be the case for the uniformly distributed flux equivalent to
that carried by all o the fluxoids in the MHD approximation d a highly conducting

fluids (for a discussion see Jones 1987; Harrison 1991).

A treatment o the coherent electron scattering by the fluxoid lattice suggests that
indeed the classical result of a "frozen-in" flux is applicable; the relative velocity o
electrons and the fluxoids turns out to be almost zero. Nevertheless, the expulsion
d the fluxoids out o the core would not be still prohibited as long as the electron-
current loops across the core-crust boundary are not excluded. The expulsion timescale
calculated for the case d coherent scattering as determined by the Hall drift d the flux
in the base d the crust is not much different than that based on the single fluxoid
approximation using F, as given in Eq. 3.10 (Jones 1987, 1988, 1991). Uncertainties
about the distribution d the magnetic flux and the correct value o the conductivity
d the crust, and aso the possibility of a mechanical failure o the solid crust due to a
build-up o magnetic stresses however obscure any definite conclusion to be drawn. One
may conclude that eventhough these studies suggest that whether or not flux can be
expelled out d the core will be decided by the behavior of the currents at the core-crust
boundary layer, the expulsion rate itself should be determined by the dynamics d the

fluxoids and not from the boundary conditions alone. In our opinion, the importance



o collectiveeffectsis still controversial and the last word has not been said ! (see also
Ding et al. 1993; Ruderman 1995).

Finally, we would like to draw attention to the following two points which have not
been discussed in this context and which might be o some importance . The finite
volume o the fluxoid lattice and the superconductor boundary effects on the motion
of the fluxoids might alow for a different behavior than o those embedded within the
electron gas. Secondly, the permitted motion d the lattice of fluxoids for the case
with currents present at the core boundary (Jones 1991) would be nevertheless one
with a nonzero divergence as the lattice constant is changing. In contrast the motion
d the incompressible electron fluid in theinterior d a neutron star is expected to be
divergence free as pointed out by Goldreich & Reisenegger (1992). A relative motion

between electrons and the fluxoids is therefore inescapable if any flux expulsion is to
be assumed.

In the light o the above uncertainties, the value d F, given in Eqg. 3.10 will be
therefore adopted for the drag force due to the electron scattering in our models. We
note however that consideration o the coherent electron scattering has been shown
to imply a maximum velocity for the flwoids outward motion (Jones 1991). On the
other hand in some d our models which will be described later on (models B1 and B2
in Table 1 below) a similar value for a constraining maximum velocity o the fluxoids
has been invoked, eventhough for a different reason. These models might be therefore
expected to represent also the effectsof considering a drag force due to the coherent

electron scattering.

The buoyancy force:

The buoyancy force on fluxoids in a neutron star arises for reasons analogous to the
case of macroscopic flux tubes in ordinary stars. Because flux tubes are in pressure
equilibriumwith the surrounding the excess magnetic pressure inside a flux tube causes
adeficit in pressure and density o the plasmna compared to the surrounding fluid. The

tube will thus rise buoyantly due to the existing pressure gradient which supports the



hydrostatic equilibrium o the star against its gravitation. Theforce per unit length of

aflux tubeisgiven as

Fbuoymcy =A g AP (311)

where A is the tube cross section area, g istheloca gravitational acceleration, and Ap
isthe differencein the density between theinside and outsided the tube (Parker 1979,
chapter 8). For the fluxoids in the interior of a neutron star A= 72, Ap = ¢;?AF,,
the pressure difference AP, = %}, and f ~ R., where ¢, isthelocal sound speed. The
buoyancy force per unit length d a fluxoid F, which is directed radially outward can
be expressed as (Muslimov & Tsygan 1985)

_ $o 21n()‘p/f)
o = (4""’\9) R,

0.51 dyn cm™! (3.12)

il

wherevaluesd A, = 131.5fmand ig = +/2 have been used. Note however that smaller
values o f’; ~ 0.1R. have been also assumed in the literature (Muslimov & Tsygan
1985) which result in alarger valuefor Fy .

Harrison (1991) has raised objection against therelevance o the buoyancy forcefor
thefluxoidsin the core o neutron stars. However, hisargument is based on the premise
d afrozen-in lattice of fluxoids in the electron-proton plasma within the star. In this
case the buoyancy force is argued to contribute to the gradient of the macroscopic
magnetic stresses supporting the hydrostatic equilibrium o the plasmawithin the star.
His argument does not o course apply to the case whererelative motion o thefluxoids
and the plasma is allowed to take place, as we have assumed. We will therefore take
into account the buoyancy force on the fluxoids in our model calculations. Ding et al.
(1993) whose study also assumes independent motions d single fluxoids have argued
that fluxoid motion might be so fast that hydrostatic-equilibrium conditions and hence
Harrison's objection against the buoyancy force in neutron stars might be avoided. We
don't find this argument self-consistent. Either one assumes the fluxoid lattice to be
frozen into the plasmain which case the buoyancy force contributes to the hydrostatic

pressure and results in inflation o the plasma as pointed out by Harrison (1991), or



if the relative motion o the fluxoid with respect to the electron gas is assumed there
exists no question about the effectiveness of the buoyancy force (seein particular last
paragraph before § 3.2, p. 422 in Harrison 1991). Furthermore, it is hard to see why
the hydrostatic equilibrium in the core of a neutron star would be approached, as
speculated by Ding et al. (1993), at a speed less than 10=7 cm s~! which is the largest
typical speed predicted for the fluxoids. This would imply an absurdly large time scale
for the hydrostatic equilibrium of a neutron star >1 Myr in contrast to its dynamical
timescale ~ ((—;—p)% ~ 1073 s. Notice that the sound speed in theinterior of a neutron
star is calculated to be ~ 10® cm s~ for the case of a normal non-superfluid core and

210° cms™! if a superfluid component is present (Epstein 1988).

The curvature force :

The kinetic energy per unit length of a superfluid vortex is T ~ (Q—'j:—) ln% where D
is a macroscopic cutoff distance that represents either the size of the container or the
distance between vortices (Fetter 1976). Although the tension of the vortex line is
not always exactly equal to itsenergy per unit length, in the limit of long wavelength
disturbances the equality does hold (Fetter 1976, Baym & Chandler 1983). For proton
superconductor fluxoids the currentsare screened away within a distance ~ Ap whichis

the corresponding cutoff length (D = A). Substituting for the vorticity « = :—”‘%, and

Ap = (I';ie,ip) * one gets T, ~ (4-453—)2 In 552 for the tension of the fluxoids (Nozieres &
xAp
Vinen 1966; Harvey et al. 1986; see however De Gennes 1966 for a different derivation

based on integration of the electromagnetic energy density of a flwoid in a type-11
superconductor).

Asinamechanical systemthetension o avortexlineimpliesthat a curved geometry
o the line would result in a restoring force, called "curvature” force, which tries to
bring the line back to the minimum energy straight configuration. The concavely
directed “curvature” force per unit length of a vortex F. having a tension T and a
radius of curvature S, is given as F. = %5 (Harvey et al. 1986). This is similar to

the curvature force on magnetic field lines embedded in a conducting fluid which is



defined in asimilar way (Parker 1979, chapter 5). The curvature force on a vortex line
may be also derived on an apparently different basis. A curved vortex is subject to an
additional induced motion perpendicular to the plane o the vortex which will result

in a corresponding Magnus force that has the same magnitude and the same direction
as the above curvature force (Batchelor 1967, p. 510).

For a fluxoid in a neutron star with tension T, the curvature force can be expressed

in terms d the buoyancy force Fy, (see Eq. 3.12) asfollows:

IFCI _ &( ¢0 ) ln(AP/f)

Se \47), R,
R

= — 3.13
S B, (3.13)

where R. is the radius o the core o the star. The end points o a fluxoid, where its
magnetic flux spouts out and joinsthe almost uniformfieldd the crust are expected to
be “frozen-in” at the bottom o the crust due to the large conductivity o the matter.
An outward moving fluxoid is therefore expected to be bent outward and subject to
aforce F; which is directed inward, namely F, = ~—§be. For a spatially uniform
distribution of the fluxoids the estimated average value of £ ~ In 2 (Ding et al. 1993).
Substituting in Eq. 3.13 and using Eq. 3.12 the inward curvature force per unit length
o afluxoid isfound to be

F. = -035 dyncm™ (3.14)

In contrast, Muslimov & Tsygan (1985) suggested a value o F. ~ —0.1F, due to the
larger value they adopted for Fi, compared to that given by Eq. 3.12, and Harvey et al.
(1986) used F. ~ —F, for the outer parts of the core. Ding et al. (1993) assumed that
the fluxoids would be bent outward during timest < Tonm and, conversely, (in effect)
bent inward at all later times t > Topm, Where ronm iS the assumed time scale for the
decay o the magnetic field in the crust. An inward force F. as in EqQ. 3.14 is hence
adopted in their model only during times t < Tonm , Whilefor t > 7on, an outward
force of a comparable magnitude has been assumed to be effective.

The latter (outward) force which implies an spontaneous motion o the end points

d a fluxoid at a speed faster than the fluxoid itself will be however ignored in the



alternative models which we have considered. The assumed tendency d a flux tube for
decreasing its length under the effect o its tension (Harvey et al. 1986) does not seem
to satisfy by itself the requirements for realizing such a geometry d inward bending
lines continuously at al timest > 7on,. Or equivalently, considering the negligible
radius of afluxoid as compared to the radius o the curvature o its boundary surface
the gain in energy due to outward motion does not imply an instantaneousforce to be
effective.

Furthermore, in our models the time constraint used by Ding et a. (1993) for the
outward bending o the fluxoids namely, t < 7o, iS replaced by a condition on the
velocity d thelines as compared to a maximum speed v, permitted for the motion
d their end points by the conductivity o the matter in the crust. It will be assumed
that whenever the condition v, < v,y IS Satisfied the end points o the fluxoids in the
crust are able to follow the motion d the fluxoids, thence they remain straight and
no "curvature" force will be acting on them. In the opposite case when vy > vmax
the fluxoids are however expected to be bent outward and the force F. asin Eq. 3.14
would be effective. We note that a self-consistent solution of the equation of motion
given beow (Eqg. 3.18) is however found to require that the transition between the
above two realizations o F¢ for v, > vmax and v, < vmax 0ccurs gradually (see Fig. 3.4
below), which is also a more physically plausible behavior than a discontinuous jump
at vp = Umax. The maximum drift velocity o the magnetic flux in the crust vmax is
estimated as

R
Umax
TOhm
-1
= 3.18 x107° (ng;myr) cm s (3.15)

where R isthe radius d a neutron star and R = 108 cm has been used, and Topm is in
units o yr. A larger value for vmax may be however expected if the effects due to the
Hall drift & the magnetic field at the bottom d the crust is taken into account. The
suggested mechanical failure and plate tectonic motion d the crust itself (Ruderman

1991) if it isdriven by someother effectrather than the pull of the fluxoids on the crust,



implies a separate model in whichonly v, > vpiat. isallowed, wherewg,,,. is the assumed
velocity o crustal plates motion. However, in the cases where the motion is argued
to be driven by the motion d fluxoids themselves (Ruderman 1991) no additional
restrictions is required in our models.

On the other hand, it has been argued that the repulsive force between the flux-
oids should ensure that the lattice response to a deformation is determined, to a first
approximation, by their collectiverigidity (Jones 1991). The force F, associated with
even a piece d the lattice which lies between successive neutron vortices (typically
extending over some 107 flux lines) would be, in this approximation, so large that any
bending of the lattice is effectively prohibited. The velocity o the fluxoids would be
therefore constrained at all times by the condition vy, € vmax, With F. = 0. In this ap-
proximation, if the conditions are such that a vaue o vy, = vy, isimplied for F. =0

then v, = vyax Will be assumed, and F; is calculated from
F. = —[Fa+FR+E) : (3.16)

where the right hand sideis evaluated for v, = vmax, aNd W = w0r = —we, Whichever
isthe case. The above prescription for calculating £, might be alternatively justified
as being due to the extremely large viscous drag force in the case d coherent scattering
discussed earlier.

We will consider different models for determining the fluxoids velocity in which
either o the two estimates for F. (Eqs 3.14 or 3.16) are adopted, alternatively (see
Table 1 below).

Magnetic scattering d electrons off fluxoids results aso in a component o the drag
force perpendicular to the direction of the relative motion (Harvey et al. 1986) which
isinterpreted also as a Lorentz retarding force acting on fluxoids (Harrison 1991; Jones
1991). For a radial motion of fluxoids this component of the drag force is expected
to be canceled by the azimuthal Magnus force on fluxoids due to their motion with
respect to the proton superconductor (Jones 1991). These two forces as well as a radial
force due to electron-proton Coulomb scattering which is much smaller than the other

forces o interest (Jones 1987) are hence neglected.
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3.2.4 The Models

The steady-state racial motion d a fluxoid in the region of interest (cf. § 3.2.2)is thcs
determined from the balance equation for al the radial forces, per unit Iength, acting

onit
F+FR+R+F =0 (3.17)

Substituting for the diffzrent terms from Egs 3.5 or 3.7, 3.10, 3.12, and 3.14 or 3.16,
respectively, the above equation meay be rewritten in the form

W_g
a ——
£y B

— B, +6=0 (3.18)
where parametersa, £, and é(= Fy, + F.) are giver below for the different models, and
v,, isthefluxoid velocity vy, in units of 1077 cms™!. Recall that w_g whichisthe value
of w(= 8, — Q) in unitsof 10~ rad s~ might have either positive or negative values,
asisthe casefor § in some of the models.

This equation includes two unkrown variablesw and v, and represents the az
imuthal component o the Magnus eguation o motion for the proton vortices. The
right hand side is zero because there is no radial Magnus force being exerted by the
superconductor on the fluxoids, due to the assumed co-rotation of the fluxoids with
the proton superconducior. There exist however additional restrictions on the mction
o the fluxoids which can be used to fix the vaue of one of the variables in Eq. 3.18
and solve for the other. Namely, in a co-moving state v, = v, thus Eq. 3.18 can be be
solved for w. And, in the other two alternative cases where v, is unknown w could take
only either o the two valuesw = w,, or w = —w,, depending on v, < v, Of vp > vy,
respectively. Furthermore, inspecticn d the Eq. 3.18 indicates that only one of the
above three solutions (Viz., v =V, W = wg, 0T W = —w, ) can be satisfied at any

time, for given vaues of the variables v,, B, and F,. The rate of the flux expulsion

out of the core B, = —4-B.vp, and the evolution f the stellar field B, (with a decay
rate of B, = —Efjof_5°) are hence uniguely determined from the above force balance

ecuation (Eq. 3.18), for an assumed spin evolution Of the star which determines the

vertex velocity vy, at each time (Eq. 3.2).



Based on the two alternative estimates discussed in the previous subsections for
each d the pinning F,, and curvature F, forces acting on the fluxoids in the interior
d a neutron star, we have considered four separate models by permutation, which

are labeled Al, A2, Bl, and B2. The underlying assumptions which lead to these
alternative evaluations o the forces, discussed earlier, are

e pinned segments of a vortex may creep independently <> vortex remains

straight while creeping

o fluxoids may bent if moving faster than agiven maximumvelocity < (fluxoids

are never bent =) fluxoids velocity cannot exceed the given maximum value

The models are summarized below by indicating which d the above four assumptions
are adopted in each case. Alsothevalues d the parametersin the singleforce equation

(Eq. 3.18), which is the starting point for computing the field evolution in all the

models, are given for each o them.
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o Model Al: 4~ Vortex segments creep independently

- fluxoids are bent when v, > vpax
a = 5.03,

5 0.51 if vy < Vmax
0.16 if vy > vmax

- vortices remain sraight while creepin
o« Model A2 g eeping

- fluxoids are bent when vy = vmax
a = 2587 x 10~* BY/?,

6 =sameasfor Al

- vortex ments cr independentl
o Model B1: =0 eep Indep y

- fluxoids velocity v, < vmax dWays
a = same as for Al,

5= 0.51 if vp < Vmax
—(Fa+ F,) if vp = vmax
Vp > Umax NOt permitted

= vortices remain graight while creepin
o Model B2 d ping

- fluxoids velocity vp < vmax always
a = same as for A2,

6 = same as for B1

while 8 = 7.30 is the samefor al the models

These four models together with the model adopted by Ding et al. (1993, the DCC
model) will be referred to collectively as the FBE models (namely those which employ
a Force Balance Equation), in contrast to the SIF model which follows a different
treatment o the flux expulsion rate (see Table 1). Spin and magnetic evolution of
single as well as binary pulsars are calculated according to the requirements of each of

the models, separately, and the results are discussed in the following sections.
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Table 3.1- Different models for the

dynamics of the fluxoid motion

mo del F, F,and Fy F, vp and w
DCC asin Eq.3.4 ift < Tonm
=Tk if > Tohm from =q. 3.18,
Al as in Eq. 3.5 asin =0 1fvp < Umax subject to :

asin = 3.14 ifvp > Umax

B1 Egs =0 ifvp < Umax | Vp =t i < we
FBE as inEq. 316  ifv, = Umax

B2 3.10 and =12 | (vp> v. not fermitted) | w=w, iff v, < v,

as in Eq. 3.5 if vy = v,

A2 |asin 2q. 3.¢ if v, # vy, =0 if vp < Vpax | W= —w, iff v, > v,

in Eq.314  if vy 2 vpmax
SIF vp = v, ( sumed)




3.3 Field Evolution of Single Pulsars

We shall now present the results o our model computations for the spin-magnetic
evolution d single pulsars based on the models discussed in the previous section. The
spin evolution d a solitary pulsar is assumed to be driven by a torque due to its
magnetic dipole radiation and/or outflow d the relativistic charged particles which
results in P, = 3.15x 10~ Bg?/P, syr~! (cf. Eq. 1.26), where By is the surface field
B, in unitsd 10® G, and P, isin units d seconds. The coupled evolution o the spin
period and magnetic field are thus followed over a period o 10'° yr in order to cover
both young and very old neutron stars in the Galaxy. Therated the decay o the core
field will be calculated from the value o the fluxoid velocity as determined in each of
the FBE models discussed in the previous section. From the instantaneous value  the
spin-down rate one finds the velocity v, d the outward motion o the vortex (Eq. 3.2).
Also, w - the maximum absolute value d the lagw that might be supported by the
pinning force - may be determined for any given value o the corefield strength B.
from Eq. 3.8. The solution o Eq. 3.18 for the given values o v, and w,, at a given
timet then determinesthe corresponding values o the fluxoids velocity v, and the lag
w between the rotation rates o the vortices and the neutron superfluid in the core o
the evolving solitary pulsar. Asindicated in the previous subsection, Eqg. 3.18 admits

one and only one d the following three different solutions:

wo = w(vp =) iff e < W < W
vy = Up(w = we) iff Vp > ¥Un
Vp = 'up(w - ——cuc,) iff Vp < Vn

where in each case one d the two unknowns in Eg. 3.18 is given and the other one
may be determined. Timeevolution of v, may thus be calculated by testing the above
three solutions, in any order, and finding the appropriate one at each time. The
computed time behavior for v, and w are shown in Fig. 3.1 as predicted in the Al

model. Characteristically similar results asin Fig. 3.1 are obtained for the other FBE
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Figure 3.1- The top panel shows the predicted timeevolution of thelagw and its critical
value w,, in a solitary neutron star according to the A1 model. The bottom panel shows

the corresponding evolution of the velocity of the fluxoidsv, and vorticesv,

Initial values

o B,=10'%°% G B. =0.9B,, and a value of 7o,m» = 107 yr have been used.



models described previoudy (§ 3.2.3). We have dso included in Fig. 3.1 the curves
representing evolution d the velocity d neutron vortices v, and the critical lag w., in

the appropriate panels, as indicated.

Thefluxoids motion in Fig. 3.1 is seen to follow three evolutionary phases in which
they move slower, together, and faster than the vortices, successively. These will be
referred to as forward creep, co-moving, and reverse creep phases, respectively (we
use the terminology of Ding et al. 1993). A final co-moving phase might also occur
for some choices o theinitial conditions. Note that w is negative during the reverse
creep phase and the later parts o the co-moving phase. A change from positive to
negative valuesfor these quantities occurs during the co-moving phase. Also note that
|w| = we during both the forward and reverse creeping phases. Transitions between
these successive evolutionary phases occur due to a reduction in v, (x ,) as well as

theincreasing value of P,.

Field behavior:

The rate o expulsion of the core field at any time is governed by v, and therefore
evolution d the core and the surface field strengths may be determined corresponding
to the history o the fluxoid velocity givenin Fig. 3.1. The predicted field evolution of
a single neutron star according to the A1 model (whichis similar to that due to other
FBE models) may be seen in Fig. 3.2. Evolution d the spin period is aso plotted in
Fig. 3.2, and Fig. 3.2a corresponds to the results in Fig. 3.1.

A substantial decreasein the core magnetic field strength occurs at timestz 107 yr,
due to the typical average value d v,510™® cm s=! during this period (see Eq. 3.18).
Recall that -gf = g which implies a time period of At ~ % for a major reduction in
the core field to occur. As aresult d the very small magnitude o v, (although 2 vx)
and the reduced value d B. at all later times, there is no substantial change in B.
subsequently.

The surface field B, responds to the change in B. on the assumed decay time scale

Tonm Of the crust. A value d 107 yr has been assumed for Ton, in Fig. 3.2a. The effect
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of the value d 7onm ON the predicted field evolution o neutron stars may be seen by
comparing Fig. 3.2a with Fig. 3.2b where for the latter we have assumed a value o
Tonm = 108 yr. A larger vaue d ron, results in large B, over an extended period of
time which corresponds to larger |Q| and hence larger v,. Consequently the predicted
evolution o the spin period d the star leads to larger values o the rotation period for
a larger choice d 1onm. This resultsin a smaller fina value for B. (note the inverse
dependenceon P, B. in Eq. 3.18 which isfurther discussed below).

Fig. 3.2a seemsto suggest that B, stops decaying when B, starts to decline (indeed,
this has been asserted by Ding et a. 1993). However thisis an artifact d the assumed
value o Tonm Which happen to be close to the saturation time o the core field decay.
The spurious correlation between the time when the core field stops decaying and the
value of Topm May be confirmed by using tentatively smaller values of Topm< 108 yr
in which case the core and surface fields are seen to decay simultaneously as seen in

Fig. 3.3. Rather, the corefield stops decaying as aresult o decreasing valuesd vy as
well as B. itself.

331 Flux expulsion: which isthe " Driving" Force?

It is interesting to note that the major flux expulsion occurs (compare Fig. 3.1 with
Fig. 3.2a) during the co-moving and, particularly, the reverse creep phases. This means
that the dominant "driving" forcefor the flux expulsion is the buoyancy force (together
with the tension force in the case of the DCC model). In Fig. 34 the time evolution
o the forces acting on the fluxoids is shown for the different models, separately. In
each plot the three curves correspond to the time behavior d the pinning, drag, and
buoyancy plus curvature forces acting on unit length o fluxoids close to the core-
crust boundary. Thefour plotsin Fig. 34 show the results for the models A1l (which
corresponds to the results in Fig. 3.1 and Fig. 3.2a), A2, Bl, and DCC, separately,
while those o B2 are similar to A2 and are excluded.

The pinning force F, is seen to be negative and directed inward during the reverse
creep phase and the later part of the co-moving phase. Hence, the overall effect of the



102+ 2

10°

10*
T

1000
e

P,(ms); B, & B (10%)
100

AR |
1

10
™

sl i PURTIN | Loy 1 i PRy | P 1 aaaaaal il
1000 10* 10® 10° 107 108 10° 10"
t(yr)

VU (cm/s)
1078 107¢ 1074

10—10

10712

« [
>t
oF .
3
3 P '] P 1 n | i 1 " | 1 aaaal FoTn | i h i) 1‘
1 10 100 1000 10* 10° 108 107 108 10° 10'0
t(yr)

Figure 3.3- The evolution d the spin period and the strengths o core and surface
magnetic fields (top),and that of the velocities of the fluxoids and vortices (bottom)as in
Fig. 3.2a and Fig. 3.1, respectively, but for an assumed value & 7o, = 10° yr. The DCC
model has been used for the purpose d the discussion but the behavior is the same for
the other FBE models as well.



F (dyn/em)

(dyn/cm)

102+ 22

. S — S
~
- -~ .F,
-
-- —F' .+ h
"= L. Fy+F,

\

' T
\

~ -

-2

-4

7~
>
[ &)
p——g

1 lo 100 1000 [0 1$ 10° 107 10 10° 10%° 1 o T T R T R T 108 o

ty) t{y)

0
1
3

]

-2

-4

—~
ws)
-t

-

"

" “ - " " " - st " " " - " it
1 10 100 1000 10 10 10 107 100 10° 10" 1 10 100 1000 10° 10° 108 10 10% 10°

tim) t{y)

Figure 3.4- The predicted timeevolution of the various forces acting radially on fluxoids
(per unit length) in a solitary neutron star, according to the different FBE models. The
pinning force F,,, the drag force F,, and sum of the buoyancy plus curvatureforces Fy, +F.
are shown in each panel. The force evolution shown for the A1 model corresponds to the
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pinning force for the field decay d solitary pulsars is more like a "brake" preventing
the fluz to be to expelled too rapidly. This conclusion is in contrast to what might
have been expected at the outset for the role d the pinning force as a driving cause
of the flux expulsion. Indeed, Ding et al. (1993) attribute such a driving role to the
pinning force throughout their paper, which is not correct asisfurther discussed in the

following.

Although the above conclusion about the role o the pinning force seems to be
obviousfrom the results in Fig. 34 (and also from velocity and field plotsin Fig. 3.1
and Fig. 3.2), it may be further demonstrated by other tests  model calculations.
We will present the results of these testsin Figs 3.5a, 3.5b, and 3.5d within the DCC
model, however other FBE models produce similar results. Fig. 8.5a which is for the
case of setting F;, = 0 inthe model calculations shows that in the absence of the pinning
force almost all of the core fluz is expelled within a time scale of ~ 107 yr. In contrast,
Fig. 3.5b shows that for an assumed case o F, t F. = 0, in which case theforce F, is
directed outward al the time, thefield decays by only less than an order of magnitude
within 10 yr. Since the buoyancy and curvature forces are not invoked in the SIF
model it is appropriate to compare Fig. 3.5b with predictions o the SIF model for the
same assumed parameter values. Fig. 3.5¢ shows that field decay is morein SIF than
for the case with i, + F. = 0 in FBE models (Fig. 3.5b). The difference is due to
the smaller values o v, at early timesin Fig. 3.5b than that implied by in Fig. 3.5¢
which is due to the presence d the drag force in the present calculation. Yet another
demonstration o the retarding effect o the pinning d fluxoids and vortices on the
expulsion d the magnetic flux might be seen from a comparison between the results
for different assumed values d the pinning energy Ep. In Fig. 3.5d the results due to
two cases with assumed values for Ep being 10 times smaller and 10 timeslarger than
that used in all other Figures (in particular Fig. 3.2a) are shown. Notethat in addition
to the plot for thefield and period evolution we have also included in Fig. 3.5d the plot
for the force evolution in one case and for the velocity in another case. Comparing the
two casesin Fig. 3.5d, and also with Fig. 3.2a whichisfor the valued Ep intermediate
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Figure 3.5(a)- The spin-magnetic field, and the velocity plots asin Fig. 3.2a and Fig. 3.1
and for the same values of the parameters (particularly 7o, = 107 yr) but for an assumed
case of F, = 0 throughout the evolution of the star. The DCC model has been used for
the purpose of the discussion but the behavior is the same for the other FBE models as
well.
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model has been used for the purpose o the discussion but the behavior is the same for
the other FBE models as well.
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DCC model has been used for the purpose o the discussion but the behavior is the same
for the other FBE models as well.



to those in Fig. 3.5d, shows that the amount o the expulsion is less for an assumed
larger value d Ep that supports a stronger pinning force (compare the force behavior
with that in Fig. 3.4). This again indicates that the opposing role played by the pinning
force against the outward motion d the fluxoids IS dominant over its contribution, at
the earlier times d a pulsar lifetime, to the "driving" causes o flux expulsion.

Therefore, the fact that the final value o B. is smaller for larger vaues d Toum
may not be explained in terms d F, acting more efficiently to expel the flux, which
IS the explanation given by Ding et al. (1993). Instead, it is because larger values of
Tonm have the effect of resulting in larger values d P, and hence smaller residual field
strengths. Consulting Eg. 3.18 one might verify that the combination P, B, (or P,B.:
in A2 and B2 models) is the deciding factor in determining thevalue o v,. Ding et al.
(1993) further state that in comparison to the SIF model the lower final B, values
predicted by their model (the DCC model) is due to the extra push on fluxoids due
to F,, which they believeis absent in the SIF model. As we have argued above the
driving cause o the flux expulsion in all FBE models, including the DCC model, is
however the combined force F;, T F. which results in the lower final field valuesin these
models.

The above discussion highlights the possibly important role of buoyancy - should
that concept be relevant ! - for the field decay in neutron stars. As already discussed,
if collective effects dominate fluxoids motion then buoyancy will take a secondary role,

and pinning force will, indeed, be the driving force causing flux expulsion.

332 FBE Models: various for ces compared

Although the relative velocity d fluxoids and vortices, and hence the field evolution,
behave very similarly in the different models therole o the differentforces are different
in the different FBE models. The combined force i, T F, in the models Al, A2, and
DCC is dways positive (Fig. 3.4), as assumed, and is balanced by the drag force, F,
in the earlier times (¢<10° yr) and by the pinning force in al later times. The drag

forcefollows a behavior obviously same as the corefield, and is negligible at late times



(> 107 yr) when B. has achieved its final values. On the other hand, for the models
B1, and B2 theforce £, T F, does become negative and restrict the flwoid velocity to
remain smaller than the adopted maximum VElOCity v, ~ 3.2 X 107° cm s71, for the
assumed value d Ton, = 107 yr in Fig. 3.4. This happens during the forward creep
phasefor the B1 model due to the dominanced the positive F, over the drag force F,.
In the B2 model, however, smaller value o F, << F, requires F + F. to be positive
during this phase.

Comparison between the resultsfor models A1 and DCC in Fig. 3.4 revealsthat the
two models produce similar results in many aspect. Neverthelessthe A1 model has the
added advantage that the sharp jump in the valuedo F;, t F. for DCC has disappeared
intheresultsd Al. Ontheother hand, in both casesthe dominant force at early times
are F, and F, which balance each other. At late times however F,, becomes negative
and is balanced by F;, T F; the drag force F, being negligible.

In model A2, F;, isestimated assuming a neutron vortex isinfinitely rigid and hence
remains straight throughout its length while creeping. As a consequence the push on
the fluxoids due to the vortices at early timesis much smaller (see § 3.3) than for the
Al model. Fluxoids move much slower under this approximation than otherwise, and
the drag force is balanced by Fy, + F. instead of F, in cased Al. The balance of forces
at late timesis however similar to that in Al, and DCC.

Theroled F, at early times, when fluxoids have the largest speed in model Al is
played in the B1 model by F, + F. which can become negative in this case. Model Bl
assumes same prescription for evaluation o Fy, asin Al, but vy isin this model re-
stricted to remain smaller than a maximumvauev, wherev,, ~ 3.2x107° cms™!

for resultsin Fig. 3.4.

Finally, in the B2 model F, iscalculated asin A2 (assuming vorticesremain straight
while creeping), and Fy T F. as in B1 (assuming fluxoids are never bent thus their
velocity cannot exceed the given maximum value). The time evolution of the forces as
predicted in the B2 model are similar to that d A2 shown in Fig. 3.4. Thisis expected

since the difference between the two models (B2 versus A2) is only for the restriction
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vp < Umax @sSUMed in the B2 model, which is however almost satisfied even in the A2
model. Thus the force F, T F. never becomes negative in B2, although it doesin B1,

and remains positive and dominant over F,, while both are being balanced by F,.

It was remarked earlier that models B1 & B2 may aso beinterpreted as representing
the case for a drag force due to coherent scattering of electrons by the fluxoid lattice
which inhibit the relative motion between the two. The flux expulsion is however still
not prohibited since the two might move together, subject to a maximum velocity
imposed by the boundary conditions on the motion o electrons. Any attempt to move
the fluxoids at a larger velocity would be opposed by the large drag force which will
adjust itself to cancel out the other existing forces.

Notice that for this interpretation d the results o models B1 & B2 however the
lines in the force plots in Fig. 3.4 corresponding to Fy, T F. (the dotted line) would
now represent the viscous drag force if it is more negative than F, (the full line). The
similarity between force behavior for models B2 and A2, discussed above, shows that
the drag force (due to coherent scattering) would be o no major consequence if Fu
is calculated according to Eq. 3.7. Namely rigid straight vortices would never try to
push fluxoids at speeds larger than the assumed maximum velocity permitted by the
core-crust boundary conditions for the accompanying motion d electrons with fluxoid
lattice. On the other hand for the model B1 the new interpretation o the model
rendersits results similar to that of Al, asthe dotted linein the corresponding plot for
Bl in Fig. 3.4 has to be compared with the full line in the plot for Al. Thus in both
cases the drag force is seen to be balanced by the outward directed pinning force which
pushes the fluxoids at a velocity v, ~ vmax during early times, while at late times the

negative pinning force cancels the force i, T F..

To sum up the results d the different models presented in Fig. 3.4, the assump-
tion of infinite rigidity o vortices which prevent each pinned segment d a vortex to
creep independently than rest d the line have the effect of making the pinning force
unimportant for the fluxoids motion. It thus reduces the flux expulsion rate only dur-

ing early times (< 10° yr) o a pulsar lifetime. The opposing role o the pinning force



against fluxoids outward migration at late times (3 107 yr) is however present in all
the models. This is probably one or the characteristic feature common among all the
FBE models discussed here. It isfor this reason that in al d the modelsthefield o a
neutron star is prevented to decay to very small vaues (< 108 G) even after very long
times (3 10'° yr). As already discussed, the FBE models share with the earlier studies
(Muslimove & Tsygan 1985; Harvey et al. 1986) in having the buoyancy force (plus
the outward directed tension force in case d DCC) as the driving cause o the flux
expulsion out of the core o a neutron star. However, inclusion d the pinning force in
these models (FBE) serves to regulate the rate o expulsion, and in particular to save
aresidual amount o flux (3 10® G) for the star through its retarding force throughout

most o the star's lifetime (ie. at ¢3 107 yr).

3.3.3 Surface Fields

The evolutionary tracks for single pulsars on the B,-P, diagram as predicted in SIF
and DCC (the latter being typical for all FBE models) are plotted in Fig. 3.6 for the
different assumed initial field strengths. Points corresponding to the different ages of
the neutron star are also marked along each track. Asis seen in Fig. 3.6, the final
strength of B, as predicted in any o the FBE models is found to depend sensitively,
and with an inverse proportionality, on theinitial value o B,. However the predicted
final B, isinsensitive to the assumed initial values o P, and B, for changes in these
quantities by almost two orders of magnitudes. This behavior may be also stated in a
different way which is probably easier to grasp. Theamount d flux expulsionisdirectly
proportional to the initial value of B,, which is expected because larger values of F,
are achieved for larger initial B, values (see above). The final value of B, according
to the SIF model does however depend on the initial values d P,, B, as well as that
d B, even though with a direct proportionality in this case. These latter correlations
are in accord with the assumed relation %: = ~% in the SIF model, corresponding to

vp = v, at all times.

An observationally interesting point to note in Fig. 3.6 is that while according to
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Figure 3.6- Surface field versus spin period evolution of solitary pulsars born with the
different assumed initial field strengths, as predicted in the different models discussed
in the text. The results shown are for the SIF and the DCC models while the latter is
similar to those of the other FBE models. Positions of the neutron stars at various ages
are marked on each track, and the spin-up line and the death line are also shown in each
panel. A vaue of 7onm = 107 yr has been used.



SIF very old neutron stars (ages ~ 10'°) are expected to have rather large magnetic
fields in the range 3 x 10!° < B, < 2 x 10'* G, the FBE models predict values of
B, < 10'° G for these stars. An even smaller upper limit d B, < 10° G at ages
> few X 108 yr is also implied by the resultsd FBE for neutron stars with initial field
vauesd B,z 10'? G. It has to be also noted that theresultsin Fig. 3.6 are derived for
Tonm = 107 yr, and the predicted final fields would be smaller if larger values of Tonm
are used (compare Fig. 3.2a with Fig. 3.2b).

y-ray bursters:

The strengths o the magnetic fields of the very old neutron stars and their statistics
are issues of relevance to the study o at least a sub-class o «-ray burst sources which
are likely to be highly magnetic old neutron stars (seeeg. Blandford 1992). While such
an identification of the 4-ray bursters does not seem to be consistent with the above
predictions o FBE (represented by the results for the DCC model in Fig. 3.6) for the
field strengths expected in old single neutron stars, could be however accommodated
in the SIF model.

Ruderman & Cheng (1988) have proposed that the burst sources may be neutron
stars with their magnetic axes aligned with their rotation axes. Ding et al. (1993)
suggested that for an aligned neutron star the core field according to their model
would not be expelled even on large time scales (>> 107 yr), unlike the genera case
presented in Fig. 3.6. Two crucial and doubtful assumptions have been however made
to derive such a behavior for the case o an aligned pulsar. In spite of the assumed
alignment d the surface dipole field with the rotation axis of the star fluxoids and
vortices are still thought to be inclined to each other, or otherwise their entanglement
being effectiveand the same pinningforce as for the non-aligned case acting on fluxoids.
Secondly, and even more seriousis that the spin-down torque on a pulsar is considered
to be only due to the magnetic dipole radiation which is thus diminished for an aligned
case (Ding et al. 1993). Thisisin contrast to the general consensus that the rate of

spin-down o solitary pulsarsis apparently independent o theinclination angle; an idea
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which is commonly adopted to infer the strength of the surface fields o pulsars (cf.
Eq. 1.26 and Eg. 2.7). The spin-down rate for any given angle d inclination between
the rotation and the magnetic axes o the star is believed to be the same as that due to
the magnetic dipole radiation o a perpendicular rotator (Taylor & Manchester 1977,
Srinivasan 1989). The theoretical rationalefor thisis the well-known Glodreich-Julian
model (Glodreich & Julian 1969) according to which an aligned neutron star would
act as a homopolar inductor capable of generating voltages ~ 10'® volts. The charged
particles are hence pulled out o the surface and those which are not trapped in the
magnetosphere will flow out along the open field lines which extend beyond the light
cylinder. The amount o angular momentum carried away by the escaping charged
particlesin the case d an aligned neutron star turns out to be comparable with that
due to the emission of magnetic dipole radiation for a perpendicular case (Ostriker &
Gunn 1969).

Thereforethe assumption that the spin-down rate o an aligned neutron star would
be negligibly small and its consequence for the field decay as inferred by Ding et al.
(1993) has to be dismissed. Nevertheless, since a discussion o the predicted field decay
by the FBE modelsfor thetentatively assumed case o little spin-down torque acting
on a neutron star serves to further elucidate the nature of the models we will discuss.
Indeed, if the spin-down rate o a neutron star is assumed to be small the core field
according to FBE models would not be expelled even on large time scales (>> 107 yr).
This is because a reverse creep phase does not occur in this case since the required
vaue o |Fy(w = —w)| for a reverse creep phase to occur would be too large. The
expected large value d Fj in this case is because d its inverse proportionality on P,
(see Eqg. 3.5) and the expected small values of P, due to the assumed small value of
the spin-down torque. However, Ding et a. (1993, the last equation in their paper)
argued that the large value of F, in this caseis a consequence d the dependence of wer
on B.. This cannot be so because |Fy(w = —wea)| « 1/B:5, which implies an smaller
valuefor |F,(w = —wq)| in thiscase. Infact the reverse creep phase starts always at a

large value of B. even in (the non-aligned) cases where a substantial field decay does



occur, as might be expected from the above dependence o F, on B,. The difference
in the predicted behavior o field decay for the present case is rather due to the fact
that in this case P, retains its assumed small initial value. This conclusion may be
clearly verified by comparing the two cases o field evolution presented in Fig. 3.7.
The two cases in Fig. 3.7 both are for an assumed very small spin-down torque (ie.
that expected due to only dipole radiation for an inclination angle o 1 deg) but with
different initial values for the spin period d the pulsar. Although in both cases B. is
large before the reverse creep phase, however substantial flux expulsion takes place in
the case where P, islarge. Note that in this latter case the reverse creep phase starts
from the very beginning and persists throughout the evolution o the star. This clearly
verifiesthe effect mentioned abovefor P, in determining the conditions for occurrence

o areverse creep phase.

Hencethe identification d «-ray bursters as old neutron stars having strong dipole
magneticfieldswould be consistent with predictions of the FBE models, provided they
are not spun down to large periods 31 s. This conclusion is however independent of

whether or not the surface field is aligned with the rotation axis o the star.

Active lifetimes of pulsars:

The active lifetimes o pulsar (defined in § 2.3) for the predicted spin-field evolution
in the different FBE models are shown in Fig. 3.8 against the initial field strengths for
values d Tonm = 107 and 108 yr, separately. Corresponding curves for the case d a
purely exponential decay d the stellar magnetic field are al'so included, for comparison.
Recall that in thelatter casethetotal surfacefield is assumed to decay exponentially on
the given time scale Tonm With no constraint. The results d the different FBE models
are very similar as can be seen in Fig. 3.8 (thisis true for the A2 and B2 models also
but they have been omitted for clarity). Thisis rather unfortunate as it renders any
attempt to choose among them by comparing their predictions against the observed
pulsar population hopeless. Nevertheless, the marked difference between the results

d FBE and SIF in contrast to those of the exponential decay, in particular for values
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Figure 3.7- The spin-magneticfield, and the velocity plots asin Fig. 3.2a and Fig. 3.1 but
for a tentatively assumed case d a small spin-down torgue (corresponding to the dipole
radiation torque alone for a star with nearly parallel spin and megnetic axes) acting on
the neutron star. The left two plots are for an initial value o the spin period P, = 0.01 s,
while the right plots are for the case with initial P, = 2.0 s.
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o Tonm< 107 yr, seems to furnish further support to the core-field expulsion scenario
in general. This is because the much larger lifetimes predicted in these models (FBE
and SIF) for pulsars with initial values d B,<10*? G (Fig. 3.6) seems to offer new
insights into some o the problems with the statistics o pulsar population. Since the
effect is exactly similar to that already discussed in chapter 2 for the results of the SIF
model we refer to sections § 2.3.1and § 2.3.2for the observational consequences of the

predicted increasein thelifetimesd pulsars.

3.4 Recycled Pulsars

As we saw in the earlier chapters the spin evolution of a neutron star in a binary
system with a mainsequence star is expected to be quite different from that of a single
pulsar. Theinteraction of the neutron star magnetosphere with the stellar wind of the
companion star is believed to result in large vaues of P, ~ 10* - 10° s, in contrast to
the much smaller values achieved in the case d single pulsars. Prediction of any of
thefield expulsion models (FBE and SIF) for the magnetic evolution of binary neutron
stars are thereforeexpected to bein principle differentthan for the single stars. In fact,
simulations o the spin and magnetic evolution of binary pulsars based on SIF have
been already shown to reproduce the observed properties o therecycled pulsars in low-
mass binaries, as noted in chapter 2. In this section we apply the FBE models for the
first timeto neutron starsin binaries. In order to extend theresults of the FBE models
to the case of binary evolution of neutron stars, we have adopted a similar prescription
for the spin evolution o a neutron star in a binary system as that in chapter 2. The
computations were repeated, in the case of each of the FBE models, for the different

combinations o the following values of the parameters and initial conditions:



Pop: 2 - 600 (day)

¢: 1, 10, 100

log Tonm: 7.0,8.0,9.0  (yr)

1 M:-15-14, =13 ( p1,/yr)
initial P,: 0.1, 1.0 (s)
initial B,: 3 x 1012 (G)
initial B.: 2.7 x 102 (G)

where P, is the binary orbital period, M is the mass-lossrate of the companion star,
and ¢ is a scaling factor for the rate o the angular momentum transferred out o a
neutron star in a spin-down phase. A value o ¢ = 1 corresponds to that due to the
difference between the Keplerian and the co-rotation velocities at the magnetospheric
radius. Larger values o ¢ associated with a more effective loss mechanism might be
expected for assumptions different from those adopted (eg. a spherical rather than the
disc-like geometry assumed for the accretion flow, etc.; see § 1.3 for details). A spin-up
phase d the star is assumed to have no further effect on its magnetic evolution, and
the corefield is kept constant during such a period of time. The evolution o a neutron
star in a binary with a low-mass companion (of a mass M = 1.0 Mg) is followed for
a period of 10 yr, and its final surface field as predicted in each of the field decay
models has been determined, for different combinations o the parameter values.

The predicted distribution d thefinal field strengths versus initial orbital periods
are plotted in Fig. 3.9. The results due to the different FBE models are found to be
similar in many cases, however large differencesare also observed in some cases. The
observed low-mass binary pulsars with existing estimates for their field strengths and
orbital periods are again compared with the model predictions (as we did for the SIF
model in chapter 2, in Fig. 2.8 and Fig. 2.9). Data on 8 binary pulsars which are
expected to have been recycled in low-mass binary systems are presented in Fig. 3.9
(cf. Table 2.1). The observed orbital periods in these systems have been corrected
for the expected change in the orbital period during afinal Roche-lobe overflow mass

transfer phase as indicated in Table 2.1. Within the uncertainties associated with the
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Figure 3.9- Final values of the surface magnetic field strengths o neutron stars evolved
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that are descendants d wide low-mass binaries, for which the initial orbital periods can
be estimated. Initial values of B, = 3.16 X 10'? G, B, = 285 x 102 G,and P=0.1s
have been assumed. Vaues of Ton,, = 107 yr and ¢ = 10 have been used.



value of M which could be, as well, varying with time and also have a dependence
on the orbital period in the case d close orbits the computed curves in Fig. 3.9 seem
to agree with the observed data. As was discussed in chapter 2 for the case o SIF,
one has aso to take into consideration the dependence d the results on the various
other parameters (namely initial spin period and field strength o the neutron star,
companion star's wind velocity, efficiency o the imparted torque on the neutron star
during spin-down phase, and the unknown decay time scale d the field in the crust)
while judging the success d the models. Qualitatively similar results are produced for
many other choices o the parameters values different than those in Fig. 3.9 (and also
by the other FBE models namely A2, B1, and B2 which are not shown). Comparing
the predictions o the FBE modelsfor thefinal field strengths o neutron stars recycled
in low-mass binaries with those o the SIF model discussed in chapter 2 we find larger
values o Tonn, and/or larger values of ¢ are preferred by the SIF model as compared
to the FBE models, for the same given initial values o B,, B., and F,. We recall
that, the results in chapter 2 showed that values d Tonm< 10° yr together with €<1,

Or Tonm2 107 yr together with ¢>10 were preferred by SIF as far as the data on the

low-mass systems were concerned.

Nevertheless, the diverse values of thefinal fied strengths in each of the panels in
Fig. 3.9 clearly show the dependence of the predicted field evolution of binary pulsars on
their orbital evolution: for the same initial spin period, core and surfacefield strengths,
and the crustal decay time scale, the predicted unique value for the final field of a
single neutron star isto be contrasted with the largdy different final values obtained in
binaries, seen in Fig. 3.9 along each curve and among the different curvesin each plot.
In addition to the dependence on orbital period and mass-accretion rate demonstrated
by the plotsin Fig. 3.9 thefield evolution of binary pulsars as predicted in FBE models
isfound to depend also on the other parameters (seeabove) as well. Hence, as remarked

earlier one may not apply the resultsfor the solitary pulsars to those evolved in binaries.

As discussed earlier, the pinning force on fluxoids acts as an obstacle against an

otherwise more rapid and enhanced fl ux expulsion out o the core d solitary pulsars.
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The same is true for neutron stars evolved in many d the assumed binary systems
which we have tested. This may be verified again by comparing between the predicted
field evolution for a binary neutron star according to the FBE models (say the DCC
model) with what is expected if F}, T F. = 0 as we did for the case o solitary pulsars
in Fig. 3.5. In Figs 3.10a the predicted evolution d spin-magnetic fields according
to DCC for a neutron star in a binary with P, = 20 day are contrasted with that
expected for the same binary if the pinning force were the only driving force present,
namely assuming Fy, + F. = 0. Fig. 3.10a shows that setting F, + F. = 0 result in a
much smaller flux expulsion than otherwise. This, in addition to the fact that in the
absence of F, all d theflux would be expelled (see § 3.3) provesthe braking role of F.

Comparing between Fig. 3.10a and Fig. 3.5b the results for the case d setting
F, T F. = 0 are seen to be similar. This might imply that if the pinning force were to
be considered as the only existing cause for the flux expulsion (namely Fy tF = 0)
then field evolution d neutron stars recycled in binaries would be same as that of the
single stars and their fields would never decay by more than an order d magnitude.
This is not so. Fig. 3.10b is similar to Fig. 3.10a except that for the orbital period
P, = 120 day. In Fig. 3.10b thefield is seen to decay due to the pinning force alone
down to a value ~ 10'° G from its initial value 102 G. The binaries for which such
an expulsion o coreflux by the pinning force might occur are those of an intermediate
orbital periods depending on the values o the other parameters. In wider orbits an
effective spin-down would not occur and hence the essential fast outward motion of
vortices accompanied by the fluxoids is not realized. In the very tight orbits on the
other hand the spin-down o the neutron star to very large periods does not alow the
fluxoids to be pulled out along with the vortices during the spin-down phase (notice
the much smaller values o the fluxoid velocity, vy, than that o vortices,v, during the
late spin-down phase at times > 10° yr in the results for the case with F, + F. =0 in
Fig. 3.10a). Namely a co-moving state of flwoid-vortex motion during the spin-down
phase which is realized for the wider orbits (as in Fig. 3.10b) is not possible due to

the inverse dependence d the fluxoids velocity on P, discussed earlier in § 3.3 (see
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Figure 3.10(a)- The left two panels show the spin-magnetic field, and the vortex-fluxoid
velocity evolution for a neutron star in a binary with a 1 M.companion Star and an
orbital period P, = 20 days. Theresultsfor the assumed case o F,+ F. = 0 throughout
the evolution o the star for the same binary and initial conditions are shown at the right.
Initial values o B, = 3.16 x 10'* G, B. = 2.85 x 10'? G, and P, = 0.01 s have been
assumed. Also values of M, =107 Mg/yr, Tonm = 107 yr, and ¢ = 10 have been used.
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Figure 3.10(b)- Same as Fig. 3.10a, but for the case of a binary with P, = 120 days.



also Eq. 3.5). This dependence is understood as the larger spin periods means larger
inter-vortex separation and hence smaller pinning force per unit length o the fluxoids.

Notice that in the absence of 7, T F. the two binaries (with P, = 20 and 120 days)
are predicted (Fig. 3.10a versus Fig. 3.10b) to result in different values for thefinal field
strengths. However this difference is washed out in the FBE models by the dominant
roled Fy + F. over F,, and the final field values are similar for the two cases shown
in Figs 3.10a & b. Although the case in Fig. 3.10b is not sufficient to explain field
values as low as that o millisecond pulsars by a model which discards the buoyancy
force (in presence of the assumed viscous drag force) the possibility of such a model
does not seem to be ruled out. However, as remarked earlier the role of the pinning
force which was argued above to be one against the expulsion of the flux driven by
the buoyancy force is essential to stop thefield decay in binary neutron stars at values
comparable to those observed in old recycled pulsars. 1n other words the possibility of
a model which discards the pinning force and relies only on the buoyancy is absolutely
ruled out. Thus, while the pinning between fluxoids and vortices provides a means for
explaining the residual fields o old binary and millisecond pulsars, it also serves to
establish a dependence between the final field of the star and its spin period history

driven by interaction with matter accreted from its binary companion.



3.5 Main conclusions of the chapter

In the second chapter we explored the scenario of spindown-induced flux expulsion
model (SIF model). In that model - in which the flux expulsion occurs due to the
interpinning o thevorticesand thefluxoids- it wasexplicitly assumed that theflwoids
will move with the same velocity as the vortices. The outward velocity o the vortices
is, of course, determined by the spindown rate d the neutron star. This led to the
conclusion that in the case d a neutron star in a binary system very low fields can
be attained due to the dramatic flux expulsion during the stellar wind phase of the
companion.

In this chapter we have tried to improve upon the SIF model by including not only
the pinning force on the flwoids but also the viscous drag force on it due to electron
scattering, possible buoyancy force acting on the fluxoids, and also curvature force
on the fluxoids should their geometry deviate very linearity. In previous sections we
have systematically presented the results obtained. In all this, of course, it has been
assumed that the fluzoids move independently of one another. Within this assumption
we have explored several variations of the theme. For example, in one of the models
thevortex is assumed to remain straight asit cregpsoutwards. In an alternative model
each segment of the vortices between successive pinning centres is allowed to move
independently. For the sake of conveniencewe would liketo briefly summarize some of

the more significant results and conclusions obtained in this chapter.

a The main consequence d theinclusion o the drag forces on the vorticesis that
in the early phase of evolution - when the spindown rate is quite large - the
fluxoids are not able to keep up with the vortices. In other words, unlike in
chapter 2 one encounters a phase where the velocity o the fluxoidsis less than

the outwards velocity o the vortices.

a But eventually, as the vortices dow down they are able to drag thefluxoids with
them. It is during this co-moving phase that a substantial fraction of the flux

expulsion occurs.



¢ In the later phase buoyancy force becomes the dominant one. If this concept
of buoyancy is relevant (at the moment this is a controversial point) then it
leads to a situation where the fluxoids lead the vortices. As discussed earlier,
there has been a suggestion in the literature that the magnetic field decay can
be explained solely in terms o buoyancy d the fluxoids and the consequent
outward migration. We would like to forcefully argue that this cannot be so.
Even if buoyancy is relevant, one cannot do away with the role d the pinning
force. Quite simply, if pinning force is not present then buoyancy will result
in vanishing fied strengths for very old pulsars, in particular the millisecond
pulsars. In the models we have discussed in this chapter we have been able to
obtain reasonable field strengths for recycled pulsars, including the millisecond
pulsars - thisin spite o the inclusion of the buoyancy — because interpinning
o fluxoids and vortices makes buoyancy less effective. Pinning force acts as a

brake.

e In our opinion this provides the strongest argument for pinning interaction
between fluxoids and vortices. In the absence of it the only way to explain
the decay of the magnetic field trapped in the core o the star is to invoke
buoyancy. Unfortunately, while buoyancy isadmittedly a possible mechanism of
flux expulsion it is too effective! The only way one can understand the observed
low but significant fieldsd millisecond pulsars is by invoking the pinning force.
Either the pinning alone does the job (viz., the vortices drag the fluxoids) or
pinning reduces the efficacy o the buoyancy force. Either way pinning is an
essential ingredient. We fed that thisis one of the most significant conclusions

of this chapter.

e We explored four different models in this chapter with the hope that we will
be able to discern the relative importance of the various forces acting on the
fluxoids. Unfortunately this was not possible since all the models produce more
or less the same results. There are some differences, but given various uncer-

tainties we would not like to draw any conclusions from them. Some general



statements can however be made.

The model where the vortices are assumed to be infinitely rigid dismisses the
possibility o different segments d a vortex to moveindependently o the other
segments. This in effect reduces the role d the pinning force. The common
feature of all the modelsis the role d the pinning force in making the outward
migration d the fluxoid less efficient at late times greater than ~ 107 yr. At
these late times the roled the buoyancy would have been more significant had

it not been for the pinning force.

Having explored various models we are eventually led to the conclusion that the
simple SIF model which assumes that the fluxoids and vortices move with the
same velocity is not so bad after dl! Thisis because much d theflux expulsion

occurs during the co-moving phase.

Having discussed various forces acting on the fluxoids we are left to conclude
that the force whose inclusion makes a significant difference to the results ob-
tained in the previous chapter is the dragforce. Consider neutron stars with
binary companions. In chapter 2 in which we had ignored the drag force there
was a dramatic flux expulsion during the propeller phase when the neutron star
was dramatically spun down. This is because there was no limitation to the
velocity with which the fluxoids could migrate - they could move as fast as the
vortices are able to move. The inclusion o the drag force significantly alters
the conclusion. Since the flux velocity is limited by the drag force, the flux
expulsion during the propeller phase is far less effective. The situation is very
similar to the very early phase in thelife of a pulsar when its spindown rate is

so much that the fluxoids lag behind them.

Collective effects: As already remarked earlier, in this chapter, like in the pre-
vious one, we have assumed that the fluxoids can move independently o each
other (although one of the models we have explored mimics collective effects).

Although thereis no consensus as yet it is quite likely that collective rigidity of



theflux lattice as a whole may be profoundly important. Such collectiverigidity
arises due to coherent scattering of the electrons. Quite simply, a classical orbit
of an electron will encompass a very large number o fluxoids. Therefore one
may have to consider motion o not single fluxoids but large bundles of flux-
oids. According to M.Ruderman (unpublished remarks), the force acting on N
fluxoids moving together may be very much larger than N timesthe drag force
on asingle fluxoid. The arguments are very similar to the classical arguments
for fluz freeang in a conductor. If this is indeed so then it is very hard to
understand how the magnetic flux can be expelled from the superconductor at
al. Thisis a question that obviously requires very careful study, and we have

nothing concrete to suggest at this stage.



