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Chapter - 6 

A simple molecular theory of smectic C liquid crystals 

6.1 Introduction 

In the previous chapters we have described several novel phase transitions 

exhibited by compounds with molecules having longitudinal components of 

permanent electric dipole moments. As described in Chapter-1, in the smectic C 

(SmC) phase, the constituent molecules are tilted in the smectic layers. The SmC 

liquid crystal is made of compounds with molecules having lateral components of 

dipole moments. There are many reports in the early literature on the synthesis of 

compounds that were later found to exhibit the SmC phase [1]. However, the SmC 

phase was given the designation originally by Sackmann and Demus [2] based on the 

miscibility studies and the observation of textures. In this chapter, we discuss the 

molecular origin of tilt in the SmC liquid crystals and develop a molecular theory of 

phase transitions involving SmC liquid crystals. 

As described in Chapter-1, the simplest of the liquid crystalline phases exhibited 

by rod like molecules is the uniaxial nematic (N) which has only a long range 

orientational order of the long axes of the rods. Since the director n
^
 which is a unit 

vector along the average orientation direction of the long axes of the rods, is apolar in 

nature, the relevant order parameter is a second rank tensor. In the smectic A (SmA) 

liquid crystals, the centres of mass of the rods develop a quasi long range one 

dimensional periodic order whose wave vector (|q | = 2 /d, d being the layer spacing) 

is parallel to n
^
. In the smectic C (SmC) liquid crystal, the ‘tilt’ angle  between q  and  

n
^
 is  nonzero [3] ( figure-6.1) 

 

 

 

 

 

 



Chapter-6 -161- 

 

Figure - 6.1. Schematic representation of ordering of rod like molecules 

in the isotropic liquid and the nematic, the smectic A and the smectic C 

liquid crystals. The director n
^
 and the wave vector q  representing the 

density wave along the layer normal are shown. q  and n
^
 are parallel in 

the smectic A liquid crystals where as in smectic C liquid crystals, n
^
 is 

tilted with respect to q  at an angle . 

6.2 Molecular order in different types of smectic liquid crystals 

with molecular tilt 

6.2.1 The Smectic C liquid crystal 

Figure - 6.2. Diagram showing the right handed rectangular cartesian 

coordinate system chosen with the Z axis along the layer normal. The 

angle between q  and n
^
 is the average tilt angle . The Z-X plane is 

chosen as the tilt plane and contains n
^
. The vector c  is the projection of 

n
^
 on the X axis. The thick line represents a given rod like molecule 

making the polar angle , the azimuthal angle and the angle  with  n
^
.  

In SmC liquid crystals, long axes of the rod like molecules have an average tilt 

angle  with respect to the layer normal  i.e., the director n
^
 makes an angle  with the 

smectic wave vector q . Also, the tilt direction is the same for all the smectic layers 

(homoclinic). To describe the molecular orientations, we consider the right handed 

rectangular cartesian coordinate system with the Z axis chosen along the layer normal, 

i.e., along q  (figure 6.2). For the sake of convenience, the tilt plane is taken to be the 
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Z-X plane, containing the director n
^
. The long axis of any given molecule makes an 

angle with the positive Z axis, angle  with n
^
, and its projection in the X-Y plane 

makes the azimuthal angle with respect to the positive X axis. The relation between 

, and  is given by 

cos  = cos  cos  + sin  sin  cos 6.1) 

 The molecular centres are randomly distributed within the layers in the X-Y 

plane as in the SmA liquid crystal. 

Since the nematic director is apolar, rotating the medium by 180
0
 about the Y axis 

results in an identical arrangement i.e., there is a two fold axis of symmetry along the 

Y axis. Also, the Z-X plane which contains the director  n
^
 is a mirror plane of 

symmetry. These two symmetries together represent a point of inversion about the 

origin O. Hence the medium can not sustain any net polarisation. 

6.2.2 Other smectic liquid crystals with molecular tilt 

It has been recently found [4] that some compounds exhibit the smectic phase in 

which the direction of vector c  of the successive layers is opposite i.e., it has 

anticlinic symmetry (SmCalt). The suffix ‘alt’ stands for ‘alternate’ i.e., the inlayer 

projection of n
^
 is along the positive and the negative X directions in successive layers. 

The liquid crystal still can not sustain any net polarisation. A very interesting type of 

smectic liquid crystal (SmC*) results if the  molecules are chiral. In the SmC* liquid 

crystals, each layer still has a two fold axis of symmetry along the Y axis, but there is 

no orthogonal mirror plane. The medium exhibits ferroelectric polarisation of the 

layers in the direction perpendicular to the tilt plane. However, due to chiral 

interactions, the direction of polarisation develops a gradual twist from layer to layer 

i.e., it becomes helical about the Z axis and the structure is heli-electrical [3]. Since 

the polarisation vector tends to align with an external electric field, the helix can be 

unwound by applying an electric field perpendicular to the Z axis. The molecular 

ordering in the unwound SmC* resembles that of the SmC, but the medium is 

ferroelectric. The helix can also be unwound by placing the SmC sample in a thin cell 

(thickness 2 m) whose surfaces are in the Z-X plane. Such a surface stabilised 

ferroelectric liquid crystal (SSFLC) exhibits a very useful electro optic effect when 

placed between appropriately oriented crossed polarisers. The field of view is dark 
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when the incident light is linearly polarised along n
^
. If the direction of the applied 

electric field is reversed, the direction of the average tilt is also reversed, resulting in a 

change of 2 in the direction of n
^
. Since the optic axis is parallel to the director, this 

results in a corresponding change in the direction of the optic axis of the medium and 

the field of view becomes bright. The dark field can be restored by rotating the cell by 

an angle 2  about the direction of electric field. This helps in the measurement of  

optically. Also, this leads to a wide range of applications in electro-optic display 

devices. Hence, a large number of such compounds have been synthesised and 

studied. 

The hexatic smectic liquid crystals have an additional inlayer bond orientational 

order having a hexagonal symmetry. Depending on the nature of the inlayer order, the 

liquid crystal is termed as SmF, SmI etc. [1].  These are not considered in the present 

thesis.  

We will develop a simple molecular theory of the simplest of the tilted smectic 

liquid crystals, i.e.,SmC liquid crystal. Such a medium is also biaxial. This is 

described in the next section. 

6.2.3 Biaxiality in the SmC liquid crystals 

The smectic A liquid crystals have the optic axis along n
^
 i.e., along the layer 

normal and the medium is cylindrically symmetric about n
^
. The medium is uniaxial, 

even if the molecules are biaxial. In the SmC liquid crystal, the medium has a layered 

structure of the molecules as in SmA but the molecules are tilted in one direction i.e., 

in the Z-X plane (see figure 6.2). Hence, the refractive index or the dielectric constant 

measured along the X and Y directions give different values. The difference between 

these two values represents the asymmetry about the Z-axis or the biaxiality of the 

structure which is quite large (~10
-2

).   

It should be further noted that, in the SmC liquid crystals, the fluctuations in the 

orientation of the long axes of the individual molecules are not equally probable in all 

directions around the director. The  fluctuations (Goldstone mode) or the inlayer 

fluctuations cost less energy, whereas the  fluctuations cost more energy (soft mode) 

since they tend to alter the layer spacing. Hence, the averaged projection of the 

molecular long axes along the Y direction fluctuates a little more than that in a 
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direction orthogonal to the Y- n
^
 plane. In other words, the medium does not have 

cylindrical symmetry about the director. This leads to a weak biaxiality (~10
-4

) [5] 

about the director and hence it is neglected in many theoretical calculations. 

In the next section we give a brief review of some of the experimental results 

relating to the SmC liquid crystals. 

6.3 Review of some important experimental results 

6.3.1 Measurement of the tilt angle  

As explained in section 1.2.2 (chapter-1), X-ray diffraction from smectic liquid 

crystals show quasi Bragg peaks that imply a periodic structure. Using these, the layer 

spacing of the smectic liquid crystal can be calculated. In the monolayer SmA liquid 

crystals, this calculation gives a layer spacing dA  l where l is the molecular length. 

X-ray diffraction from the SmC liquid crystals, gives the layer spacing dC < l, since 

the molecules are tilted. The tilt angle  can be obtained using the relation 

cos  = dC/dA.     (6.2) 

These measurements of layer spacings give the average molecular tilt. The tilt 

angle can also be measured optically in SmC* liquid crystals as explained in section 

6.2.2. Since the polarisability anisotropy is due to the aromatic core in the molecular 

structure, optical measurements give the tilt of only the molecular core. It is known 

that the tilt values obtained by these two methods are not always the same [6]. This 

implies that the core and the chain of the molecules can have different tilt angles with 

respect to the layer normal. 

6.3.2 Typical molecular structures of compounds exhibiting the SmC 

liquid crystals: the significance of dipoles 

As already discussed in chapter-1, molecules with an aromatic core and end  

chains having more than 5 carbon atoms are usually required to stabilise the SmA 

liquid crystal. The aromatic cores tend to overlap due to the strong dispersion 

interactions. The end chains separate the cores leading to the formation of the layered 

structure. Some additional features are essential for the molecules to be tilted in a 

smectic layer. The most common feature is the presence of a lateral component of the 
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electric dipole moment. This is possible when the molecule has a  polar  bond in the 

end chain and/or in the core. The dipole moments of some typical polar bonds are 

given in table 1.1 (chapter-1).  

An alkyl chain has only C-H bonds whereas an alkoxy chain has an additional 

oxygen atom, thus forming a polar bond (figure 6.3). The dipole moments due to such 

bonds are at an angle to the molecular long axis. Hence, they have components both 

parallel and perpendicular to the molecular long axis. 

Figure - 6.3. Diagram illustrating the dipole moment due to an alkoxy 

chain attached to an aromatic core. Since the oxygen atom is more 

electronegative than the carbon atom, electrons are shifted towards the 

oxygen atom. This results in two dipoles in the direction O  C. The 

resultant  dipole moment is indicated by the arrow with the dotted line.  

Studies during 1980’s and early 1990’s have been recently reviewed by Goodby 

[7a]. We can see that, the presence of a lateral component of electric dipole moment 

in the molecule is the most common feature for the medium to exhibit the SmC phase. 

We give below some examples of compounds to illustrate the common features. In the 

following molecular structures, the carbon and the hydrogen atoms are not shown. 

Here, (L, R) represent alkyl or alkoxy chains with (m, n) carbon atoms respectively. 

 (a) Azobenzenes : [8] 

 

 

 

The N–C bonds contribute two equal and opposite dipoles which do not have 

lateral components. Hence if both L and R are alkyl chains, the compound does not 

exhibit the  SmC phase (m = n = 3 to 10). When R is replaced by an alkoxy chain (m 

= n+1 = 8 and 9), the compounds show 2
nd

 order SmA-SmC transition. If both L and 

R are alkoxy chains (m = n = 8 and 9), the compounds show 1
st
 order N-SmC 

transition. If the central azo link is also replaced by an azoxy group (eg., HOAB- 

heptyloxy azoxy benzene), it shows a stronger 1
st
 order N-SmC transition(m = n = 7) 

[9]. This shows that, if the number of lateral dipoles is increased, the tendency to form 
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the SmC liquid crystal also increases. In general, an addition of a dipolar group at the 

end of the molecule has a similar effect [10]. 

 (b) TBnA - Terepthal-bis-n-alkyl aniline [11]. 

 

 

 

 

 

In this molecule, the C=N bonds contribute two lateral dipoles. Hence, in general, 

even if L and R are alkyl chains, the compounds (m = n = 8 and 10) exhibit SmC 

liquid crystals. 

(c) Pyrimidines - [12] 

 

 

The compound shows the SmC phase when R is an alkoxy chain, for different 

combinations of m (varying between 3 and 10) and n(varying between 4 and 10).  

d)Alkoxybenzoates- [13], (denoted as n OPEPOm) 

 

The two lateral components of dipole moment due to the COO bond almost cancel 

out. The compound shows SmC phase as it has alkoxy chains, for different 

combinations of m and n, each varying between 6 and 18.  

6.3.3 Possible phase sequences involving SmC liquid crystals  

Experimental studies on several homologous series and mixtures show that, in 

general the following phase sequences are possible on cooling- 
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(a)I-N-SmA-SmC (see figure 6.4) 

(b)I-N-SmC 

(c)I-SmA-SmC 

(d)I-SmC 

Figure - 6.4. Experimental phase diagram for the homologous series of 

compounds 10OPEPOn (see structure d, section 6.3.2) plotted using 

data in reference [13]. TR =T/TNI where TNI is the N-I transition 

temperature. The solid lines are guides to the eye. 

Of these the I-N, I-SmA and I-SmC transitions have first order character and the 

N-SmC, the N-SmA and the SmA-SmC can have first or second order character. 

6.3.4 Effect of chain length and dipole moment of the molecules on the 

SmC-SmA phase transition 

When the temperature of the SmC liquid crystal is increased, usually the tilt angle 

 continuously decreases to zero as the SmC phase undergoes a second order 

transition to the SmA phase. There is no heat of transition but, the specific heat 

plotted as a function of temperature shows a strong peak in the SmC phase near the 

transition point and a negative jump on transition to the SmA phase. On the other 

hand, if the SmC phase undergoes a first order transition to the SmA phase, initially  

decreases continuously but abruptly jumps to zero at the transition point. There is a 

finite heat of transition and the peak in the specific heat is not as pronounced as at a 

second order SmC-SmA transition. We give below some examples to illustrate the 

effect of chain length of the molecules on the nature of the  transition and on the 

variation of  and specific heat with temperature. 
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Studies on TBnA (Terepthal-bis-n-alkyl aniline, see structure (b) in section 6.3.2 

above) show that [11] TBOA (O stands for -octyl i.e., n = 8) exhibits a 2
nd

 order 

SmA-SmC transition whereas the longer homologue TBDA (D stands for -decyl  i.e., 

n = 10) exhibits a 1
st
 order SmA-SmC transition. In a mixture of the two, as the 

concentration of the longer homologue (TBDA) is increased, the nature of the SmA-

SmC transition changes over from 2
nd

 order to 1
st
 order (see table 6.1) Further, the 

temperature range of the SmA phase decreases. 

Table 6.1. 

Material [11] SmA range in 
0
C Jump in 

TBOA 10.0 0 

10% of TBOA in TBDA 2.9 8.9
0 

TBDA 1.8 12.8
0 

Studies on pyrimidines (structure (c) in section 6.3.2 above) show that [12] as the 

chain length is increased, the heat of the 1
st
 order SmA-SmC transition increases and 

temperature range of the SmA phase decreases, if the end chains are symmetric (figure 

6.5). 

Studies [13] on the alkoxybenzoates (structure (d) in section 6.3.2 above) with 

symmetric and unsymmetric end chains shows that as the chain length is increased, 

the temperature variation of the tilt angle  becomes steeper in case of the 2
nd

 order 

SmA-SmC transition. 

Figure - 6.5. Variation of the heat of transition ( H) and the temperature 

range of SmA phase as the chain length increases for pyrimidines having 

symmetric end chains with n carbon atoms, plotted using values from 

reference [12]. The solid lines are guides to the eye. 
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Studies [14] on binary mixtures of  methyl-chloropentanoyloxy heptyloxy 

biphenyl (with strong dipole moment) and heptyloxy decyloxyybenzoate (with weak 

dipole moment) show that as the relative concentration of the strongly polar 

compound is increased, the temperature range of SmA decreases and the second order 

SmC-SmA transition changes to first order. As noted by Liu et al , [15] this can be 

interpreted as due to an increase in the effective molecular transverse dipole moment. 

In general, experiments clearly indicate that, as the chain length in a homologous 

series or the concentration of a longer homologue in a mixture is increased, the 

temperature variation of the tilt angle  becomes steeper in case of the 2
nd

 order 

SmA-SmC transition, the transition changes over to 1
st
 order (indicated by the jump in 

 at the transition) and then becomes a stronger 1
st
 order transition (indicated by the 

increase in the heat of transition). Also, the temperature range of the SmA phase 

decreases. The same trend is seen even when the magnitude of the transverse dipole 

moments of the constituent molecules is increased. 

6.4 Review of the theoretical work on SmC liquid crystals 

Many phenomenological theories have been developed for SmC liquid crystals to 

account for the tricritical behaviour of the SmC-SmA transition, the nature of the N-

SmA-SmC point etc. The experimental data on the temperature variations of the tilt 

angle  and the specific heat associated with the transition are often analysed in 

comparison with the phenomenological Landau theory to find the Landau coefficients 

and the critical exponents. There have also been many attempts to account for the 

molecular origin of the tilt in the SmC phase. In this chapter, we develop a molecular 

theory of SmC liquid crystals. Close to a second order SmC-SmA transition, the 

expression for free energy in our molecular theory of the SmC phase is reduced to a 

form analogous to that in the Landau theory. In the next sub section, we review the 

Landau theory of the SmC-SmA transition.  

6.4.1 Description of the SmC-SmA transition using the Landau theory 

As described in section 1.6 (chapter-1), the phenomenological Landau theory is 

based on the assumption that, close to a second order transition, the free energy can be 

expressed as a power series in the relevant order parameter(s). de Gennes proposed a 

Landau theory of SmC liquid crystals taking  as the order parameter. Normally, 
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terms with 
2
 and  

4
 are sufficient to explain the usual second order SmC-SmA 

transition.  However, Huang and Viner [16] found this to be inadequate for the 

analysis of the specific heat data of the SmC-SmA transition in some compounds. 

They extended the Landau theory and showed that a sixth order term in  is necessary 

for this purpose. This model is briefly described below. 

 The free energy of the SmC phase is written as 

F = F0 +  at
2
 + b

4
 + c  

6
    (6.3) 

where F0 is the free energy of the SmA phase,  a, b and c are positive constants for a 

second order transition, t = (T TCA)/TCA where TCA is the SmC-SmA transition 

temperature and  is the tilt angle which is the order parameter. Note that t is negative 

for T<TCA (SmC phase). Minimising F with respect to  gives 

 = 0,     T>TCA  (SmA phase)         

2
 = 

b

3c
 1 + 1  

3t

t0

1/2

 , T<TCA (SmC phase),  (6.4) 

where  

t0 = b
2
/ac.     (6.5) 

Substituting these in equation 6.3, and using the standard relation 

CP = T 
 
2
F

T 
2     (6.6) 

gives the following expressions for the heat capacity,  

CP = C0,                                 T>TCA  (SmA phase)   

CP = C0 +  
a

2
(1+t)

2bTCA (1  3t/t0)
1/2

 
 ,    T<TCA (SmC phase)            (6.7) 

where C0 is the background heat capacity obtained from F0.  

The jump in the specific heat at the SmC-SmA transition obtained by substituting 

T=TCA (and hence t = 0) in equation 6.7 is 

CP = CP C0 = 
a

2

2bTCA
.     (6.8)

At t = t0, equation 6.7 gives,  
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CP C0

T
  =  

a
2

4bTCA

2  =   
1

2
 

CP

TCA
           (6.9)    

Hence, the parameter t0, in the reduced temperature scale, represents the full 

width at half maximum of the (CP C0)/T  vs T curve.  

As shown in section 1.6.3 (chapter-1), with a positive coefficient for the sixth 

order term in the free energy expansion (c>0 in equation 6.3), the transition is first 

order in nature when the coefficient of the fourth order term is negative (b<0 in 

equation 6.3), while b>0 results in a second order transition and b = 0 represents the 

tricritical point at which the nature of the transition changes over from first order to 

second order. For a second order transition, if b>>c, then t0 is large (see equation 6.5). 

From equation 6.4, it can be seen that, close to the SmC-SmA transition, i.e., for |t| << 

t0, this results in a simple mean field behaviour, with 

  t
1/ 2

.            (6.10) 

The tricritical point is approached when the value of b is decreased. If b ~ c>0, then t0 

is small and even for temperatures close to the SmC-SmA transition |t| >> t0. From 

equation 6.4, it can be seen that, this results in a tricritical behaviour, with 

  t
1/ 4

.           (6.11) 

Thus, t0 also represents the cross over temperature from the mean field to the 

tricritical behaviour. 

6.4.2 Experimental determination of the Landau coefficients 

Since the value of t0 is crucial in deciding the tricritical behaviour of the SmC-

SmA transition, it has to be determined very accurately. The value of t0 can be 

independently obtained by fitting the tilt angle data to equation 6.4 or the heat 

capacity data to equation 6.7. The tilt angle measurement requires a well aligned 

sample. It is much easier to obtain high quality heat capacity data than high quality tilt 

angle data. Hence, the parameter t0 is measured from the heat capacity data. The tilt 

angle data is later used to find the other Landau coefficients. Usually, for a second 

order transition showing a simple mean field behaviour, c<<b, the coefficients of 

higher powers have still smaller values and t0 ~ 10
1 

[17]. Lien and Huang [16b], on 

analysing the experimental data on different compounds showing SmC-SmA 
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transition, found that a~10
3
, b~10

4
, c~10

3
 (all in J/mol) and t0 ~10

3
. As t0 is very 

small, the SmC-SmA transition is close to the tricritical behaviour which is described 

by a mean field model with an unusually large sixth order term in the free energy 

expansion.  

It is reported that the tilt angle data of a compound  showing a second order SmC-

SmA transition, when fitted to equation 6.4 gives [18] a fairly large value of t0 

(~10
1
). This compound shows a wide temperature range of the SmA phase (~60

0
C) 

and as expected from the above theory, the temperature variation of  is not steep 

(equation 6.10). 

In general, for a second order SmC-SmA transition, an increase of the value of c 

with respect to that of b shows that the tricritical point is being approached. As 

described above, this trend is associated with a decrease in the temperature range of 

the SmA phase for compounds exhibiting N-SmA-SmC and I-SmA-SmC sequences. 

These experimental results suggest a change in the nature of the SmC-SmA transition 

from second order to first order when approaching the N-SmA-SmC and I-SmA-SmC 

triple points [7b]. This has also been verified for one homologous series [11]. 

As mentioned in chapter-1 (section 1.6.3), studies on homologous series show 

that, the shorter homologues show a large temperature range of the N phase and a 

second order SmA-N transition. For longer homologues the temperature range of the 

N phase decreases and also the SmA-N transition changes over to first order. This 

tricritical behaviour of the N-SmA transition has been successfully explained on the 

basis of the Landau theory using a coupling between the orientational and the 

translational orders. A similar coupling between the translational and the tilt orders 

has been used [19] to explain the tricritical behaviour of the SmC-SmA transition. 

However, in reference [19], the order parameter is not the tilt angle  but it is a vector 

representing the extent of dipolar alignment due to freezing of molecular rotations 

about their long axes (see figure 6.6d in the next section). The phenomenological 

model [3] of SmC liquid crystal has been extended to SmC* liquid crystals including 

the chiral interactions. 

Chen and Lubensky [20] have not introduced the tilt angle as the order parameter. 

They extended the Landau- deGennes theory including a term with C , an elastic 

constant against tilting of the director with respect to the layer normal. C  <0 favours 
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the SmC phase. The model is useful in analysing the X-ray diffraction data. In the C  

vs temperature phase diagram, the model predicts a Lifshitz point at the N-SmA-SmC 

meeting point i.e., the second order N-SmA and the SmA-SmC transition lines meet 

the first order N-SmC transition line. C  and the heat of transition of the N-SmC 

transition vanish at the N-SmA-SmC point.  

The phenomenological models do not address the question of the molecular 

origin of tilt and hence are not considered here. In the next section we review some 

molecular theories which have been developed to account for the tilt in SmC liquid 

crystals. 

6.4.3 Earlier molecular mean field theories of SmC liquid crystals 

The nematic phase can be stabilised mainly by the hard rod packing effects at low 

densities in case of long rods (length to breadth ratio ~ 100). On the other hand, the 

anisotropic attractive interactions make a significant contribution to the orientational 

potential at high densities in the case of relatively short rods [3]. Indeed, a molecular 

theory of nematic liquid crystals developed by Maier and Saupe (MS) [21] 

successfully captures the qualitative features of the nematic-isotropic (N-I) transition, 

though it is based on the attractive intermolecular interactions only (see section 2.3, 

chapter-2 for a review of the theory). A quantitative comparison between theory and 

experiments requires the inclusion of the hard rod features of the molecules as well 

[3]. McMillan [22] extended the MS theory to the SmA liquid crystals (reviewed in 

section 3.2, chapter-3) by noting that the long alkyl chains at the two ends of the 

molecules favour the formation of layers, as the molecules then become polyphilic. 

However, his model does not restrict the tilt angle  to be zero, and excluded volume 

effects have been shown to favour the formation of SmA [23]. Subsequently it has 

been shown by computer simulation studies [24] that hard rod packing effects alone 

can stabilise the SmA phase. 

The molecular origin of the nonzero value of  in the SmC liquid crystal has 

been a subject of much discussion. As explained in the section 6.3.2, the common 

feature of all the compounds which exhibit the SmC phase is that their molecules have 

permanent dipolar groups with lateral components. Based on this observation, 

McMillan developed a molecular theory of the SmC liquid crystal. In view of some 
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limitations of this model, many other molecular models were developed later. These 

models are briefly reviewed in this section.  

The McMillan [25] model is based on the knowledge, at that time, that most 

compounds that exhibited the SmC phase had symmetric structures and dipole 

moments at the two ends of the central core structure. He considered compounds like 

di-alkoxyazoxybenzenes (similar to structure ‘a’ in section 6.3.2) which has three 

lateral dipoles. Lateral dipoles rigidly attached to the molecule on its central axis are 

considered, one at the molecular centre and the other two, called the outboard dipoles, 

placed above and below this at equal distances in the configuration shown in the 

figure 6.6a. 

Figure - 6.6. (a) Schematic diagram showing the molecule with three 

lateral dipoles as proposed by McMillan. When the central dipole is 

much weaker than the outboard dipoles, it results in the non 

ferroelectric SmC phase. Hence, the central dipole is not shown in the 

remaining figures used to explain the mechanism of tilt in the SmC 

phase. (b) shows the free rotation of the molecules in the SmA phase. 

(c)shows the arrangement with the molecular rotations frozen with the 

dipoles aligned. (d) shows the tilted structure of the aligned dipoles, 

resulting in the SmC phase. 

In the SmA phase, the molecules freely rotate about their long axes (figure 6.6b). 

The dipolar interactions tend to hinder the free rotation. Examining the dipole 

interactions in the mean field approximation, McMillan showed that, as the 

temperature is lowered, a transition can occur between the rotationally free to 

rotationally frozen states. This corresponds to the arrangement with the dipoles 

aligned (figure 6.6c). This creates a torque when the outboard dipoles have 

longitudinal components also. Hence, the molecules tilt to lower the energy of the 

oriented dipoles (figure 6.6d). If the central dipole is much weaker than the outboard 

dipoles, this results in the usual non ferroelectric SmC liquid crystals.  

SmA

SmC

(a) (b)

(d)
(c)
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A model predicting a rotational freezing based purely on steric factors was 

proposed by Wulf [26]. He assumed a zig-zag shape for the molecules, with the end 

chains obliquely aligned with respect to the molecular core. It is shown that, a 

freezing of free rotation about the molecular long axes associated with a tilted 

arrangement lowers the free energy due to packing requirements. 

Structural studies by Goodby et.al [27] show that terminal outboard dipoles, 

assumed in the McMillan model, are not essential for a SmC phase to exist. Both the 

McMillan and the Wulf models rely on the freezing of the molecular rotations in order 

to stabilise the SmC phase. NMR [28] and neutron scattering [29] measurements show 

that the molecules in the SmC phase are rotating about their long axes with an almost 

random orientational distribution, on a time scale of 10
11

s. Also, as noted by 

Goossens [30], in Wulf’s model, the molecular potential used has no zig-zagness in it 

and hence it is not consistent with the tilt mechanism proposed.  

Cabib and Benguigi [31] tried to overcome this problem by allowing the 

molecules to freely rotate about their long axes. They assume that the molecule has 

two opposite dipoles placed on the molecular long axis at equal distances from the 

geometric centre of the molecule. Due to random axial rotation, the perpendicular 

components are averaged out and only the two oppositely oriented axial components 

remain. When the medium has the nematic and the SmA order, the axial dipoles at the 

same level in the neighbouring molecules repel whereas those at different levels 

attract since they are oppositely oriented. Based on this, it is shown that a tilted 

structure lowers the energy. The model is not suitable since there are examples of 

compounds, whose molecules have only one central dipole, exhibiting the SmC liquid 

crystals [27]. Also, it is known that the lateral component of the dipole moment in the 

molecule is essential for the medium to exhibit the SmC phase as illustrated in section 

6.3.2. 

The molecular model widely referred to in the literature is the one proposed by 

Van der Meer and Vertogen. We briefly review this in the next section.   

6.4.3.1  Model proposed byVan der Meer and Vertogen 

Van der Meer and Vertogen [32] consider molecules freely rotating about their 

long axes. They argue that the permanent dipole in one molecule gives rise to an 

induced dipole in the neighbouring molecule. They assume the polarisability to be 
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concentrated at the centre of the molecule. The mutual alignment of the permanent 

and the induced dipoles creates the force responsible for tilting (figure 6.7) while the 

resistance to tilt has contributions from a combination of Van der Waal’s interactions 

and hard core repulsions. 

Figure - 6.7. Schematic representation of the induced dipole model 

showing the two possible dispositions treated with equal weightage [32]. 

They  conclude that a transverse dipole positioned at an optimum distance from 

the molecular centre results in a tilted structure. A change in the molecular structure 

like the extension of the terminal carbon chain is taken to be equivalent to a change in 

the relative position of the dipoles (induced and permanent).  

The model has the following drawbacks: 

 In the model, the tiling force arises mainly because the permanent dipole is 

acentral while the core has a central and point polarisability. However, most liquid 

crystalline compounds have aromatic cores with more than one phenyl ring having a 

distributed probability density of electrons. Hence, it is not reasonable to take the 

polarisability to be concentrated at a point on the core.  

 This model is not self consistent as shown by Goossens [30] since a steric 

contribution which has the same packing temperature ‘TP’ for both the smectic and 

nematic phases is used. 

 The number of parameters  used is at least 6, some of which are themselves 

functions of other molecular parameters like the polarisability, dipole moment etc.  

 Though a ‘nematic’ potential is used, the orientational order parameter is taken to 

be fixed at 0.8 in the smectic phases  and it cannot hence be a self-consistent 

calculation. They have made a constant nematic order parameter approximation 

which corresponds to temperatures much below TNI. As such, the SmC and SmA 

phases occur at temperatures well below the TNI. Hence, the SmC-I and the SmA-I 

transitions are not described. 

Permanent dipole 

Centre of 

Polarisability 
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 The proposed effective single particle potential is quite elaborate. However it does 

not simply go over to the usual McMillan potential when the tilt angle = 0. 

Though is the average tilt angle, there is no angular variable in the theory whose 

average is given by .  

 As Van der Meer and Vertogen discuss at the end of their paper, the model for 

SmA to SmC transition proposed by them is not of an order-disorder type. However, 

as we mentioned in section 6.4.1, the Landau theory  has been used to  

quantitatively  analyse both the  temperature dependences of the tilt angle as well 

as the specific heat  implying that the transition is indeed of the order-disorder type. 

Goossens [30] has critically reviewed in 1985 the above molecular theories as 

well as some similar ones and has shown that none of them is satisfactory. We briefly 

discuss some of the molecular models proposed after 1985 in the next section. 

6.4.3.2 Some recent molecular models of SmC liquid crystals 

Goossens [33] pointed out that the molecular quadrupoles can give rise to a tilting 

of molecules in smectic layers, though he did not calculate the relevant phase 

diagrams. Barbero and Durand [34] developed a Landau theory incorporating the 

influence of quadrupolar interactions. Sluckin et.al.[35] developed a molecular theory 

with quadrupolar interactions, but the authors themselves remark that the SmC phase 

is predicted to occur at higher temperatures compared to the SmA phase, which is 

contrary to experimental trends (see figures 6.4 and 6.5). Very recently, Giesselman 

et.al. [36] have  proposed a 2-D model analogous to ferroelectric to paraelectric 

transition and surprisingly they have assumed a perfect orientational order of rods, 

though the calculated distribution function depends on the tilt angle. Hu and Tao [37] 

have developed an elaborate model incorporating short range correlations, but found 

that the translational and orientational order parameters decrease in the lower 

temperature range of the SmC phase. 

6.4.3.3 General comments and motivation for developing a new model 

Based on the above review, we can make the following general comments: 
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 There is no satisfactory molecular theory of the SmC liquid crystal, even though a 

large number of experimental studies have been undertaken on the SmC and SmC* 

liquid crystals. 

 Since there are several liquid crystals with molecular tilt, it is important to 

understand the molecular origin of tilt in the SmC liquid crystal which is the 

simplest. 

 A proper molecular theory of the SmC liquid crystal, as Goossens [30] points out, 

must include the intrinsic biaxiality of the phase. Otherwise, the equations describe 

only a tilted SmA liquid crystal and not a SmC liquid crystal.  

 The molecular potential used should be actually derived form the tilt mechanism 

proposed, or if it is assumed, it should be consistent with the mechanism proposed. 

  is the tilt angle obtained as an average over an appropriate distribution function 

of the angles  and  subtended by the individual molecular long axes with respect 

to the cartesian coordinate axes (see figure 6.2). Hence, the assumption of a 

saturated nematic order makes the equations thermodynamically inconsistent, 

though it helps in simplifying the mathematical treatment. 

In the next section we propose a new mechanism for the tilting of the molecules 

in the SmC liquid crystals. 

6.5 New model for molecular tilting in SmC liquid crystals 

As explained in section 6.3.2, chemical studies have shown [27,38] that 

molecules having at least one dipolar group with a lateral component is essential for 

the formation of the SmC liquid crystal. Looking carefully at the molecular structures, 

it becomes clear that, in general, the centre of this dipole is not on the long axis of the 

molecule, but is slightly shifted away from it, i.e., off-axis by a distance  (see figure 

6.8a). We show that this off axis lateral electric dipole moment in the molecular core 

is the origin of the tilting in the SmC phase. 

6.5.1 Dipolar origin of tilt 

As the neighbouring molecules in a smectic layer freely rotate about their long 

axes, at a particular mutual orientation, the lateral dipoles face each other at close 

proximity. This contributes to a large repulsive energy especially when the molecular 
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centres are at the same z  coordinate (figure 6.8a). In the configuration shown in figure 

6.8b, the dipolar interaction is attractive. If the dipoles are on the molecular long axis, 

the average energy would be zero when both the molecules are allowed to freely 

rotate about their long axes. Since the dipoles are off axis, their separation in the 

configuration shown in figure 6.8a is less than that in figure 6.8b. Therefore the 

repulsive energy contribution is more than that of the attractive energy, leading to a 

net repulsive energy when averaged over molecular rotations. Hence, to lower the 

energy, the molecules tend to have a relative shift (dz ) along their long axes (figure 

6.8c). However, due to this shift, the attractive dispersion energy between the cores is 

reduced. We calculate the net interaction energy considering a pair of molecules in a 

smectic layer. We show that the average energy has a minimum when dz   0. 

Figure– 6.8. The proposed off-axis dipolar mechanism of tilt in smectic C 

layers. The repulsive energy of antiparallel configuration of dipoles (a) is 

much larger than the attractive energy of parallel configuration (b), 

resulting in a relative shift of the molecules (c). 

In the SmC phase, a tilt angle  with respect to the layer normal is equivalent to 

the near neighbour molecules having a relative shift dz  in the tilt plane as shown in 

figure 6.9. In fact, figure 6.9a is obtained by rotating figure 6.9b by an angle It 

would seem that the interaction energy can be lowered if the shift dz  occurs for all the 

neighbours of a given molecule. This is incompatible with the layering order, which is 

Z Z

 (a)  (b)

 (c)

 X

dz

a

Z  
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consistant with a tilt only in one plane containing the layer normal, as in the usual 

SmC liquid crystal.  

Figure- - 6.9. The mutual relative shift of molecules along Z  shown in (a) 

is equivalent to a tilting of the molecules in the layers with the layer 

normal along Z (b). 

We take into account the following factors in calculating the average 

intermolecular energy of near neighbours in a smectic layer:  

(i) The molecules are assumed to be cylindrical rods with off axis lateral dipoles 

and the rods are freely rotating about their long axes. The long axes are considered to 

be parallel, for the purpose of the present calculation. 

(ii) As the director is apolar, the molecules are allowed to flip about their short 

axes. This means that the near neighbour configurations with the a  vectors (see figure 

6.8a) parallel as well as antiparallel are equally probable.  

(iii) The molecules tilt only in one plane, and the relative shift is zero in a plane 

orthogonal to the tilt plane (see figure 6.10). 

(iv) The molecules also experience an attractive potential due to the dispersion 

interaction between the aromatic cores. This is 1/r
6
, r being the separation between 

Z

Z

dZ

X

ZZ

X
dZ

(b)

(a) 
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the molecular axes. This is taken to be proportional to the length of overlap [39] 

between the neighbours with a distributed polarisability . 

Figure – 6.10. While the averaging is done at different positions around 

a given molecule in a real smectic C layer, the Z -shift is maximum in 

one plane ( as for a and c along X) and zero in an orthogonal one ( as 

for b and d along Y). 

6.5.2 Dipole-dipole interaction energy 

The notations used are shown in figure 6.11. For a given tilt , or equivalently, 

for a shift dz , the interaction energy between the ‘point’ permanent dipoles of the two 

molecules (see figure 6.11) is given by, 

U( 1, 2, ) = 
1

 4 o
 

p1 p2

r
3    

3(p1 r12) (p2 r12)

r
5    (6.12) 

where, pi is the permanent electric dipole moment of the i
th

 molecule, a  the 

projection on the Z -axis of the position vector of the dipole with respect to the 

molecular centre, rij the position vector of the centre of dipole moment of j
th

 molecule 

with respect to that of i
th

 molecule, r = |rij |  and o is the absolute permittivity of free 

space. For calculating the average energy, it is convenient to define the following 

angles (see figure 6.11). i is the angle of pi with the X -axis,  the angle between the 

X -axis and the line joining the molecular centers and  the azimuthal angle with 

respect to the X -axis of the projection of the intermolecular vector on the X -Y plane. 
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Figure – 6.11. Geometrical parameters used in the calculations of the 

intermolecular energy in smectic-C layers. 

We consider the molecules to be parallel ( ) or antiparallel ( ) depending on the 

relative orientations of a  of the two molecules. The average dipolar interaction 

energy when both the parallel ( ) molecules are allowed to rotate about their long 

axes is given by,   

UP ( ) = 
1

4
2 

0

2

d 1 
0

2

d 2 f( 1, 2)UP ( 1, 2, )   (6.13) 

p 

a 
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where f( 1, 2) is an appropriate angular distribution function. In the SmC liquid 

crystal, it is known that the molecules are almost freely rotating about their long axes. 

For simplicity, we consider all values of 1 and 2 to be equally probable and take 

f( 1, 2) = 1 while finding the average. Obviously, considering the actual distribution 

function can only lower the minimum energy. Since the vectors a  of the near 

neighbours can be antiparallel at the same values of and , a similar average for 

UP ( ) can be defined as in equation 6.13. Including this, the average dipolar 

energy is, 

Up( ) = 
UP ( ) + UP  ( )

2
     (6.14) 

6.5.3 Dispersion interaction between the aromatic cores 

The dispersion energy between the aromatic cores depends on their 

polarisabilities. The aromatic cores usually consist of many phenyl rings with 

distributed probability density of electrons. Hence, it is reasonable to take the 

polarisability to be distributed over the length rather than being concentrated at a 

point on the core, and the dispersion energy depends only the overlapping length of 

the cores of the neighbours [39]. Therefore, the dispersion energy between the 

aromatic cores is written as, 

UD( ) =    
i j l h  

 
6     (6.15) 

where, i is the distributed polarisability of the i
th

 molecule, l is the fractional length 

of the core laterally overlapping with that of the neighbouring molecule, h is Planck’s 

constant,  is the frequency corresponding to the bond ionisation energy and  is the 

lateral separation between the long axes (see figure 6.11). Hence, for a given and  

the average interaction energy is  

U( ) = UP( ) + UD( ).   (6.16) 

6.5.4 Average over the different relative positions of the near neighbours 

in a SmC layer 

Within the smectic C layer, a given molecule is surrounded by a liquid like 

distribution of different near neighbours. All these relative positions corresponding to 
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different values of are not energetically equivalent since in the SmC liquid crystal 

the molecules tilt only in the Z-X plane. For the different positions of the 

neighbouring molecules around the given molecule, the relative Z -shift varies from 

(+dz ) to ( dz ) (see figure 6.10). This alters the overlapping length of the cores and 

hence the dispersion energy. Moreover, the separation of molecular centers is not the 

same in X and Y directions (see figures 6.10 and 6.11). We find the inlayer average 

(i.e., average over ), by assuming the lateral separation between the long axes (i.e., 

 in figure 6.11) to be constant. Since the inlayer distribution of the molecules is 

symmetric about the Z-X plane, it is enough to consider  varying between zero and 

. Hence, for a given , the total interaction energy is,  

U( ) = 
1
 

0

d  U( )    (6.17) 

where we have given equal weightage to all values of . 

6.5.5 Values of the parameters used in the calculation 

Again, for simplicity, the induced dipoles, the small contribution from chain-

chain and chain-core dispersion interactions are not included in the calculations. 

Obviously, considering these can only lower the minimum in energy. 

 The following reasonable values of the parameters are used (see figure 6.11): 

 p = 1.5 to 4 Debye (1D = 3.33 x 10
30

 C m). 

 core length = 12 Å (1Å = 10
10

 m). 

  = 5 Å. 

  = 2 Å. 

 a in the range 0 to 6 Å . 

 dz   in the range 0 to 12 Å, equivalent to = 0
0
  to about 70

0
. 

  = 10
15

 Hz, equivalent to  =300 nm; giving h / kBT =165.42 at 290K. 

Also, for p =1 D and r =1Å , p
2
/(4 0 r

3
) is nearly 25 kBT , at T = 290K, where kB 

is the Boltzman constant. 
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 For a concentrated polarisability  = 50 Å
3
 in equation 6.15 (with l = 1), we 

get UD/kBT = 26.47. But, empirical calculations of the interactions between two 

smectogenic (ethyl p-methoxybenzilidine aminocinnamate or MBACE) molecules by 

Sy and Ptak [40] show that the Van der Waals energy is only a few kBT for full lateral 

overlap of the parallel molecules. Also, at the N-I transition temperature, the Maier-

Saupe theory gives a value U/kBT = 4.541, which is the average dispersion energy 

due to many near neighbours. For only a pair of molecules, the energy can be 

expected to be smaller than this. We find that a distributed  =11 Å
3
 gives a 

reasonable value of UD/kBT = 1.28 for l = 1 in equation 6.15. We evaluate the 

integrals in equations (6.13) and (6.17) numerically using the 32 point Gaussian 

quadrature method in double precision.  

6.5.6 Variation of the average energy with respect to  

Taking into account all the factors mentioned above, the averaged interaction 

energy is calculated for different values of the tilt angle  in a smectic C layer. The 

averaged energy U( ) clearly shows a minimum for a well defined tilt angle  as 

shown in figure 6.12 for a =2Å and  = 2Å, p = 1.5 Debye. The contributions from 

UP , UP , and  UD after averaging over  are also separately shown. It can be seen 

that, for small values of , UP  is larger in magnitude than UP  as explained earlier 

(see figure 6.8). The minimum in UP  is lower than that of UP . This is because, 

when a1  and a2  are parallel, the dipoles attain the strongly repulsive configuration 

(figure 6.8a) twice during inlayer average (positions b and d having dz  = 0 in figure 

6.10) irrespective of the  value. On the other hand, for a1  and a2  antiparallel, the 

dipole of 2
nd

 molecule is below the molecular centre and contributes only an attractive 

energy even for dz  = 0. We denote the  corresponding to the minimum of U( ) as 

C. U( ) has a net minimum for C  21
0
 which implies that a tilted phase is 

preferred. Keeping the values of a and  the same as above, with p = 4 Debye we get a 

steeper minimum at C  28
0
. In general, the position and depth of the minimum 

depends on the number, positions and the strength of the dipoles. This is discussed in 

the next section.  
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 Figure – 6.12. The different contributions to the averaged energy U( ), 

as a function of  for a =2Å,  = 2Å and p = 1.5 Debye. The thin 

horizontal line corresponds to U( ) = 0.

6.5.7 Influence of the location and the number of dipoles on U(  

We have extended our calculation to show the influence of changing the location 

of a single dipole on U( (figure 6.13). For a = 0, U( ) has only one minimum at C 

 24
0
 due to symmetry in UP  and  UP . But, for a  0, U( ) can have two minima. 

For values of a up to about 0.7Å, the 2
nd

 minimum is lower and leads to large values 

of C. As can be seen from figure 6.13, C (second minimum) increases a little when 

a is increased from 0Å to about 0.7Å. The two minima become equal when a  0.7Å 

and C jumps from 27.7
0
 to 12.4

0
 (figure 6.14). For larger values of a, the 1

st
 

minimum is lower. C increases again till a  2Å and if a is increased beyond 2Å, C 

decreases a little (from 21
0 

 to 20
0
 when a is increased from 2Å to 6Å, see figure 6.14). 

Calculations with p = 4D show that C decreases from 31
0
 to 29

0
 when a is varied 

from 3.5Å to 6Å. Hence, we can conclude that, if there is only a single dipole, its 

location does not change  significantly, unless it is located close to the molecular 

centre.  
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Figure – 6.13. Variation of U( ) as a function of  for different values 

of a with  = 2Å, p = 1.5 Debye.  

Figure – 6.14. The variation of C for different values of a with  = 2Å,  

p = 1.5 Debye. 
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The influence of the relative location of the dipoles becomes significant when 

there are two dipoles as discussed below. 

Several hundred compounds exhibiting liquid crystals with tilted molecules (SmC 

and SmC*) have been synthesised so far. Usually  the molecules have several dipoles 

with various relative orientations and locations. We have studied the dependence of 

the averaged interaction energy on the number and the relative locations of the dipoles 

in the molecules. We consider two parallel dipoles at distances a1 and a2 from the 

molecular centre. Two equal dipoles symmetrically placed above and below the 

molecular centre results in a single minimum of U( ) with respect to and this is 

equivalent to a single dipole of double strength at a = 0. When the two dipoles are 

unequal in magnitude and/or unsymmetrically placed with respect to the molecular 

centre, in general, U( ) has four local minima with respect to , of which one 

(usually the first or the second) is the deepest. Of the two dipoles, if one is near the 

centre (p1 =1.5D, a1 = 0,  = 2Å) and if a2 of the other is varied from 2Å to 5Å (p2 

=1.5D,  = 2Å), C increases from 15
0
 to 30

0
 and if p2 = 1.5D, C increases from 

25
0
 to 45

0
.
 
When two antiparallel dipoles (p1 = p2) are symmetrically placed above 

and below the molecular centre (a1 = a2 and on the same side i.e.,  = ), the net 

effect is p = 0 at the centre, resulting in lowest U( ) for  = 0 due to the contribution 

from dispersion energy only.  

For a  0, as mentioned above, U( ) has two minima in case of a single dipole 

and can in general have four local minima in case of two dipoles. Our calculations 

also show that in some cases there can be two equal energy minima with respect to . 

For example, as mentioned earlier, in case of a single dipole of strength 1.5 D, the two 

minima are equal for a  0.7Å. For p = 4D, they are equal at a  1.1Å. In case of two 

antiparallel dipoles on the same side of the molecule ( p1 = p2 = 1.5D, 1 = 2 = 2Å), 

the two minima with respect to  become equal when a1=0 and a2 = 6Å. This suggests 

the possibility of a first order SmC to SmC transition involving a jump in . 

However, we have not come across any experimental observation in support of this. 
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6.5.8 Comparison with the experimental results 

In many smectogenic compounds the molecules have two alkoxy end groups 

(with opposite lateral components of dipole moments) with or without a central 

dipole, as assumed by McMillan (figure 6.15). 

 Figure - 6.15.  The structural formula and the corresponding model used 

in our calculations of interaction energy for (a) di-alkoxyazobenzene and 

(b) di-alkoxyazoxybenzene. The lines with solid arrow head indicate the 

dipole moments, ‘R’ represents an alkyl chain, O and N represent oxygen 

and nitrogen atoms respectively. The carbon and hydrogen atoms are not 

shown. a and  define the position of the point dipole. 

Synthetically, a continuous variation of a is difficult since the dipoles are usually 

attached to the terminal phenyl rings. A systematic study of this kind is not available 

for a specific comparison with our results with the variation of a. However, in case of 

azobenzenes [8], the influence of adding one or more dipolar groups has been 

specifically studied. We consider this for a comparison with the results of our 

calculations. The models for the molecular structures, used in our calculations of 

interaction energy are shown in figure 6.15. The results of the calculations are shown 

in figure 6.16. We compare the experimental and the calculated results in table 6.2. 

Experimental studies indicate that [10], the stability of the SmC phase depends 

strongly on the structure of the constituent molecules. In general, molecules with 

stronger dipoles lead to SmC liquid crystals with larger  and adding a terminal 

dipole increases the stability of the SmC phase. It can be seen that the theoretical 
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trends reflect the experimental ones and the origin of tilt due to the off-axis lateral 

dipoles appears to be reasonable.  

Table 6.2 

Experimental observations 

[8,9] 

Results of our calculation 

1. Non-polar dialkyl azo 

benzenes do not exhibit the 

SmC phase 

For p = 0, U( ) is lowest for  = 0 due to the 

contribution from dispersion energy only ( UD 

in figure 6.12). 

2. Replacement of one alkyl 

group by the polar alkoxy 

group gives rise to both 

SmA and SmC phases 

If there is only one dipole of strength 1.5 

Debye at a = 5Å and  = 2Å, there is a broad 

minimum at   19
0
 (figure 6.16a). 

3. Replacement of both the 

alkyl groups by alkoxy 

groups gives rise to SmC 

and N phases 

If there are two equal and opposite dipoles (at a 

= 5Å,  = 2Å and a = -5Å and  = -2Å, figure 

6.15a), there is a sharper minimum at 27
0
 

(figure 6.16b). 

4. Dialkoxyazoxy compounds 

exhibit N and SmC with a 

large value of  

A third dipole of strength 2 Debye near the 

molecular centre (at a = 0,  = 2Å, figure 

6.15b) gives rise to an even sharper minimum 

at  = 34
0
, in addition to a higher minimum at 

 = 58
0
 (figure 6.16c). 

 

The above discussion shows that the value of C and also the shape of the curve 

representing the variation of U( ) with respect to  depend on the relative positions 

and the orientations of the dipoles. Hence, the general form of the tilting potential 

depends on the detailed molecular structure. We propose a simple single particle 

potential to broadly represent the general form of the variation of U( ) with respect to 

shown in figure 6.16. This is used to develop a mean field theory of the SmC liquid 

crystals in the next section. 
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Figure – 6.16.The interaction energy U/kBT with T=290K is plotted as a 

function of tilt angle in degrees. (a) single dipole, 1.5D, at a = 5Å, = 2Å  

(b) two opposite dipoles 1.5D each, one at a =+5Å, =+ 2Å and the other 

at a = – 5Å, = – 2Å,   (c) three dipoles, two as in (b) and one more of 2D 

at a =0 and =2Å. Note that the net energy at the minimum is always 

negative. 

6.6 Mean field theory of the SmC liquid crystal 

6.6.1 The tilting potential 

We propose a single particle tilting potential UC considering the following points: 

1. The molecular tilting is relevant only in the presence of a layering order i.e.,when 

 0. As the sign of  depends only on the choice of origin (see figures 6.8 and 

6.9), by symmetry, the tilting potential should depend on 
2
. Hence,  
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UC    
2
.     (6.18) 

2. The calculations shown in figure 6.16 indicate that the strength and the number of 

minima of the tilting potential depend on the detailed molecular structure. We can 

write,  

UC ( i  )  - 
n
 n sin 2n i    (6.19) 

where n  would depend on the strength and the geometrical arrangement of the 

dipoles in the molecules. 

3. The above calculations have been made for molecules with perfect orientational 

order (S=1) for the sake of simplicity. In reality, S 1 and hence the angles  and  

subtended by the individual molecular long axes with respect to the cartesian 

coordinate axes (see figure 6.2) vary according to an appropriate distribution 

function. Hence, UC is coupled to S. Since the coupling of UC with has been 

taken into account, and  is coupled to S as in the McMillan model for SmA 

phase, we do not consider the direct coupling of UC with S.  

4. The SmC medium is biaxial as described in section 6.2.3. Hence, the tilting 

potential depends on . This can be incorporated by writing,  

UC ( i )  cos i.    (6.20) 

5. As usual in any mean field theory, the single particle potential depends on the 

extent of the relevant order in the medium. If  is the SmC order parameter, we 

can write,  

UC .           (6.21) 

In view of these, a general single particle  tilting potential which is consistent 

with the biaxial symmetry of the medium can be  written as:  

UC ( i , i  )  -  
n
 n  n  

2
 sin 2n i  cos i   (6.22) 

where n  would depend on the strength and the geometrical arrangement of the 

dipoles in the molecules,  = <cos(2 z/d )> is the translational order parameter with z 

the position of the molecular centre along the layer normal ẑ and d the layer spacing, 

the smectic C order parameter n  = <sin 2n cos  > with i and i the polar and 

azimuthal angles of the long axis of the i
th

 molecule with respect to the coordinate 



Chapter-6 -193- 

axes (see figure 6.2). For the sake of simplicity, we restrict the calculation to n = 1, 

which favours a maximum tilt angle of 45
0
. The effect of taking into account n =2 will 

be discussed later (see section 6.8.1). 

This potential has to be added to the layering potential which is effective even in 

the absence of a tilt. 

6.6.2 The layering potential 

We have already introduced in chapter-3 (section 3.2), the McMillan theory of 

the SmA liquid crystals based on a layering potential. As described in chapter-3 

(section 3.4.1.2), following Katriel and Kventsel [41], the decoupled form of the 

McMillan potential is,  

UM ( i , zi  ) =   -Uo [1+  cos(2 zi /d)] S ( 3 cos
2 

i 1)/2  (6.23) 

where the nematic order parameter S = <3cos
2

 -1>/2,  being the angle between the 

long axis of the molecule and n
^
, Uo = 4.541kB TNI, the strength of orienting (MS) 

potential expressed in terms of the N-I transition temperature TNI (see chapter-2, 

section 2.3) and the Boltzmann constant kB. The McMillan parameter  

=2exp[-( ro/d)
2
]     (6.23a)  

is a measure of the strength of the layering potential, ro/d being the ratio of the length 

of the core to the layer spacing. For simplicity we assume that the core and chain tilt 

by the same angle in the SmC liquid crystal and hence the value of   is taken to be 

independent of tilt. However, it is often mentioned in the literature that the tilt angle 

of the core is more than that of the chain and the calculations including this effect are 

discussed later (see section 6.8.2).  

The theory based on equation (6.23) however does not specify the relative 

orientation between the director and the layer normal and all ‘tilted’ smectic A 

configurations have the same energy. The smectic A phase is favoured due to 

excluded volume effects. In chapter-5, we considered the excluded volume effects in 

our calculations with a saturated orientational order but the effect of tilting was not 

included. In the previous chapters, our interest was only in describing the SmA-N 

transition and the variation of excluded volume with respect to tilt was not important. 

In developing a model for the SmC liquid crystals, it is necessary to include the 
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excluded volume effect depending on the tilt, which ensures that the SmA phase can 

also be stable. 

6.6.3 Excluded volume contribution to stability against tilt  

To demonstrate the effect of tilting on the excluded volume, we consider 

elongated right circular cylinders. When the cylinders are in the SmA layer with the 

long axes along the layer normal, the excluded area is  

AA = 4 R
2 
     (6.24) 

where R is the radius of cross section of the cylinders. When the axes of the cylinders 

are tilted at a small angle  with respect to the layer normal, as in the SmC layer, the 

excluded area is increased to 

AC = 4 R
2
/cos        

       = 4 R
2
(1 sin

2
)

1/2
 

 AA [1 + (sin
2

)/2]               (6.25) 

where the higher powers of sin  are ignored. Hence, the increase in the excluded area 

can be written as  

A  sin
2
          (6.26) 

In hard rod models, the increase in the free energy due to hard core interaction is 

proportional to the excluded volume, which in this case is proportional to A.As we 

argued earlier (see section 6.6.1), molecular tilt has significance only in presence of a 

layering order and the tilting potential varies as 
2
. Therefore the relevant 

contribution of the hard core interaction to the free energy is written as 

 Fhr  kB T  
2
 sin

2
 .      (6.27) 

Fhr is entropic in origin and has a positive sign.  

Goossens [33, 23] has made an elaborate calculation of the excluded volume 

effects for ellipsoids, and has shown that, neglecting the higher powers of sin , the 

contribution of the hard core interaction to the free energy can be written as 

 VSmA( )  = A(S)  
2
 sin

2
 .      (6.28)



Chapter-6 -195- 

where A(S)>0 is a function of the orientational order having the dimensions of energy 

and the brackets   denote the thermal average. Goossens [23] has calculated A(S) 

for ellipsoids of different eccentricities assuming S = 0.7. Using the equations given in 

reference [23], we can show that the value of A(S) changes only by 50% when S is 

changed from 0.7 to 0.8 for a/b =2, while it changes by an order of magnitude when 

a/b is changed from 1.5 to 2 for S =0.7, where a and b are the lengths of the major and 

minor axes of the ellipsoid representing the molecule. In view of this, we ignore the 

dependence of A(S) on S and write,  

Fhr =  kB T  
2
 sin

2
 .      (6.29) 

where   >0 is a parameter depending on the dimensions of the ellipsoid. 

We now adopt the technique developed by Katriel and Kventsel [41] to propose a 

mean field theory of the smectic C liquid crystal. 

6.6.4 Molar internal energy 

Using the single particle potentials UC and UM given above, the molar internal 

energy is written as: 

 U = - (N/2) Uo (1+ 
2
 ) S

2
 - (N/2) Uo  

2 2
    (6.30) 

where N is the Avogadro number, and the factor (1/2) arises from the fact that 

each intermolecular energy is counted twice in the averaging process. Note that Uo 

represents the strength of the orienting potential, Uo   the strength of the layering 

potential of the orientationally ordered molecules and Uo  the strength of the tilting 

potential of the molecules having layering order. 

6.6.5 Entropy 

The molar entropy is 

S = -NkB 
1

2 d
-1

+1

dcos  

0

d

-d/2

+d/2

dz f lnf +  
2
 sin

2
 .    (6.31) 

in which the first term arises from the single particle distribution function  f ( ,  ,z)  

and the second term is the hard rod contribution given in equation (6.29). 
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6.6.6 Molar Helmholtz free energy and the order parameters 

The molar Helmholtz free energy is given by 

F =U-TS.      (6.32) 

The free energy is now minimised with respect to f ( ,  ,z ) by a variational 

procedure to get 

 f = Z-
1
 exp {(Uo /kB T)[( 1 + 

2  
) S ( 3 cos

2 
  - 1)/2 +   

2
 sin 2  cos 

 [(Uo /kB T)  (S
2
 +  

 2  
) - 2  sin

2
 ]  cos(2 z/d )}       (6.33) 

where Z is the normalising integral, and the last term involving  sin
2
   is clearly 

athermal in origin. It can be verified that the entropy calculated using S = ( F/ T)V 

is the same as that given by equation 6.31. As the nematic director makes a tilt angle 

  with the layer normal in the Z-X plane, 

cos  = cos  cos  + sin  sin  cos (6.34)  

The order parameters, obtained as the averages over the distribution function are 

S = 
1

2 d
-1

+1

dcos  

0

d

-d/2

+d/2

dz f .( 3 cos
2 

 1)/2,  (6.35) 

 = 
1

2 d
-1

+1

dcos  

0

d

-d/2

+d/2

dz f .cos(2 z/d ),   (6.36) 

  = 
1

2 d
-1

+1

dcos  

0

d

-d/2

+d/2

dz f .sin 2 cos   (6.37) 

These self-consistency equations also minimise the free energy. 

6.6.7 The parameters of the model and their values 

The parameters of the model are Uo, ,  and . As explained in chapter-2, the 

value of Uo fixes TNI and is irrelevant since temperatures are expressed as reduced 

temperatures TR=T/TNI. Hence, the independent parameters are ,  and . The value 

of the McMillan parameter  can vary between zero and 2. The value of ( ) is 

estimated using the calculated interaction energy minima in section 6.5 (see figure 

6.16). The calculations in section 6.5 correspond to the medium having perfect order. 
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With  =  = 1 in equation 6.30, the contribution of the internal energy per molecule 

from the tilting potential is  

UT/kB T = Uo /(2kB T).   (6.38) 

Using the Maier Saupe value, we have (Uo /kB T) = 4.541/TR, and with UT = U( ) 

we get, 

( ) = [U( )/kB T](2TR/4.541).   (6.39) 

Taking the maximum TR 1.5, and lowest minimum in U( )  2 kB T, the 

maximum value of ( ) 1.5 and the minimum value of ( ) is obviously zero. 

Values of the function A(S) are given in ref. [23] up to a/b = 1.5, where a and b are the 

lengths of the major and minor axes of the ellipsoid representing the molecule. We 

extrapolate these values to find A(S) for a/b > 1.5. The value of  is then estimated 

using the equations 6.28 and 6.29. As mentioned earlier, the value of  has a strong 

dependence on the ratio a/b. We get,  ~1 for a/b = 1.5,  ~10 for a/b = 2 while  ~400 

for a/b = 3. 

6.6.8 Method of calculation 

In our model,   is the order parameter for the SmC phase. But  which is the 

average of the tilt angles  of individual molecules, is measured in experiments (see 

section 6.3).  explicitly appears in our model in equation 6.34. As such, the free 

energy depends on , we minimise F with respect to  also. This is done as follows. 

For a set of values of TR, ,  and  some value of   is assumed in the smectic C 

phase, and S,  and  are evaluated satisfying the self consistency of the equations 

6.35-37 and F is calculated using equation 6.32. The procedure is repeated for 

different values of  to find the free energy minimum with respect to . The 

necessary integrals are evaluated using a 32-point Gaussian qudrature technique under 

double precision. As can be expected, the variation of  follows closely that of . For 

Small values of , one can expect  ( /2) radian (see equation 6.37). The solutions 

corresponding to the different phases are: 

(a) isotropic:  =  =S= 0 ;                     (b) nematic:  =  = 0, S  0; 

(c) smectic A:  = 0,   0, S  0 and      (d) smectic C:   0,   0, S  0. 
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The stable phase corresponds to the one which gives the lowest free energy.  

6.7 Results and discussion 

6.7.1 Typical phase diagrams 

The calculated phase diagrams as functions of  and  are shown in figure 6.17 

for  =3. The SmC-SmA transition is second ordered in nature. As  is increased, the 

SmA range decreases to zero, giving rise to a first order SmC-N transition (figure 

6.17a). As explained in chapter-3, an increase of the McMillan parameter  

corresponds to an increase of chain length in a homologous series or an increase of the 

concentration of the longer homologue in a binary mixture. The trend shown in figure 

6.17a agrees with that seen in experiments on homologous series (see figure 6.4 and 

6.5) or mixtures [42]. There is a small change of slope between the N-SmA and N-

SmC transition lines (not clearly seen in the figure 6.17a). An increase of  alone 

corresponds to an increase of tilting potential without changing the chain length. As 

discussed in our illustrative calculations of dipolar interactions (section 6.5.7), this 

increase can be the result of changing the number and/or the relative locations of the 

dipoles. It is known that [8, 9] the addition of an extra dipole to the molecular 

structure changes the N-SmA-SmC phase sequence to N-SmC sequence (see section 

6.5.8 for details). This trend is seen as  is increased in figure 6.17b.  

 Figure – 6.17. Calculated phase diagrams for  = 3, (a) as a function of 

with = 0.42 and (b) as a function of  with  =0.95. The dashed line 

indicates a second order transition and the solid line indicates a first 

order transition. The jump in  at the first order SmC-N transition 

decreases to zero as the N-SmA-SmC point is reached. 
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6.7.2 Variation of order parameters and specific heat with temperature 

The phase diagram obtained for  = 0.4, and  =3 is similar to that shown in 

figure 6.17a. In this range of parameters, for  = 0.95, the SmC-N transition is first 

ordered in nature. As the N-SmA-SmC meeting point is approached, the jump in 

(and  ) across the SmC-N transition reduces to zero. The SmA-SmC transition is 

second ordered in nature, with the relevant order parameter  increasing from 0 as the 

temperature is lowered from TAC. The calculated tilt angle  also shows a similar 

trend (Figure 6.18a). Note that only the tilt angle  is measured in experiments [10] 

and not the order parameter . We have also numerically estimated the specific heat at 

constant volume (CV) close to the SmA-SmC transition point using the internal energy 

versus temperature plot. The calculated jump in CV across the SmC-SmA transition is 

shown in figure 6.18b. CV is of the same order of magnitude as that obtained in 

experiments [43] for CP. 

Figure – 6.18. (a) Temperature variations of the order parameters S, ,  

and the tilt angle  for  = 0.95,  = 0.4 and  = 3.(b) Jump in the specific 

heat at constant volume CV expressed in terms of the universal gas 

constant R, across the SmC-SmA transition point shown in (a). 

6.7.3 Tricritical behaviour 

As already explained in chapter-3, when  is increased, the nature of SmA-N 

transition changes from 2
nd

 order to 1
st
 order (tricritical behaviour). For the SmA-N 

transition, the tricritical point (t.c.p) is at  = 0.5112 and at TR = 0.7034 [41]. In the 

present calculations, we get a tricritical behaviour of the SmC-SmA transition for =1 
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and  = 5 (t.c.p at  = 0.521 and TR = 0.700852). The TR-  phase diagram containing 

both the SmA-N as well as SmC-SmA tricritical points is shown in figure 6.19a. 

When the value of  is increased to 1.2 and  to 12, the SmC-SmA t.c.p appears at a 

higher value of  (t.c.p at  = 0.77 and at TR = 0.83441). On increasing the values of 

 and  further, the SmC-SmA t.c.p appears at a still higher value of  (with  = 1.45 

and  = 50, t.c.p at  = 1.09 and at TR = 0.97309, see figure 6.19b). Larger values of  

corresponds to molecules having larger length to width ratios, as explained in section 

6.6.7.  

Figure - 6.19. Phase diagrams as functions of  for (a)  = 1,  = 5 and 

(b)  = 1.45,  = 50. The dashed lines indicate second order transitions. 

The tricritical points are shown by filled circles.

The SmA temperature range decreases when  is increased. This trend is seen in 

the experiments [11], as already described in section 6.3.4 (see table 6.1).  

As the SmA-SmC t.c.p is approached, the calculated temperature variation of  

becomes steeper (figure 6.20). As discussed in section 6.4.1, the experimental results 

are often analysed using the Landau free energy density 

FC = a (T - TAC)/TAC  
2
 + b

4
 + c  

6
   (6.40) 

with a relatively large c-coefficient. Our expression for the free energy can not be 

directly expanded in this form since all the terms in the expansion of the exponential 

function in equation 6.33 contribute to different powers of . Hence, we have 

numerically fitted the calculated F and  values to this functional form for 

temperatures T /TAC > 0.98 to find b/a and c/a. As the SmA-SmC t.c.p is approached, 

the coefficient c becomes relatively large compared to b and hence the value of to (see 
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equation 6.5) decreases. Also the jump in the specific heat across the transition point 

increases. Some values showing this trend are given in table 6.3 for  = 1 and  = 5 ( 

SmA-SmC t.c.p at  = 0.521 and TR = 0.700852, see figure 6.19a). A similar trend is 

also seen experimentally. A detailed study on various compounds by Huang and Lien 

[44a] showing this trend is summarised in table 6.4. Experimentally a value of t0 as 

small as 10
–5

 has been found in a compound [44b]. 

Figure – 6.20. Diagram showing the temperature variation of  

becoming steeper as the SmA-SmC t.c.p in figure 6.19a is approached. 

Table 6.3. Various parameters close to t.c.p, calculated theoretically. 

  at     

TCA T = 4
0
C 

b/a c/a SmA range  

1–(TCA/TAN) 

 t0     

=b
2
/(ac) 

CV/R

0.4 7.4
0 

0.27 1.3 0.046 5.6 10
–2 7 

0.45 9.2
0 

0.15 1.26 0.032 1.8 10
–2

 15 

0.48 10.7
0 

0.06 1.2 0.024 3 10
–3

 29 

0.5 11.8
0 

0.03 1 0.0185 9 10
–4

 49 

0.52 12.8
0 

0.0025 0.3 0.013 2.1 10
–5

 186 

The second column gives  at TR = 0.99TCA/TNI , i.e., at TCA– T = 4
0
C 

taking TCA 400K. Note the decrease in the value of t0 and the increase in 

the specific heat jump as the t.c.p is approached. 
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Table 6.4. Experimental values [45] close to t.c.p. 

Compound SmA range    

1–(TCA/TAN) 

t0 10
3 

C 

J/molK 

2M4P9OBE 0.077 5.5 134 

7O.7 0.034 2.8 123 

7O.4 0.027 0.8 400 

2M45OBC 0.062* 3.9 124 

DOBAMBC 0.058* 3.2 125 

7O.6 0.029* 1.6 258 

Experimental values showing the decrease in the value of t0 and the 

increase in the specific heat jump C as the t.c.p is approached. The 

values with an asterisk correspond to 1–(TCA/TAI). 

 Our calculations show that the t.c.p can also be approached by increasing  

alone. With  = 0.521 and  = 5, the SmC-SmA transition is second ordered in nature 

for  <1 and changes to first order at  = 1. An increase of  corresponds to an 

increase of the strength of the dipole moments of the constituent molecules. This trend 

is seen in binary mixtures of compounds, one with weak and the other strong dipole 

moments [14]. As the relative concentration of the strongly polar compound is 

increased, the temperature range of SmA decreases and the second order SmC-SmA 

transition changes to first order. As noted by Liu et al, [15] this can be interpreted as 

due to an increase in the effective molecular transverse dipole moment. 

6.7.4 Effect of variation of  

The value of  determines the stability of the layers against molecular tilt (see 

section 6.6.3). The TR-  phase diagram for  = 0.9,  = 0.4 is shown in figure 6.21. As 

 increases, the SmA phase becomes more stable than the SmC phase and the SmA 

range increases.  

When  is small, i.e., when the length to breadth ratio of the molecules is small 

(see section 6.6.7), even at large values of  and relatively small values of  the SmC 

phase is stabilised. In this case, the SmC phase can undergo a strong first order 
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transition to the nematic phase. The tilt angle in such a smectic C is quite large (~40
0
), 

and hardly varies with temperature as shown in figure 6.22 for  = 0.97,  = 0.1, 

=0.15. These trends are known in the literature [45]. 

Figure – 6.21. Calculated phase diagram as a function of  for  = 0.9, 

= 0.4. The dashed line indicates a second order SmC-SmA transition.  

 Figure – 6.22.Temperature variation of  at a strong first order SmC-N 

transition for  = 0.97,  = 0.1,  = 0.15. 

Some other types of phase diagrams are obtained when the parameters of the 

model are varied. These are discussed in the next section. 
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6.7.5 Other possible phase diagrams  

For  = 0.495 and  = 2, we get a phase diagram showing the N-SmA-SmC 

meeting point at  = 0.5112 and at TR = 0.7034 (figure 6.23) where the second order 

SmC-SmA and SmA-N transition lines meet the first order SmC-N transition line. As 

the value of  is decreased towards the N-SmA-SmC point, the first order character of 

the SmC-N transition becomes weaker and finally it becomes second ordered at the 

meeting point. Such a point is called a Lifshitz point [46].This behaviour is seen in an 

experiment [47] on the binary mixture of pentyloxyphenyl octyloxy benzoate (5
–
 O 8

–
) 

and its higher homologue 6
–
 O 8

–
, as the concentration of the longer homologue is 

decreased. Note that a decrease in the concentration of the longer homologue in a 

binary mixture is equivalent to a decrease in the value of  in our model. Also, this 

behaviour is predicted by the phenomenological model of Chen and Lubensky  [20]. 

Precise measurements on several binary mixtures [48] and high pressure studies on a 

single component system [49] show that the N-SmA-SmC meeting point is a 

multicritical point with a universal topology. A theoretical description of this topology 

would involve the consideration of the fluctuations in the relevant order parameters. 

This is beyond the scope of our molecular mean field theory.  

Figure – 6.23. Calculated phase diagram for  = 2 and  = 0.495, showing  

the second order SmC-SmA and SmA-N transition lines meeting the first 

order SmC-N transition line at  = 0.5112. The meeting point is shown by 

a filled circle and the second order phase transitions are shown by 

dashed lines.  
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When the value of  is increased to 0.499995 with  = 2, the SmC-N transition 

becomes second ordered in nature for  < 0.510275 (as will be discussed later). With 

these values for  and , when the value of  is further decreased, we get the N-SmA-

SmC point at  = 0.502 and TR = 0.696839 where the three second order transition 

lines meet. The SmC-SmA and the SmA-N transition lines are rather close by and the 

range of SmA is very much smaller than that in figure 6.23 and can not be 

conveniently shown in a diagram. We have not come across any experimental study 

of this type of a meeting point.  

6.7.6 SmC-SmC transition 

As mentioned in the previous section, the first order SmC-N transition becomes 

second ordered in nature at  = 0.510275 and TR = 0.702738, with  =0.499995 and 

= 2.  A very unusual behaviour is seen when  is slightly lower. For a very narrow 

range of values of 0.510275, as the temperature is decreased across TCN, initially  

continuously increases from zero, but jumps to a higher value below some 

temperature i.e., we get a first order SmC-SmC transition (see figure 6.24).  

Figure – 6.24. Diagram showing a jump in  at a SmC-SmC transition 

for  = 0.5100,  =0.499995 and = 2.  

The SmC-SmC transition occurs at a temperature which is only a few millikelvin 

below the second order SmC-N transition. The transition becomes weaker as  is 

decreased and finally ends in a critical point (at  = 0.50986 and TR = 0.702442) at 

which the jump in  becomes zero. The phase diagram with the SmC-SmC transition 
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line ending in a critical point is shown in figure 6.25a and the corresponding variation 

of   with  is shown in figure 6.25b. We have not come across any experimental 

observation in support of the SmC-SmC transition. However, in SmC* liquid crystals 

an electric field induced first order SmC - SmC transition has been observed [50]. In 

SmA liquid crystals composed of chiral molecules, a tilt angle can be induced by an 

external electric field (electroclinic effect) and a large electric field unwinds the helix 

in SmC* liquid crystals. Experimentally, a first order transition between these two 

‘SmC’ phases ending in a critical point as a function of electric field has been 

investigated [50]. A discussion of this type of transition is beyond the scope of our 

theory. 

Figure – 6.25. (a) Calculated phase diagram for  =0.499995 and = 2, showing 

the first order SmC-SmC transition line ending in a critical point (shown by a 

filled circle). The dashed line indicates a second order SmC-N transition. The 

calculated variation in  corresponding to the SmC-SmC and the SmC-N 

transitions is shown in (b). Note that for <0.510275, there are two values of  

indicating a jump in at the SmC-SmC transition. Above this value of ,  

jumps to zero at the first ordered SmC-N transition. The hollow circle in both 

(a) and (b) corresponds to the point where the SmC-SmC transition line 

branches off.

6.8 Some extensions of the model 

6.8.1 Inclusion of a higher order term in the tilting potential 

For simplicity we have carried out the above calculations restricting n to 1 in the 

general form of the potential written in equation 6.22 and this favours a maximum tilt 

angle of 45
0
. It is known in a few cases [3] that the maximum tilt angle can be > 45

0
. 

This can be incorporated including the next term i.e., sin2n  cos   with n = 2, with a 

small negative coefficient. We have extended our calculations with  
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UC ( i , i  )  - 
2
( 1  1sin 2 i  cos i + 2  2 sin 4 i  cos i)  (6.41) 

where n,  n, i and i have the same meaning as in equation 6.22. 

The TR -  phase diagram with 1 = 0.4, 2 = 0.05,  =3 is shown in figure 6.26a 

and the temperature variation of the order parameters 1 and 2 as well as those of s,  

and  are shown in figure 6.26b.  

Figure – 6.26. (a) Calculated phase diagram for 1 = 0.4, 2 = 0.05,  =3. The 

second order transition is shown by a dashed line and the filled circle indicates 

the t.c.p. (b) The temperature variation of the order parameters and  near the 

first order SmC-SmA transition corresponding to figure (a) at = 1 and TR = 

0.8425. 

As  increases, the nature of the SmC-SmA transition changes from first order to 

second order at the t.c.p. Note that this trend is opposite to that shown in figure 6.19 

where 2 = 0. We can compare this with a trend seen [44a] in a binary mixture of 

pentylphenylthiol - octyloxybenzoate (denoted as 8
–
S5) and its lower homologue 7

–
S5. 

As the relative concentration of 7
–
S5 is increased, which is equivalent to decreasing  

in our calculations, the value of t0 for the second order SmC-SmA transition 

decreases. This shows that the t.c.p is being approached as explained in section 6.7.3. 
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6.8.2 Different tilts of core and chain 

While carrying out the above calculations, for simplicity we have assumed that 

the core and the chain tilt with the same angle  with respect to the layer normal. It is 

known that [6] the two tilts are not necessarily the same. Hence, in the SmC phase, the 

effective value of  depends on . The McMillan parameter is given by 

=2exp[-( r0/d)
2
]    (6.42) 

where r0/d is the ratio of the length of the core to the layer spacing. Considering the 

molecules with symmetric end chains of length c each, when the core and the chains 

have the same tilt angle , the layer spacing in the SmC liquid crystals 

 dC =(r0 + 2c)cos      (6.43) 

and the effective core length  

r0C = r0cos .     (6.44) 

This leads to 0 same as  in equation 6.42.  

When the core tilt angle ( CR) is larger than the chain tilt angle ( CH), the 

effective core length decreases thus increasing the effective value of . We have, 

dC =r0cos CR + 2ccos CH    (6.45) 

and the effective core length  

r0C = r0cos CR.     (6.46) 

With this, assuming CR/ CH = 1.5, we have calculated  / o for different values of 

CR. Using a polynomial fit to the plot of / o vs CR, we get the first order 

correction as  

 = o(1 + K
2
),    (6.47) 

with K  0.3 when o  1. The TR -  phase diagram obtained including this 

correction is shown in figure 6.27, for 1 = 0.36, 2 = 0 and  =3. Note that the 

topology of the phase diagram is the same as that in figure 6.17a, while the slopes of 

the SmC-N and the SmC-I transition lines have increased.  
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 Figure - -6.27. Calculated phase diagram for 1 = 0.36, 2 = 0,  =3 and 

K = 0.3. The dashed line indicates the second order transition. 

6.8.3 Other possible extensions 

The following extensions of the model are possible:  

1. The length of the end chains c1 and c2 can be considered to be unequal. As in the 

previous chapters, this leads to different values of effective and pairing energy 

for antiparallel and parallel pairs. The model can be extended to include this 

difference. 

2. Interlayer and chiral interactions can be considered. Including this, the model can 

be extended for SmCalt and SmC* liquid crystals. 

3. The interaction between the longitudinal components of the dipole moments and 

also the chains of the molecules can be included. Considering antiparallel and 

parallel pairs, as in the previous chapters, the model can be extended to describe 

transitions between SmC1, SmA1, SmCd, SmAd, N1 and Nd phases. 

4. The hard rod  excluded volume contribution to the free energy needs a more 

rigorous calculation. 

6.9 Conclusions 

We have demonstrated that the off-axis character of the lateral dipolar groups can 

account for tilt in layered smectics (SmC, SmC*, SmI etc.). We have used the  

simplest single particle potential consistent with the symmetries of the SmC phase to 

develop a mean field theory [51], including the hard rod features which stabilise the 
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SmA phase. The topology of the calculated phase diagrams involving isotropic, 

nematic, SmA and SmC phases, temperature variation of tilt angle in the SmC phase, 

the specific heat jump across the SmA-SmC transition and the appearance of a 

tricirtical point as the SmA range decreases compare favourably with experimental 

trends. Also, a first order SmC to SmC transition is found to occur over a very small 

range of values of ,  and temperature. The calculations have been extended to 

include the next higher order term in the tilting potential and to include the effect of 

different tilt angles for the core and the chain in the SmC phase. Some possible 

extensions of the model have been pointed out. 

6.10 References for chapter-6 

 

[1] Goodby, J. W., and  Gray, G. W., Smectic Liquid Crystals : Textures and 

Structures, Leonard Hill, Heyden and Son, Inc, Philadelphia, 1984. 

[2] Sackmann, H., and Demus, D., Mol.Cryst.Liq.Cryst, 2, 81, 1966. 

[3] P.G.DeGennes and J.Prost, The Physics of liquid crystals, 2
nd 

edition, Clarendon 

press, Oxford, 1993. 

[4] Tuffin, R. P., Goodby, J. W., Bennemann, D., Heppke, G., Lotszch, D., and 

Scherowsky, G., Mol.Cryst.Liq.Cryst, 260, 51, 1995. 

[5] Galerne, Y., Lagerwall, S. T., and Smith, I. W., Optics communications, 19, 147, 

1976; Lochart, E. T., Allender, D. W., Gelerinter, E., and Johnson, D. L., Phys. 

Rev. A, 20, 1655, 1979.  

[6] Goodby , J. W., in Ferroelctric Liquid Crystals, GOODBY J.W. et. al, (Gordon and 

Breach) 1991, p.99.

[7] (a) Goodby , J. W., in Chapter-5, Vol 2A, Handbook of  Liquid  Crystals,   Demus, 

D., et al, (Wiley-VCH, New York),1998.(b) Guillon, D., ibid, chapter-2. 

[8] de Jeu, W. H, J.Physique, 38 , 1265, 1977. 

[9] Guillon, D, Stamatoff, J., and Cladis P. E., J. Chem. Phy., 76, 2056, 1982. 

[10]Goodby , J. W., in Ferroelctric Liquid Crystals, GOODBY J.W. et. al, (Gordon and 

Breach) 1991, p.240. 

[11] Krishna Prasad, S., Raja, V. N, Shankar Rao, D., Geetha Nair, G. and Neubert, 

M. E., Phys. Rev. A, 42, 2479, 1990. 

 

Formatted

Formatted



Chapter-6 -211- 

 

[12] Wiegleben, A., Richter, L., Deresch,. J., and Demus, D.,  Mol.Cryst.Liq.Cryst, 

59, 329, 1980. 

[13] Heinrich,B., and Guillon, D.,  Mol.Cryst.Liq.Cryst, 268, 21, 1995. 

[14] Shashidhar, R., Ratna, B. R., Geetha Nair, G.,Krishna Prasad, S., Bahr, Ch., 

Heppke, G., Phys. Rev. Lett, 61, 547, 1988. 

[15] Liu, H. Y., Huang, C. C., Min, T., Wand, M. D., Walba, D., M., Clark, N. A., 

Bahr, C. H. and Heppke, G., Phys. Rev. A, 40, 6759, 1989. 

[16] (a)Huang, C. C. and Viner, J. M., Phys. Rev. A, 25, 3385, 1982. (b)Lien S.C. and 

Huang C. C., Phys.Rev.A, 30, 624, 1984. Note that in Table II, the coefficient b 

should be expressed in 10
-4

 and not 10
-2

. 

[17]  Usual mean fieldAhlers, G., Kornblit., A., and Guggenheim, H. J.,, Phys. Rev. 

Lett, 34, 1227, 1975. 

[18] For TCOB (trans-1,4-cyclohexane-di-n-octyloxybenzoate), in Shankar Rao 

Thesis (Raman Research Institute), Ch.6 

[19] Chu, K. C., and McMillan, W. L., Phys.Rev, 15A, 1181, 1977. 

[20] Chen, J. and Lubensky, T. C., Phys.Rev, 14A, 1202, 1976; Zeks B and Blinc R., 

in Ferroelctric Liquid Crystals, Goodby J.W. et. al, (Gordon and Breach) 1991, 

p.365. 

[21] Maier, W., and Saupe, A., Z.Naturforsch, A14, 882, 1959. 

[22] McMillan, W. L.,  Phy. Rev. A,  4, 1238, 1971. 

[23] Goossens, W. J. A., Mol.Cryst.Liq.Cryst, 150, 419, 1987. 

[24]Stroobants, A., Lekkerkerker, H. N. W., and  Frenkel, D. , 1986, Phys. Rev. Lett., 

57, 1452;  1987, Phys. Rev. A,  36, 2929. 

[25] McMillan,  W. L., Phys.Rev.A, 8, 1921, 1973. 

[26] Wulf, A., Phys.Rev.A, 11, 365, 1975. A 2-D version of this model has been 

proposed recently: Vanakaras A. G., Photinos D. J. and Samulsky E. T., 

Phys.Rev.E, 57, R4875, 1998. 

[27] Goodby, J. W., Gray, G. W., and McDonnell, D. G., Mol.Cryst.Liq.Cryst. Lett, 

34, 183, 1977. 

[28] Luz Z. and Meiboom S., J. Chem. Phys., 59, 275, 1973. 

[29] Dianoux, A. J., Heidemann, A., Volino, F., and Hervet, H., Mol. Phys.,35, 1521, 

1976. 

 



Chapter-6 -212- 

 

[30] Goossens W. J. A., J.Physique, 46, 1411, 1985. 

[31] Cabib, G. and Benguigui, L., J. Phys.,38, 419, 1977. 

[32] Van der Meer, B. W. and Vertogen, G., J.Physique,Coll. 40, C3-222, 1979. 

[33] Goossens, W. J. A., Europhy. Lett, 3, 341, 1987.  

[34] Barbero, G. and Durand, G., Mol.Cryst.Liquid.Cryst, 179, 57, 1990. 

[35] Velasco, E., Mederos, L. and Sluckin, T.G., Liquid Crystals, 20, 399, 1996. 

[36] Giesselmann, F. and Zugenmaier, P., Phys.Rev.E, 55, 5613, 1997. 

[37] Hu, L. and Tao, R., Phys.Rev.E, 58, 7435, 1998. 

[38] Coates, D., Liquid Crystals, 2, 423, 1987. 

[39] Van der Meer, B. W., Postma, F., Dekker, A. J. and de Jeu,  W. H., Mol. Phys., 

45, 1227, 1982. 

[40] Sy, D. and Ptak, M., J.Physique. lett, 40, L-137 1979. 

[41] Katriel, J. and Kventsel, G. F., Phys.Rev.A, 28, 3037, 1983. 

[42] Goodby, J. W. and Gray, G. W. J.Physique,Coll., 37, C3-17, 1976. 

[43] Birgeneau, R. J., Garland, C. W., Kortan, A. R., Litster, J. D., Meichle, M., Ocko, 

B. M., Rosenblatt, C., Yu, L. J. and Goodby, J. W, Phys.Rev.A, 27, 1251, 1983.  

 

[44] (a) Huang, C. C., and Lien, S.C. and Phys.Rev.A, 31 2621, 1985.(b) Liu, H. Y., 

Huang, C. C., Bahr, Ch, Heppke, G., Phys. Rev. Let., 61, 345, 1988. 

[45] Clark, N. A., and Lagerwall, T. S., in Ferroelctric Liquid Crystals, Goodby J.W. 

et. al, (Gordon and Breach) 1991, Chapter-1.  

[46] Anisimov, M. A., in Critical Phenomena in Liquids and Liquid Crystals, 

(Gordon and Breach) 1991, Chapter 10.  

[47] Thoen, J., and Parret, R.,Liq. Cryst., 5, 479, 1989.  

[48] Johnson, D, Allender, D., Richard deHoff, Maze, C., Oppenheim, E and 

Reynolds. R, Phys. Rev. B, 16, 470, 1977 ; Brisbin, D., Johnson, D. L., Fellner, H., 

and Neubert, M. E., Phys. Rev. Lett, 50,178, 1983.  

[49] Shashidhar, R., Ratna, B. R., and Krishna Prasad, S., Phys. Rev. Lett, 53, 2141, 

1984.  

[50] Bahr, Ch., and Heppke. G., Phys. Rev. A, 41, 4335, 1990.  

[51] Govind, A. S., and Madhusudana, N. V., Eur. Phys. Lett., 55, 505, 2001. 

Formatted




