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Chapter-5 

A Molecular Theory Including Hard Rod Interactions of 

Liquid Crystalline Phases Exhibited by Strongly Polar 

Compounds 

5.1 Introduction 

As described in chapter-1, liquid crystals composed of highly polar molecules 

are known to exhibit a variety of unusual phenomena [1] like a first order N-N 

transition, SmA1-SmAd transition, a re-entrant nematic (NR) lake and an N-N 

transition associated with the SmA1-SmAd transition (see section 1.4, chapter-1 for 

details). In pervious chapters (chapters-2 and 3), we have developed a molecular 

theory to describe these phase transitions. The basic concept in the model we adopt [2] 

is that, as the intermolecular separation (r) is reduced due to cooling or due to increase 

of pressure, the molecular pairs can change over from the anti-parallel (A) to the 

parallel (P) configuration (see chapter-2, section 2.2 for details). The medium is 

treated as an equilibrium mixture of the A and P types of pairs. Recent experiments [3, 

4] showing the presence of polar short range order at low temperatures support this 

model. The reentrant phases follow as natural consequences of the temperature 

variation of the relative concentrations of the two species.  

Several experimental investigations have been carried out on the phase 

transition temperatures of such liquid crystals as functions of pressure. In particular, it 

is seen that the SmAd phase gets bounded in the p-T plane and the SmA1- NR 

transition temperature increases monotonically with pressure [5, 6] (see figure 5.1). 

High pressure studies on the binary mixtures of hexyloxy cyanobiphenyl (6OCB) and 

its higher homologue (8OCB) [7] show that the SmAd phase is less stable for mixtures 

with higher concentrations of the shorter homologue (see figure 5.2).  
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Figure - 5.1. Pressure (p) - temperature (T) phase diagram [5] of octyloxy 

benzoyloxycyano-stilbene showing double reentrance at atmospheric 

pressure. The SmAd phase  gets bounded at higher pressures.  

Figure – 5.2. Experimental p-T phase diagram [7] of 8OCB-6OCB 

mixtures. The numbers indicate the concentration of the shorter 

homologue 6OCB. 

To describe p-T phase diagrams theoretically, an explicit calculation of 

pressure is desirable. For this purpose, packing effects which take into account the 
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hard rod features of molecules have to be considered. Even though many experimental 

investigations have been carried out on the p-T phase diagrams of highly polar 

compounds, there is no detailed molecular theory to describe them. A thermodynamic 

theory has been developed by Clark [8]. Indekeu and Berker have developed a spin 

gas model [9], in which the pressure is simply assumed to be proportional to the 

inverse of molecular separation. Recently Sear and Jackson [10], have developed a 

hard rod model of a binary mixture consisting of interconverting monomers and 

dimers following the method of Koda and Kimura [11]. In this model [10], the 

temperature comes into picture through the equilibrium constant for the monomer-

dimer interconversion and the calculation is restricted to the packing fraction-

temperature phase diagrams. In the present chapter, we extend our mean field model 

of highly polar compounds to include the hard rod features and develop a hybrid 

model. This allows us to calculate different phase diagrams as functions of pressure. 

Several hard rod models of liquid crystals have been developed over the past 

decades. Onsager [12] was the first to show that packing effects alone can stabilise the 

nematic phase for long rod like molecules with aspect ratios  100. Molecular shape 

plays a more definitive role in stabilising the smectic phase compared to the nematic 

phase. In fact, computer simulation studies [13] show that a system of hard ellipsoids 

does not form a smectic phase due to packing effects alone. On the other hand, 

computer simulation studies [13], experiments [14] and a few specific theoretical 

models [15, 16, 17, 18], show that a system of hard spherocylinders can form the 

nematic and smectic-A phases. As explained by Wen and Meyer [17], the SmA phase 

is stabilised since the loss of entropy in the formation of layering order is more than 

compensated by the gain in entropy due to the increased freedom of molecules within 

the layers. Many authors have extended hard rod models of nematics to develop 

models of the smectic phase. The scaled particle theory [18], the density functional 

theory [16, 19], models with both attractive and hard rod features [15, 20] etc. have 

been used for this purpose. 

Since in our model of polar compounds, the medium is assumed to be a 

mixture of antiparallel and parallel pairs, we consider hard rod models of binary 

mixtures [11, 21]. As described in the previous chapters, the relative concentration of 
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antiparallel and parallel pairs is not a constant, but varies with both temperature and 

pressure making the calculations quite tedious. Hence, in the present chapter, we 

adopt the relatively simple theory of hard rod mixtures developed by Koda and 

Kimura [11] for molecules with perfect orientational order and extend it to develop a 

hybrid model.  

We have shown in chapter-2 (see figure 2.5) that the difference in the 

configurational energy ( E) between A and P types of pairs is a sensitive function of 

the intermolecular separation and hence the density of the medium. However, as the 

medium is cooled across the temperatures corresponding to the stability of reentrant 

phases, the density increases monotonically [5]. Hence, for the sake of simplicity, in 

our earlier discussions we assumed E to be a function of temperature. In the present 

chapter, we express E as a function of density i.e., the packing fraction and calculate 

the pressure explicitly. In the next section, we develop the theoretical model. 

5.2 Theoretical model 

For the sake of convenience, we have made the following changes in the 

notations: 

(i) All the variables connected with parallel (P) and antiparallel (A) types of 

dimers are indicated by the suffixes „1‟ and „2‟ respectively, instead of the 

suffixes „A‟ and „P‟. 

(ii) The configurational energy difference is expressed in terms of packing 

fraction and hence, the interaction parameter is denoted by „A‟ instead of R1. 

(iii) The vector representing the smectic density modulation is denoted by k  

instead of q  and q is used to denote the length ratio of A and P types of 

pairs, adopting the notation used by Koda and Kimura [11] 

(iv) The parameter a is used to represent the normalised amplitude of the 

smectic density modulation and is equivalent to  used earlier. 

(v) The normalised distribution functions are denoted by  instead of f. 
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5.2.1 Assumptions  

  As in the earlier chapters, we assume the medium to be a binary 

mixture of parallel (P) and antiparallel (A) types of dimers. The configurational 

energy difference is written in terms of packing fraction as 

E = E2    E1  =  A kBT
 
*  

  

*
  1     (5.1) 

where, A is a dimensionless interaction parameter, kB the Boltzmann constant, T* 

some reference temperature,  the packing fraction, *  the packing fraction at which 

E2 =E1 . For  * E  is positive which means that E1 is more negative than E2 and 

the P-type configuration is favoured over the A-type configuration. 

  Both A and P types of dimers are assumed to be right circular 

cylinders of the same volume v, but of different lengths l2 and l1 respectively (l2 > l1) 

and the corresponding diameters are denoted by D2 and D1. We define  

q = 
l2 

l1
 = 

 D1 
2
 

 D2 
2
   

 .     (5.2)    

The average packing fraction is given by, 

 = 
N1 v + N2 v 

 V
 = 

 N v
V

                                                (5.3) 

where N1  and N2  are the number of  P and A types of pairs respectively, V is the 

system volume,  v = 
 D1 

2
 l1 

4   
  = 

 D2 
2
 l2 

4   
 and  N = N1 + N2  is the total number of pairs. 

The volume fractions which are the  same as the relative fractions of P and A types of 

pairs respectively are 

X1 = 
 N1

N
   , X2 = 

 N2

N
                                                      (5.4) 

so that   X1 + X2 = 1. 
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  For simplicity especially in the calculation of excluded volume effects, 

the cylinders are assumed to have perfect orientational order and  aligned along the Z- 

axis. As most of the phenomena like reentrance occur well below the nematic - 

isotropic transition temperature, this assumption is reasonable. 

 

5.2.2 Free energy 

5.2.2.1 Hard rod component 

The hard rod part of  the Helmholtz free energy (F 
h
) is calculated in the 

second virial approximation following Koda and Kimura [11]. Let P r) be the 

packing fraction of cylinders of length l  at the position r =(x,y,z). Obviously, the 

fractional volume occupied by the species of the type ( = 1 or 2) is 
V

dr P  (r)=N v.  

F 
h
 can be expressed as a functional of P (r)  in the form [11] 

F
 h

kBT 
 =

  
  N (T) + 

  
  
1

v 
V

 dr P (r) ln P (r)  

                       – 
1

2
 

  
  

  
 
  

1

v 2 
V

 dr1 dr2 P (r1) P  (r2) b  (r1 ,r2 ) 

 + { Higher order terms in P (r)  }                (5.5) 

where T is the temperature and (T) which is a function of only T is the contribution 

from kinetic energy. Since we carryout the calculations as a function of  at a fixed 

temperature, (T) is not relevant in determining  corresponding to the phase 

transition. The second term is the contribution from the entropy of mixing and the 

third term is due to the hard core interactions which are restricted to second virial 

term, and b (rI ,rj) is the Mayer function. The latter is defined as 
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b (ri ,rj  ) = exp(–Uij/kBT) –1       (5.5a) 

where Uij is the two particle interaction potential. For hard spheres of diameter D, 

with rij denoting the interparticle distance, this can be written as 

 

rij  D,   Uij = 0,   b (ri ,rj  ) = 0. 

rij < D,  Uij =  ,   b (ri ,rj  ) = –1        (5.5b) 

In the present calculations involving parallel hard cylinders, the Mayer function is 

given by [11] 

 b  (ri ,rj ) = –H 
l +l

2

2

(zi zj)
2

 H 
D +D

2
 

2

(xi  xj)
2

(yi yj)
2

       (5.6) 

where H( ) = 0 for   0 (i.e., when the rods are not in contact) and H( ) = –1 for  > 0 

(i.e., when the rods interpenetrate)  and the Z - axis is taken along the director. 

The packing fraction of each kind of cylinder is uniform in the nematic phase 

and is given by  

 P (r) = 
N v
V

                             ( 5.7 ) 

while that in the SmA phase is a periodic function of z, i.e., [11] 

P  (r) =  
N v

V
 (z).                                                (5.8) 

We define  = z/l1 i.e., take l1 as unit of length. Substituting equations (5.6) 

and (5.8) in equation(5.5) and restricting to terms quadratic in , we can write the free 

energy per pair  

f 
h

  = 
 F 

h
 

 N kB T
        (5.9) 
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as a functional of ( ) as: 

 

 

f 
h

 [ ( ), ( )] = X1 1(T) + ln
 N1 v

V
    + X2 2(T) + ln

 N2 v
V

    

 + 
X1

 L
 

L

d  ( ) ln ( )   +  
 X2

 L
 

L

d  ( ) ln ( ) 

 +  2X1 

2
  

1

 L
 

L

d  d  ( ) (  ) H [ ] 1  (   )
2

  

 + 2X2

2
   

1

 qL
 

L

d  d  (  ) (  ) H [ ] q
2
   (    )

2
  

 + X1 X2 1 + 
1

q
 
2 1

L
 

L

d  d  (  ) ( ) H 1+ 
q

2
 
2

 (  )
2

(5.10)

where L is the system size along Z- axis in units of l1. 

 The sinusoidal perturbation of (  ) in smectic A can be written as  

(  ) = 1 + a  cos k     (5.11)   

 where k = 
2

d
 is the (dimensionless) wave number of the perturbations with d as the 

average layer spacing in units of l1, and a represent amplitudes equivalent to order 

parameters in smectic A. Substituting equation(5.11) into equation(5.10) and 

restricting to terms quadratic in a1 and a2, we can write, 
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   f 
h
 = 

 F 
h
 

 N kB T
    =  f  N  +  f 

h

S .       (5.12) 

where, the nematic free energy per pair (fN) arises from the hard rod interactions and 

the pairing energy ( E) since  the medium is assumed to have perfect orientational 

order. We have, with a = 0, 

FN

NkBT
 = f 

 

N = X1 1(T) + ln
N1v
V

 + X2 2(T) + ln
N2v
V

 + 4+ X X2b(q) X2

E

kBT
  (5.13) 

        where    b(q) = 
vex
 v  – 8       (5.13a) 

and vex is the excluded volume given by  

 vex = 
4

 (D1 + D2)
2
 (l1 + l2) = v 1+

1

q
 + q

2

–1 .       (5.13b)  

The smectic perturbation energy is, 

 F 
h
 

S

 N kB T
  = f 

h

S  = X1 
a1 

 
2

 

4 
  + X2 

a2 
 

2

 

4 
  + 2 X1 

2
  a1 

 
2 

  sin k

 k
  + 2 X2 

2
   a2 

 
2 

  sin qk

 qk
  

 +  X1 X2   1 + 
 1

 q
 

2
 a1 a2 

k
 sin  

k(1 + q)

2
    (5.14) 

5.2.2.2 Attractive component 

The attractive component of the energy of i
th

 pair in the smectic medium is 

given by, 

Ui =  Uo 
  
 
 X a cos(k i )      (5.15) 

where  Uo is an interaction parameter. are the McMillan parameters defined as  

 = 2 exp[ –(  r0/d     (5.16) 
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and the mutual interaction parameter, assuming the geometric mean (GM) rule is  

=      (5.17) 

where d11 = ro+ c and d22 = ro+ 2c, with ro and c being the lengths of aromatic and 

chain moieties respectively. 22 is obviously related to 11. 

 The total internal energy of N pairs is, 

U  =  
N 

 2
  

  
 Ui  X  =   

N

2
 Uo

  
 

  
  X X a  a      (5.18) 

where    indicates a statistical average and we have used  

a cos( 2 i /d)  = 
0

1

d  cos ( )            (5.19) 

with = 
2

d
 = 

k
 as the reduced coordinate and  is the normalised distribution 

function for the -type of pairs. 

 The entropy of N pairs is, 

S =  N kB 
  

  X  
0

1

d   ln           (5.20) 

 The attractive part of the smectic free energy in the mean field approximation 

for the medium with perfect orientational order is given by, FS 
a

 = U T S,  

i.e., fS 
a

 = 
FS 

a

 N kBT
  =   

Uo

2 kBT
  

 
 

  
 X X a  a

  
  X  

0

1

d           

5.2.2.3 Total free energy due to smectic ordering 

The total free energy due to smectic ordering is given by, 
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fS  = fS 
h
 + fS 

a
 = X1 X2 a1 a2 C

~
  +

 
  

X  a C
  + X  

0

1

d    ln   (5.22) 

where we have defined, 

 

C1 = 
Uo

 kBT
 11  4 jo(k) X1  

1

2
     (5.23) 

C2 = 
Uo

 kBT
 22  4 jo(qk) X2  

1

2
     (5.24) 

C
~

 = C12 = C21 =  
Uo

 kBT
 12    

 1 

k
  1 +  

 1

 q
 
2

sin  
k(1 + q)

2
         (5.25) 

where jo(m) = 
sin(m)

 m
  is the zeroth order Bessel function. 

 The distribution function  for 
th

 species obtained by minimising fS is: 

 =  
 1

 Z
 exp[( a C  + X  a C

~
) cos ]   (5.26) 

where  now represents the second species, and Z are the appropriate normalising 

integrals

 Substituting  in equation(5.22), we get, 

fS  = 
 

 
  

X  a
2

 C
   X  ln Z   + X1 X2 a1 a2 C

~
    (5.27) 

 Expanding lnZ  and restricting to terms quadratic in a1 and a2, which is valid 

close to the SmA-N transition, we get, 
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fS = 
X1 a1

2

 
 ( 2C1  C1

2

  X1 X2 C
~

 
2
)   + 

X2 a2

2

 
 ( 2C2  C2

2

  X1 X2 C
~

 
2 

)  

               + X1 X2  a1 a2 C
~

 1   
C1   + C2  

2
 .        (5.28) 

 This can be written as, 

fS = [ ]a1 a2  

S11 S12

S21 S22

  

a1

a2

    (5.29) 

where,  

S11 = 
X1

 ( 2C1  C1

2

  X1 X2 C
~

 
2
) 

S22 =  
X2

 ( 2C2  C2

2

  X1 X2 C
~

 
2 

) 

S12 =  S21 =  
1

2
 X1 X2 C

~
 1   

C1   + C2  

2
 .             (5.30) 

fS = 0 determines the N-SmA transition point. This condition is equivalent to 

det(S) = S11 S22  S12 S21 = 0.     (5.31) 

 Using equations(5.30) at the transition point, we get, 

X1X2 C
~

 
2
  C1 C2 =   = 0     (5.32) 

5.2.3 Expressions  for k and X2  

k can be found by minimising fS given by equation(5.29). The value kc at the 

transition is given by, 
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kc = 

X1 X2 C
~

1 + 
1

q

2

sin
kc(1+q)

2
  2C1 X2

sin(qkc)

q
  2C2 X1sinkc

 X2 C
~

 1 + 
1

q

2

 
1+ q

2
 cos

kc(1+ q)

2
  2C1X2cos(qkc)  2C2X1coskc

      (5.33) 

 

 

In view of the assumption of saturated nematic order, the N - SmA transition is 

second order in nature and at the transition point X2 = X2
 

N

. Therefore X2 is found by the 

condition 
FN

X2
  = 0. This gives, 

X2  =  
 1

 1   +    exp ( 1  2 X2)  b(q)  +  
E 

 kBT

    (5.34) 

5.2.4  Expression for pressure  

We have p =  
F

V 
T

. As above, at the N - SmA transition point, p = p
N
. 

Hence,  

 pv
kBT

 =    
(FN v/ kBT) 

V 
T

 

Using equation (5.13) we get, 

 pv
kBT

  =  + 
2
 4 + 

 X2 A

 TR *
  +  X1 X2 b(q)    (5.35) 

We can consider a molecule of a typical mesogenic compound as a cylindrical 

rod of length 20Å and diameter 5Å. Hence, v  400Å
3
. This gives, pv/(kBT) = 1 for 

p 0.5 kbar at T=350K.  
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5.2.5 Expression for Gibbs free energy  

We have, at the transition point the Gibbs free energy, G  = GN = FN +  pV. Therefore,  

GN

 N kBT 
 = 1  +  X1 (T) + ln

N1 v
V

   +  X2 (T) + ln
N2 v

V
       

+  
 X2 A

 TR *
  +  2[ 4 + X1 X2 b(q)]   +  

X2 E 

kBT
            (5.36) 

5.2.6 Method of calculation  

The parameters of our model are A, , q, Uo (see equations 5.1, 5.2 and 5.15) 

and  (see equation 5.16). Uo is an interaction parameter taken to be = 4.541 kBT* 

with T*=500K. This corresponds to the MS potential used in the previous chapters. 

The parameter A which determines the steepness of variation of E with respect to  

and is equivalent to R1 used in the previous chapters. We have shown in chapter-3 

(section 3.3.1.1) that R1 varies as the fourth power of the McMillan parameter 2. In 

the present calculations we use very low values of 2. Hence we use low values of A. 

Fixing  and TR, the values of k and X2 are found by self consistency of equations 5.33 

and 5.34. With these values, (see equation 5.32) is calculated for  varying from 0 

to max (about 0.9 for hexagonal close packing of cylinders). >0 corresponds to the 

smectic phase. The values of  corresponding to the N-SmA transition are located by 

the condition =0. f X1 is large, the smectic has monolayer order (i.e., SmA1), 

otherwise it is SmAd. Similarly, we denote the nematic with a larger (smaller) value of 

X1 as the N1 (Nd) phase. As in the previous chapters, the suffix „R‟ in NR, NR1 and NRd 

denotes a reentrant nematic phase. In the next section, we present the results.  

5.3  Results and discussions 

Even though we have assumed a saturated orientational order, there can be a 

first order N-N transition involving a jump in X1. At this transition, the Gibbs free 

energies corresponding to the two phases having ( , X1) and ( , X1 ) at a particular 

pressure become equal. We first discuss the nematic to nematic transition. 
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5.3.1 Nematic - nematic transition 

It can be recalled that q is the length ratio of the A and P types of pairs (see 

equation 5.2), A is the interaction parameter for the difference in the configurational 

energies between the pairs (see equation 5.1) and for the packing fraction > *, P-

type of pairs are favoured over the A-type of pairs. We have calculated the variation of 

pressure with packing fraction for  A = 3, * = 0.55, q = 1.2 and TR = 0.4 (figure 

5.3a).  

 

Figure  - 5.3. (a) Variation of pressure with packing fraction and 

(b)variation of pressure with Gibbs free energy, for  A = 3, * =0.55, 

q=1.2 and TR = 0.4. The dashed line shows the pressure at which the 

Gibbs free energies of the two phases become equal indicating a nematic 

to nematic phase transition. 

An N1-Nd transition occurs at a value of pressure indicated by the dashed line, at 

which the Gibbs free energies of the two phases become equal (figure 5.3b).With the 

same values of * and q, the N1-Nd transition lines are shown in the p-T plane in 

figure 5.4, for different values of A. The transition is from the N1 phase (above the 

line) to the Nd phase (below the line). The N1-Nd transition temperature increases with 

pressure and the first order N1-Nd transition line ends in a critical point. The critical 
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point shifts to higher values of (p,T) on increasing A. Thus, the possibility of 

observing such a transition increases for larger values of A. Since A is proportional to 

E (see equation 5.1), the value of A can be expected to increase with the dipole 

moment of the molecules. Indeed, while 7CB (heptyl cyanobiphenyl) does not exhibit 

the N-N transition, the analogous molecule with an ester group dipole adding to that 

of the cyano group (cyanophenyl heptylbenzoate or CP7B) exhibits the transition [22] 

(see figure 2.2, chapter-2). It can be seen from figure 5.4 that the transition 

temperature has an approximately linear dependence on pressure as seen 

experimentally [23]. However, the theoretical slope (  4 bar/K with TNI 350K, see 

discussion under equation 5.35) is much less than the experimental value ( 60 bar/K, 

[23]). Thus, the pressure values are underestimated in our theory. The reason for this 

discrepancy is that the hard core interactions are limited to the second virial term and 

such an approximation is known to underestimate the pressure even for the N- I 

transition [24] 

Figure - 5.4. The p-T  phase diagram for * = 0.55, q= 1.2, showing the 

N-N transition lines for different values of A;(a) A = 3, (b) A = 5 and  

(c) A = 6.5. The transition is from the N1 phase (above the line) to the 

Nd phase (below the line). The first order N1 -Nd transition line ends in 

a critical point indicated by a filled circle. 

The above calculations have been made with a fixed length ratio q between the 

two types of pairs. q increases with chain length. Also the value of A, which 

determines the slope of E with respect to , increases with chain length in a 

homologous series as explained in chapter-3 (section 3.3.1.1). Near q = 1.5, if the 



Chapter-5 -144- 

chain length is increased by 50%, E increases by an order of magnitude (see chapter-

3, section 3.3.1.1), whereas q increases only by about 10%. To study the effect of q 

independently, we have calculated the diagram shown in figure 5.5a with  A = 5, 

*=0.55 and TR fixed at 0.85. 

As q is decreased, the N1-Nd transition occurs at a higher pressure (figure 5.5a) 

with a smaller jump in X2 and there is no N1-Nd transition for q less than the critical 

value 1.44 for A=5 (figure 5.5b). However, the variation in the transition pressure is 

relatively weak as a function of q, compared to that with A (see figure 5.4).  

At the Nd- N1 transition, the downward jump in X2 is accompanied by a jump 

in  to higher values (figure 5.3a), resulting in a better packing at the same p and T 

values and this packing effect obviously depends on q. Hence, in general, as the chain 

length is increased, if the smectic phase does not intervene, the first order nature of the 

N1-Nd transition can be expected to become stronger (see figure 5.5) and to occur at a 

lower temperature at any given pressure (see figure 5.4) due to higher values of both q 

and A. 
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Figure – 5.5. (a) Variation of N1-Nd  transition pressure with q  and 

(b)corresponding variation in X2 which is double valued, for A=5, 

*=0.55 and TR = 0.85. The filled circle in (a) indicates the N1-Nd critical 

point. 

5.3.1.1 Significance of negative deviation from the GM rule 

We have shown in chapter-2 (see section 2.4.3.2), that in the absence of hard 

rod interactions, a negative deviation from the geometric mean (GM) rule in the 

attractive interaction between the A and P types of pairs is necessary to get an N1-Nd 

transition and the first order nature of the transition becomes stronger if the deviation 

is larger. As discussed above, in the present calculations the hard rod effects alone are 

sufficient to give rise to the N1-Nd transition even when the nematic order is saturated 

and the mutual attractive interaction has not been taken into account. Further, an 

increase of the chain length (i.e., q and A) has the same effect as that of a stronger 

negative deviation. Obviously, an increase of q makes the A and P types of pairs 

structurally more dissimilar. This results in a larger excluded volume (given by 

equation 5.13b). If the two species are geometrically equivalent i.e, .if q = 1, vex = 8 v 

and from equation (5.13a), b(q) = 0. Otherwise, b(q)>0 which would, from equation 

5.13, increase the free energy of the medium. In theories which consider only the 
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mean field attractive part, an increase in the free energy requires a negative deviation 

from GM rule.  

Indeed, experiments show that, even the N-I transition temperatures of binary 

mixtures of nematogens have a negative deviation from the linear dependence on the 

relative concentration. This has been attributed to a negative deviation from the GM 

rule in a theory considering only the attractive interactions [25], and later numerically 

shown to be equivalent to including hard rod interactions between the molecules [26]. 

Our present argument also clearly shows that the physical origin of a negative 

deviation from GM rule is related to the excluded volume between the cylinders of 

different aspect ratios, even when both of them have the same volume.  

5.3.2 Phase diagrams involving smectics 

5.3.2.1 Double reentrance 

As we mentioned earlier, the packing effect alone can stabilise the smectic 

phase[17, 11]. Further, relatively small values of the McMillan parameter  are 

sufficient to stabilise the smectic phase over wide ranges of pressures and 

temperatures. In our model, as described in chapter-3, where hard rod effects are not 

considered, the cause of nematic reentrance when the temperature is decreased in the 

SmAd phase is the rapid change over of the A-type of pairs to P-type, at a temperature 

not low enough to stabilise the SmA1 phase. In the present calculations, this change 

over takes place as a function of packing fraction . When the medium consists of 

molecules having different lengths, it is difficult to arrange them in layers. In the 

absence of attractive interactions, only this difficulty in packing can destabilise the 

SmAd phase. This effect depends on the value of q and is maximum when the medium 

consists of equal number of A and P types of pairs, i.e., when X2  0.5. However, 

since we use small values of q (< 2), though X2 decreases rapidly when  is increased, 

the SmAd phase is not destabilised even when X2  0.5. Hence, we could not get a 

reentrant sequence for any combination of E and q, by completely ignoring the 

attractive part of the smectic interactions. Once we include 2  0, the temperature 

becomes relevant. At higher temperatures, higher pressures are required to get the N-
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SmA transition. When the value of 2 is small, the A-type to P-type change over does 

not have a significant influence on the stability of the SmA phase. As 2 is increased 

to 0.04, the influence of the A-type to P-type change over can be seen as a clear 

change of slope in the N-SmA transition line in the p-T phase diagram (figure 5.6). 

The variation of X2 is smooth and there is a continuous change over between SmAd 

and SmA1 phases.  

Figure - 5.6.  The p -T  phase diagram obtained for A = 1.1, * = 0.5,  

q =1.8 and 2 = 0.04. Note the sudden change in the slope of the phase 

transition line. 

When 2 is further increased to 0.05, the SmAd phase is stable at higher 

temperatures also. As the pressure and hence  is increased, X1 becomes large at a 

pressure not high enough to stabilise the SmA1 phase and the nematic phase reenters. 

At still higher pressures, the SmA1 phase is stabilised leading to double reentrance as 

a function of pressure (figure 5.7). At higher temperatures, the SmAd region gets 

bounded. If A and 2 are increased to 1.5 and 0.062 respectively, the upward tilt of the 

closed SmAd boundary becomes pronounced (figure 5.8). The inset shows the 

reentrant part of the phase diagram with a magnified scale of the pressure axis. 

SmA1 
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Figure – 5.7. The p-T  phase diagram showing double reentrance, 

obtained for A = 1.1, * = 0.5, q = 1.8 and 2 = 0.05.  

Figure – 5.8. The p -T phase diagram obtained for A =1.5, * =0.5, q =1.8 

and 2 = 0.062. The inset shows the reentrant part of the phase diagram 

with a magnified scale of the pressure axis. The axis of the parabolic 

SmAd boundary (the dashed line) and the SmA1-NR line are roughly 

parallel. 

The theoretical diagram in the inset of figure 5.8 resembles the experimental 

one (see figure 5.1) [5] on a compound exhibiting a double reentrant sequence. The 

axis of the parabolic SmAd boundary and the SmA1 - NR line are roughly parallel as in 
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the experimental curve. However, for the SmA1 - NR line, the theoretical slope ( 3 

bar/K) is much less than the experimental value ( 30 bar/K, see figure 5.1). The 

theory underestimates the pressure values due to the second virial approximation as in 

the N1-Nd transition (see section 5.3.1).  

The p-T  phase diagrams obtained for A = 1.5, * = 0.5, q = 1.8 and 2 varying 

from 0.048 to 0.066 are shown in figure 5.9.  

Figure – 5.9.  The p-T phase diagram obtained for A =1.5, * =0.5, q =1.8 

for different values of 2. (a) 2 =0.048, (b) 2 =0.054, (c) 2 =0.06 and 

(d) 2 = 0.066. For (a) and (b), the SmA1-NR line is not shown. 

The SmAd phase gets bounded in the p-T plane and its stability increases as 2 

is increased. For still higher values of 2, the SmAd phase continuously changes over 

to SmA1 phase without the intervening NR phase. The theoretical trends are very 

similar to the experimental ones on mixtures of 6OCB and 8OCB studied by Cladis 

et.al.[5] (see figure 5.2). Since 8OCB has the longer chain length, higher values of 2 
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correspond to larger concentrations of 8OCB. We can compare the experimental curve 

for pure 8OCB with the theoretical curve corresponding to the maximum value of 2 

which can result in the reentrant sequence. We see that, for pure 8OCB, TNI  350K 

and the SmAd region gets bounded at a pressure ~ 2 k bar. In the theoretical diagram, 

the SmAd region gets bounded at pv/(kBT*) 1. This corresponds to ~0.5k bar (see 

discussion under equation 5.35). The theory under estimates the pressure values due to 

the second virial approximation as mentioned earlier. 

5.3.2.2 Double reentrance with N1-Nd transition 

As we discussed in the previous chapters, the N1-Nd transition can occur in 

association with the SmA1-SmAd transition in the reentrant part of the phase diagram. 

As we have discussed in chapter-3 (see section 3.4.2.2), our model predicts such a 

phase sequence even in the absence of hard core interactions, over a very small range 

of the model parameters (see figure 3.21). In the present calculations, in which the 

hard rod interactions are included, again we find a similar trend over a very small 

range of the model parameters. The p-T phase diagram obtained when A is increased 

to 1.52 with  * = 0.5, q = 1.8 and 2 = 0.042 is shown in figure 5.10. As mentioned 

earlier, >0 (see equation 5.32) corresponds to the SmA phase. Since we have 

restricted the free energy expansion to the quadratic powers in the order parameters, 

the equations are valid only close to the N-SmA transition. Hence, we can not locate 

the SmA1-SmAd transition if it occurs well within the SmA phase. However, for >0, 

at some values of (p,T) the free energies become equal for two different values of X2. 

This is indicative of a SmA1-SmAd transition near those values of (p,T). Such values 

are shown with a dashed line in figure 5.10. As in figure 5.4, the N1-Nd transition ends 

in a critical point at higher values of p and T. 

We get a similar phase diagram even if we assume the McMillan parameter of 

the P-type of pairs ( 1) to be zero. This is shown in figure 5.11 for A=1.52, * = 0.5, 

q=1.8, 2 = 0.05 and 1 assumed to be zero.  
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Figure – 5.10.  The  p -T  phase diagram obtained for A = 1.52, * =  0.5,  

q = 1.8 and 2 = 0.042. The values of ( p, T) which are indicative of a 

SmA1- SmAd transition are shown by a dashed line. Note the NR1 -NRd 

transition line ending in a critical point, shown by a filled circle. 

Figure – 5.11.  The p -T  phase diagram obtained for A = 1.52,  * = 0.5,  

q = 1.8 and 2 = 0.05 and 1 assumed to be zero. The values of ( p, T) 

which are indicative of a SmA1- SmAd transition are shown by a dashed 

line. Note the NR1 -NRd transition line ending in the critical point, shown 

by a filled circle. 
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Hence, the packing effect alone is sufficient to stabilise the SmA1 phase. 

However, the (p,T) range of the closed SmAd region has increased as can be expected. 

The topology of the phase diagram agrees with that predicted using the dislocation 

loop melting theory of Prost and Toner [27] (see figure 3.6, chapter-3). 

As discussed in chapter –3, (section 3.3), when the chain length is increased in 

a homologous series, E and hence A increase as the fourth power of the McMillan 

parameter  of the A-type of pairs. In other words,  varies as the fourth root of A. 

Thus, when A is varied over a small range (0.4 to 1.8), the variation of  is very 

small. This variation is ignored for simplicity and the effect of variation of A 

independent of  will be discussed in the next section. 

5.3.3 Effect of variation of A independent of  

Larger values of the parameter A (see equation 5.1) result in steeper variation 

of E with respect to the packing fraction . To study the effect of independent 

variation of A, we have calculated the phase diagram as a function of pressure and A. 

We get an NR lake at the end of a SmA1 - SmAd transition line for * = 0.5, q = 1.8, 

TR=0.28, 2 = 0.05 as shown in the p-A phase diagram (figure 5.12a). This can be 

understood as follows. When A is small, as the pressure is increased, X2 has a 

smoother variation as in the case of pure hard rods (see discussion under section 

5.3.2.1) and there is no NR. For intermediate values of A, E and hence X2 have a 

steeper variation with respect to and hence p  around  = *. Due to packing 

reasons, when X2 is decreasing rapidly, the SmAd phase becomes unstable and the 

nematic phase reenters. For higher pressures, when X1 is large, SmA1 phase becomes 

stable leading to double reentrance. For larger values of A, X2 varies quite steeply with 

respect to  i.e., upto  = *, X2 is large and for  > *, X1 becomes large. In both 

cases, SmA phase is stable due to better packing of similar molecules. Around   *, 

there is a jump in X2 (and hence ) which is an indication of SmAd - SmA1 transition 

(shown by dashed line). 

As 2 is decreased keeping other parameters fixed, the SmA phase becomes 

less stable. The NR lake widens and opens up as shown in figures 5.12(b),(c) and (d) 
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for 2 = 0.0475, 0.047 and 0.045 respectively. In figure 5.12b, the NR lake also has 

NR1 - NRd transition line changing over to SmA1- SmAd transition line. Experimentally 

Cladis and Brand [28] discovered long ago that the SmA1-SmAd transition line ended 

in a (chiral) nematic lake in a binary mixture containing chiral polar molecules. 

Experiments on the effect of pressure on such a phase diagram appear not to have 

been carried out as yet, though the lake has been found in other temperature-

concentration phase diagrams [29]. 

As the lake widens, the SmA1-SmAd line continues as NR1-NRd line which 

ends in a critical point within the NR region for lower values of A (i.e., effectively for 

lower homologues). The SmA1- NR1 and the NRd-SmAd lines do not meet the NR1 -NRd 

line at the same point (figure 5.12b), but are separated by the SmA1- NRd line. All 

these results and the topology of the phase diagrams agree with those predicted by the 

dislocation loop melting theory of Prost and Toner [27] (see figures 3.5 and 3.6, 

chapter-3).  

As mentioned earlier, both A and  vary with chain length. Variation of  

reflects the variation of chain length in a homologous series or that of concentration in 

a binary mixture of homologues. On the other hand, variation of A corresponds to the 

variation of steepness of E with respect to the packing fraction , not necessarily 

related to a homologous series. Variation of A can also reflect the variation of 

concentration (X) in a binary mixture of chemically dissimilar molecules. Hence, the 

calculated p-A diagram can be compared with pressure-concentration (p-X) diagrams. 

Experimentally, phase diagrams in the p-T and T-X planes only have been reported. 

Features similar to the those in the theoretical diagrams can be seen in T-X diagrams 

with chemically dissimilar molecules. The NR lake in figure 5.12a and the trends in 

figure 5.12c are similar to those in the experimental T-X diagrams shown in figures 

3.4c and 3.22a ( chapter-3) respectively.  Somasekhara [30] has reported an 

extensive study of ternary mixtures of (3OBNAB + 4OBNAB) with 9OBCAB where, 

3OBNAB is propyloxybenzoyloxy nitroazobenzene, 4OBNAB is  

butyloxybenzoyloxy nitroazobenzene and 9OBCAB is nonyloxybenzoyloxy 

cyanoazobenzene. In the experimental temperature- concentration diagrams (figures 

6.12 to 6.14 of ref. 29a), it is seen that, the parabolic boundary of the NR lake points 
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towards the „cusp‟ in the SmAd - N boundary as in figure 5.12b. Also, as the 

concentration of the lower homologue 3OBNAB is increased, which is equivalent to 

decreasing the parameter  in our model, the „cusp‟ becomes more pronounced and 

finally, the NR lake merges with the main N region (figure 6.15 in ref.29a) as in figure 

5.12c.  

Figure – 5.12. The p - A phase diagrams with * = 0.5, q = 1.8, TR = 0.28 

showing the appearance and widening of the reentrant nematic(NR) lake 

as the value of 2 is decreased, (a) the SmA1-SmAd transition line ending 

in NR lake for 2 =0.05, (b) wider NR lake having the NR1-NRd transition 

line for 2 = 0.0475, (c) opening of the reentrant nematic lake creating a 

‘bay’ for 2 = 0.047 and (d) a wider reentrant nematic bay, for 2 = 

0.045. In the figures, the values of ( p, T) which are indicative of a SmA1- 

SmAd transition are shown by a dashed line and the filled circle indicates 

the NR1 -NRd critical point. 

(a) (b) 

(c) (d) 
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In principle, as the chain length is varied, A,  and q vary together. 

Calculations including all these dependences are somewhat involved and have not 

been carried out. 

Quadruple reentrance is a very rare phenomenon and is seen only in one pure 

compound [31]. The phenomenon has been predicted by the dislocation loop melting 

theory [27] and by the spin gas theory [9]. The compound used in reference [31] is 

DB9ONO2 which has the chemical formula C9H19O OOC OOC NO2 where 

 denotes the phenyl ring. This compound has a terminal nitro dipole which is 

oppositely oriented to the two ester dipoles in the core. Hence, antiparallel 

configurations with different extents of overlappings are possible resulting in smectic 

polymorphism. This requires a model considering antiparallel configurations with 

different lengths and configurational energies which is obviously very involved. 

However, in our simple model, the possibility of quadruple reentrance at a 

constant pressure is seen in figure 5.13 which shows the upper part of figure 5.12 (c) 

in a magnified scale. As A is decreased, SmAd - NRd - SmA1 - NR1 - SmA1 transition 

sequence is obtained as indicated by the dashed line in figure 5.13. It can be noted that 

the quadruple reentrance occurs only over a very small range of values of the model 

parameters. 
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Figure – 5.13. The upper part of the figure 5.12c is shown in a magnified scale 

along the pressure axis. As A is decreased, the quadruple reentrant phase 

sequence SmAd - NRd - SmA1 - NR1 - SmA1 as indicated by the dashed line 

becomes possible. The filled circle indicates the NR1 -NRd critical point. 

In the following section, we consider the effect of independent variations of 

other parameters of our model. 

5.3.4 Effect of variations of other parameters  

We consider the effect of independent variations of other parameters of our 

model to get an idea of the ranges of the parameter values over which the different 

phases are stable. The effect of variation of 2 is shown in figure 5.14a for A = 1.5, * 

= 0.5, q = 1.8, TR = 0.3. For low and high values of 2, the nematic and the smectic 

phases respectively are stable over wide ranges of pressures. At intermediate values of 

2, as the pressure is increased, nematic reentrance is seen over a range of pressures 

corresponding to the steep variation of X2 due to the change over of the A-type of 

pairs to P-type of pairs. 

The effect of variation of the length ratio (q) of A- and P-types of pairs is 

shown in figure 5.14b for A = 1.5, * = 0.5, 2 = 0.05, TR = 0.3. We have varied q up 

to 1.9 since q  2 has no meaning in our model. It can be seen that the nematic 

reentrance occurs only for intermediate values of q (1.65 to 1.87). For low values of q, 

A and P types of pairs are structurally very similar. Hence, irrespective of the value of 

X2, the SmA phase is stable and there is no nematic reentrance. As the value of q is 

increased, the structural dissimilarity between the A and P types of pairs increases. 

Over a range of pressures corresponding to a steep variation of X2, the layering order 

is not favoured and the nematic phase reenters. For still larger values of q, the 

dissimilarity is also large. Thus, the nematic phase is stable over a large range of 

pressure and the SmA1 phase appears only at high pressures when the number of P-

type of pairs is large. Experimentally, the nematic reentrance is seen when q 1.4. In 

our calculations, a fairly large value of q ( 1.65) is required to get the nematic 

reentrance. This is because the nematic order is assumed to be saturated and the 

orientational potential is not considered resulting in the increased stability of the 
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smectic phase. Further, the excluded volume contribution which destabilises the 

layering order and causes the nematic reentrance, is underestimated due to the second 

virial approximation.  

Note that the trends in figures 5.14 (a) and (b) are opposite though both 2 and 

q increase with chain length in a homologous series. As mentioned earlier, an increase 

of 2 alone increases the stability of the SmAd phase. On the other hand, an increase 

of q independently of 2 increases the excluded volume contribution to the free energy 

and destabilises the SmAd phase. Experimentally (see for example, figure 3.3a, 

chapter-3), it is known that in the higher homologues of smectogens the SmAd phase 

has greater stability as in figure 5.14a. This indicates that the variation of 2 is more 

important in a homologous series than that of q. 

Figure – 5.14. Calculated phase diagrams for A = 1.5, * = 0.5, TR = 0.3 

(a) as a function of 2 with q = 1.8 and (b) as a function of q with 

2=0.05. 

In our model, * is the packing fraction at which E = 0 (see equation 5.1). 

Effect of variation of * is shown in figure 5.15 for A =1.5, q=1.8, 2 =0.05, TR =0.3. 

(a) (b) 
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For small values of *, X1 becomes large at relatively low pressures. This results only 

in the N-SmA1 transition at high pressures and there is no double reentrance. As the 

value of * is increased, X2 remains large up to a value of pressure which is sufficient 

to stabilise the SmAd phase and results in N-SmAd transition. At higher pressures, 

when X2 starts to decrease, the nematic phase reenters as explained above. For large 

values of *, there is no nematic reentrance since X1 becomes large only at high 

pressures. The reentrance of the N phase is associated with the steep variation of X2 

with respect to  which occurs near   *. Hence, the range of pressures over which 

the NR phase occurs has a strong positive slope with respect to *.  

Figure – 5.15. Calculated phase diagram as a function of * for A=1.5, 

TR = 0.3, q = 1.8 and 2 = 0.05. 

5.4 Conclusions  

We have extended our model of highly polar compounds to include the hard 

core interactions [32], adopting the method used by Koda and Kimura [11]. Assuming 

perfect orientational order, we have calculated p-T phase diagrams showing nematic to 
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nematic (N1-Nd) transition, double reentrance with bounded SmAd region and N1-Nd 

transition associated with double reentrance. As the chain length is increased, if the 

smectic phase does not intervene, the first order nature of the N1-Nd transition can be 

expected to become stronger and to occur at a lower temperature at any given 

pressure. Further, the pressure at which the SmAd region gets bounded increases with 

the chain length as seen experimentally. We have also calculated pressure versus A 

phase diagrams, where A is a parameter which increases with the chain length in a 

homologous series. These show the reentrant nematic (NR) lake associated with the 

SmA1-SmAd transition, N1-Nd transition occurring inside an NR lake, quadruple 

reentrance at constant pressure, and widening and merging of the NR lake with the 

main nematic sea. The results are compared with other theories and the available 

experimental data. Our calculations including the hard core interaction clearly shows 

that, neglecting the latter is equivalent to a negative deviation in the geometric mean 

approximation for the attractive mutual interaction between A and P types of pairs and 

this deviation increases as the two components become structurally more dissimilar.  
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