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Chapter-4 

A Molecular Theory of the Effect of a Strong Electric Field 

on Phase Transitions in Highly Polar Compounds 

4.1 Introduction 

As we have described earlier, many mesogenic compounds exhibit both nematic 

(N) and smectic A (SmA) phases. The N phase has a long range orientational order of 

the long axes of rod like molecules [1]. The SmA phase has an additional translational 

order of the centres of mass along the director n
^
, which is a unit vector representing 

the average orientation direction of the molecules. Liquid crystals composed of highly 

polar compounds exhibit double re-entrance and other unusual phase transitions [1]. 

In the pervious chapters, we have developed a molecular theory to describe these 

phase transitions. In this chapter, we extend the model to include the effect of an 

external electric field on some of these phase transitions and calculate the electric 

field-temperature  phase diagrams. 

An important property of a uniaxial liquid crystalline medium is the dielectric 

anisotropy. It is defined as the difference between the dielectric constants
†
 measured 

with the electric field applied parallel and perpendicular to the director (n
^
), i.e., 

= || – .     (4.1) 

When an electric field is applied to a nematic liquid crystal, the field couples to 

the director through the dielectric anisotropy and tends to align the molecules parallel 

or perpendicular to the field depending on the sign of the anisotropy.  

The field dependent free energy density is given by, 

F
E
 = – 

1

20||E  2 cos
2 –  

1

2 0 E  2 sin
2    (4.2) 
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where E is the magnitude of the electric field, 0 is the absolute permittivity of vacuum 

and  is the angle made by the director with the direction of the applied field.In terms 

of , equation 4.2 can be written as,   

F
E
 = – 

1

20(n
^
E


 )2 
 –  

1

20E   2.     (4.3) 

When the electric field is low, || and  remain practically unchanged. Thus, to 

minimise the free energy density, the director aligns parallel to the field for a nematic 

with positive  and perpendicular to the field when  is negative.  

Usually, a medium with nonpolar rod like molecules will have a small positive 

(<1) due to the anisotropy in the polarisability of the molecules. However, when 

the molecule has one or more permanent dipoles, the orientational contribution to the 

dielectric constant becomes important. For nematic liquid crystalsconsisting of polar 

molecules with dipoles along the long axes, can be as large as +20 or higher. We 

restrict our discussion to materials with positive When the electric field is applied 

parallel to the director, from equation 4.2, we obtain  

F
E
 = – 

1

20 ||E  2.     (4.4) 

When the applied field is strong, || can increase to lower the free energy.  

Maier and Meier [2] showed that  can be written in the form 

  = A[ e –Bp
2
/T ] S        (4.5) 

where A is proportional to the number of molecules/cc and hence indirectly depends 

on temperature, e is the polarisability anisotropy and p is the longitudinal 

component of the permanent dipole moment. The second term depends on 

temperature explicitly. The experiments and theoretical calculations considered in this 

chapter are carried out over about 10
0
C, i.e., the temperature variation is less than 

about 10% of the absolute temperature (K). Thus, to a good approximation, we can 

write  

 = 1S       (4.5a) 

                                                                                                                                       
†
 Note that, in SI units, absolute permittivity is denoted as  and the relative permittivity (or 

dielectric constant) is denoted as r. For the sake of convenience we omit the subscript ‘r’  and 

use  for dielectric constant. 
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and consider 1 as constant, where 1 is the dielectric anisotropy for the fully 

aligned state (i.e., S = 1). Using this in equation 4.4, we can write,  

 

|| =  
–
+ 

2

31S     (4.6) 

where     
–
 = (|| +2)/3    

 (4.7) 

is the average dielectric constant. Using equation 4.6, equation 4.5 can be written as  

F
E
 = – 

1

20  
–

E  2 
– 

1

3 0 1 SE  2          (4.8) 

Assuming that  
–
 remains unchanged, the free energy is lowered if S takes a higher 

value in presence of the field i.e., the external field results in an additional orienting 

potential and leads to an increase of the nematic order parameter [3].  

When an electric field is applied to an isotropic liquid i.e., at a temperature above 

the N-I transition point, it induces a weak orientational order (paranematic phase). 

When the applied field is not very strong, the value of S due to the induced order in 

the paranematic (NP) phase is very small. Thus, from the equation 4.8, neglecting the 

induced S part, the field dependent free energy density for the paranematic phase can 

be written as,  

F
E

 NP
 = – 

1

20  
–

E  2             (4.8a) 

For a paranematic liquid crystal with polar molecules,  
–
 can be 10 or more.  

If the field is strong, the induced order parameter increases, especially just above 

the nematic-isotropic transition temperature (TNI). Also, the nematic-paranematic (N-

NP) transition temperature, increases with field. Since both the N and the field induced 

NP phases have the same symmetry, there can be a first order N-NP transition with a 

jump in S or a continuous evolution of N to NP beyond a critical point. This is 

analogous to the liquid-gas transition or the N1-Nd transition (described in chapter-2). 

Thus, when the field is increased, the first order nature of the N-NP transition becomes 

weaker and finally results in a continuous change-over from a strongly oriented to a 
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weakly oriented phase beyond a critical field [4, 5] (see figure 4.1). Experimental 

studies on the effects of strong electric field are hampered by the inevitable Joule 

heating of the sample due to the ionic currents and  dielectric heating due to the 

relaxation of molecular dipoles at a relatively low frequency. Recently, Durand and 

co-workers [4, 6] have quantitatively studied the critical point in the nematic-

paranematic phase transition  by using short pulses of electric fields separated by a 

long time interval to allow the system to remain in thermal equilibrium. More 

recently, Madhusudana et al have developed an alternative experimental technique in 

which the local temperature of the sample is monitored to take account of the heating 

effect [7, 8]. There have been a number of theoretical calculations on the detailed 

phase diagrams in the presence of a field in the framework of the Landau theory [9, 

10, 11]. There are also some molecular models that discuss this phenomenon [12, 13, 

14]. 

Figure - 4.1. Variation of the orientational order parameter (S) with 

respect to temperature, of the compound pentyl- cyanobiphenyl, under 

various external electric fields [5]. Note that the jump in S reduces to 

zero at higher fields and also S increases with field at any given 

temperature. 

As described in the introduction, compounds which exhibit the NR phase are 

highly polar. Hence, an external electric field can have a very strong influence on the 

orientational order  of these compounds. This can in turn influence the N-SmAd, 
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SmAd-NR and N1-Nd phase transition temperatures. Experimental data [7] and the 

theories based on the Landau-de Gennes phenomenological model [7, 15] show that 

the smectic A-nematic transition temperature increases as the square of the applied 

field. Experiments also show that the temperatures of N1-Nd transition, SmAd-NR 

transition and SmA1-SmAd transition, increase with the field [8, 16]. 

The strongly polar compound p-cyanophenyl p-n heptylbenzoate (CP7B) has a 

large positive   and ordinarily shows only a nematic phase. However, due to the 

enhancement of S under a strong external electric field [17] or in extremely thin cells 

[16], the compound shows a jump in S as the temperature is varied, indicating an N1-

Nd transition (see figure 4.2).  

Figure - 4.2. (a) Variation of || as a function of temperature for the 

compound CP7B in a cell of thickness of 10 m under an alternating 

voltage of 180V and frequency 4111 Hz [17]. (b) Variation of transmitted 

intensity as a function of temperature for the compound CP7B for cell 

thickness of 1.9 m. [16]. Note the jump in both the cases around 33
0
 C 

indicating a jump in S. 

Electric field phase diagrams have also been constructed [8] for the mixture of 

hexyloxy cyano-biphenyl (6OCB) and octyloxy cyanobiphenyl (8OCB) with 27wt % 

of 6OCB, which exhibits the NR phase. The mixture has the following sequence of 

transitions in the absence of electric field:  

Isotropic-(78.3
0
C)-N-(47.2

0
C)-SmAd –(28.4

0
C)-NR. 

(a) (b)
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The experimental electric field- temperature phase diagram is shown in figure 4.3. 

Both the SmAd-NR and SmAd-N transition temperatures increase with field. The 

variation of the former is much stronger than that of the latter. Hence, for sufficiently 

high fields, the SmAd phase can be expected to get bounded. This is reminiscent of the 

bounded SmAd phase in pressure-temperature phase diagrams. However, due to 

practical difficulties, the applied voltages are limited to 300 V(at 4111 Hz). As the 

sample thickness is ~20m, this is equivalent to 500 esu field. Though the field 

dependence of the SmAd-NR transition temperature is shown by a smooth line as a 

guide to the eye, note that the data indicates a change of slope at E 200esu.  

Figure - 4.3. The electric field-temperature phase diagram for a mixture 

of 27 wt % of 6OCB in 8OCB [8]. Circles and open squares are the data 

obtained from light scattering measurements and electrical impedance 

measurements respectively. The solid lines are guides to the eye. Note the 

slope change in the data points corresponding to SmAd-NR transition 

near a field of 200 esu. 

In the next  section we present a theoretical model to describe the electric field 

phase diagrams.   

4.2 Theoretical model 

4.2.1 Assumptions 

We extend our molecular theory of highly polar compounds described in the 

previous chapters to include the effect of a strong electric field. Many of the 
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assumptions made in this model have already been discussed in the earlier chapters. 

We recall the assumptions relevant for the present theory. 

(1) The medium is assumed to consist of ‘pairs’ of molecules having either 

antiparallel (A) or parallel (P) configurations. The difference between the pairing 

energy of the A-type (EA) and the P-type (EP) configurations is written as  

E =  EA EP  = R1 kBTNI 








 
R2 

TR
 1                                  (4.9) 

 

where R1 is an interaction parameter and R2 is the reduced temperature at which the 

density of the medium is such that E becomes zero. 

(2) The orientational potential for A-type of pairs (UAA) and P-type of pairs (UPP) 

are assumed to be different. We write, as in chapter-2, 

UPP = YUAA      (4.10) 

and the mutual interaction potential  

UAP  = UPA = P UAA UPP        (4.11) 

where P 1 indicates a deviation from the  geometric mean (GM) approximation.  

(3) The McMillan parameters [18] for A-type (A) and P-type (P) configurations 

can be written as   

A = 2 exp([  ro / (ro + 2c)]
2
 )                             (4.12) 

P = 2 exp([  ro / (ro + c)]
2
 )                               (4.13) 

where ro and c are the lengths of the aromatic and chain moieties of the molecule 

respectively. The mutual smectic interaction parameter  

AP = PA=E  = Q A P                                   (4.14) 

where Q  1 indicates a deviation from the geometric mean (GM) approximation.  

(4) Following Kventsel et al  [19], we decouple the translational and orientational 

parts in the McMillan’s ‘mixed’ order parameter () and write  

 = S      (4.15) 

where S and  are the nematic and the smectic order parameters respectively. 
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The following are the additional assumptions made to incorporate the effect of an 

external electric field. 

(5) The electric field enhances the density of the medium (electrostriction). The 

‘direct’ effect arises from the pressure due to the field [20], 

pE = 
0||E 2

2
     (4.16)  

and yields            



 = 
T 0||E 2

2
             (4.17) 

where T is the isothermal compressibility. For the highest fields that are applied, / 

~ 10
–5

. However, as we mentioned, the anisotropy of dielectric constant couples to the 

field to enhance the order parameter of the medium. This results in another 

contribution to the electrostriction:  

 = 








S T

S(E )     (4.18) 

with   

S(E )  
1 E 2

3
    (4.19) 

where  is the susceptibility for the orientational order
‡
 and is assumed to be ~ 410

–8
 

(cgs units) [6] in the present calculations. With 115 and E 600esu , equation 4.19 

gives S  610
–3

. Horn [21] has measured the order parameter of pentyl 

cyanobiphenyl as a function of pressure and at temperatures much lower than TNI, 

[/S]T  0.3. Using these values in equation 4.18, since  1gm/cc, we have, / 

2  10
–3

, which is 200 times larger than the direct electrostriction effect estimated 

earlier. Hence the intermolecular separation decreases considerably and this can in 

turn be expected to change R2 .  

In view of the above discussions, we can write:   

R2(E  ) = R2(0) + C E  
2
.    (4.20)  

The value of C is estimated as follows: 

                                                
‡
 Note that (1/) has the unit of energy density. Therefore  = 410

–8
  cc/erg = 410

–7
 m

3
/J. 

Also, 1esu = 310
4
 V/m.
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As  increases, the intermolecular separation r decreases and hence E increases 

(see figure 2.5, chapter-2). From our earlier calculation (see section 2.2, chapter-2) of 

the variation of  E (given by equation 4.9) with r, for r  5Å it is found that  

(E)/r  10
–19

 J/Å.     (4.21) 

We have, / =3r/r  210
–3

. Hence, r/r 10
–3 

and for r5Å, we have r510
–3

Å. 

With this, equation 4.21 yields (E)  510
–22

J = 510
–15

 erg. Using equation 4.20 in 

4.9, the increase in E with field at TR = R2(0) is given by 

(E) = R1 kBTNI C E 
2
/TR.     (4.22) 

As in the previous chapter, using R1 = 15, TR = R2(0) = 0.8, TNI =500 K and with E 

=600esu, we get C~10
–8

 cgs units.

We have not taken into account the possible volume-dependence of the 

orientational and  layering potentials, the affect of which will be much smaller than 

the one discussed above.   

(6) Though there is no long range polar order in the medium, the P-type of pairs 

have a polar short range order. For each molecule in a P-type of pair, the permanent 

dipole in the neighbouring molecule induces an oppositely oriented dipole and reduces 

the net dipole moment (see figure 2.4, chapter-2). With the polarisability e  50Å
3
 

and the intermolecular separation r  5Å, the magnitude of the induced dipole moment 

is nearly half of that of the permanent dipole moment. Thus, if the permanent dipole 

moment of each molecule is p, the net dipole moment of a P-type of pair is also p. In 

the presence of an external electric field ( E  


), this contributes a term linear in   


, to 

the orienting potential of P-type of pairs. Also, due to the anisotropy in the 

polarisability of the aromatic cores, both A and P types of pairs have an orienting 

potential proportional to  
2
. Thus, in the presence of an external electric field, the 

additional orienting potentials of the i
th

 A-type and j
th

 P-type of pairs can be written as 

UAi
E
(E  ) =  E 

2
cos

2
 Ai  

and         UPj
E
(E  ) = – p E cosPj  E 

2
cos

2
 Pj                         (4.23) 

The value of the coefficient  is estimated as follows.  
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Including the orienting potential due to the field in the Maier-Saupe theory 

(reviewed in section 2.3, chapter-2), the single particle potential of the i
th

  molecule is 

given by 

Ui =   U0 S P2(cosi )  E 
2
cos

2i.   (4.24) 

where  is a constant assumed to be independent of S and E . Hence, the value of  is 

the same in the nematic and paranematic phases. Considering the paranematic (NP) 

phase with S0, equation 4.24 can be written as,  

Ui     
N P

 =   E 
2
cos

2i.    (4.25) 

Proceeding as usual, with the free energy F = U–TS , we get  

F
NP

NkBT
 = – lnZ

NP
      (4.25a) 

where Z
NP

 is the normalising integral of the distribution function in presence of 

electric field. We have 

 Z
NP

 = 
0

1

d(cos) exp 






 E 

2 

kBT
 cos

2 .   (4.25b) 

Since  E 
2
 << kBT, expanding lnZ

NP
 and collecting the leading term, we get, the free 

energy per mole with E in esu, 

F
NP

 = – N E 
2
/3.(erg/mol)                 (4.26) 

We compare this with the free energy per unit volume given in equation 4.8a for the 

paranematic phase. Since the experimental diagrams are usually plotted with the field 

in esu, we have carried out our calculations in esu to facilitate a direct comparison 

with the experimental data. Using the typical values of   
–
 (15), density ( 1gm/cc) 

and molecular weight ( 300 gm/mol), from equations 4.26 and 4.8a we get N 540 

per mole.  

In the MS theory, expressing cos
2i in equation 4.24 in terms of P2(cosi ), and 

proceeding as in section 2.3 (chapter-2), the final expression for the free energy per 

mole is 
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F

NkBT
 = + 

U0

2kBT
 S

2
 
 E 

2 

3kBT
 – lnZ    (4.27) 

where Z is the normalising integral, given by 

Z = 
0

1

d(cos) exp 














U0

2kBT
 S + 

2 E 
2 

3kBT
 P2(cos) .  (4.28) 

The necessary integrals are solved numerically with N =540. For a given external 

field, the calculated free energies for the low S and high S solutions become equal at 

the N-Np transition temperature (TN-NP). For a field of 1000 esu, we get TN-NP about 

4.5K higher than TNI in the field free case, i.e., an increase of 4.5 10
–6 

K/(esu)
2
. This 

agrees quite well with the experimental [4, 22] value of 510
–6

K/(esu)
2
 for 

compounds with a cyano end group.
 
Hence, we use, for a mole of pairs, N = 1080.  

4.2.2 Free energy and order parameters  

As in the previous chapter (see section 3.4.1), extending the McMillan theory for 

mixtures, the potential energy of the i
th

 A-type of pair in the absence of electric field 

can be written as 

UAi =   UAA XA SA P2 (cosAi)[1 + AA cos(2zi A/d)] 

           UAP XP SP P2 (cosAi)[1 + APP cos(2zi A/d)]             (4.29) 

where XA, XP, SA, SP and A ,P are the mole fractions, orientational and translational 

order parameters of A and P types of pairs respectively. Similarly for a P-type pair, Upj 

is obtained by interchanging suffixes A and P in equation 4.29. Experimentally, dc 

electric field is not used to avoid problems due to ionic conductivity. We assume that 

the frequency of ac is sufficiently low, so that the dipoles follow the field and we 

confine our calculations to a dc field. In presence of electric field, the dipoles have a 

long range polar order with an average orientation cos . Thus, using equation 4.23, 

the internal energy of one mole of pairs in the presence of electric field can be written 

as 

2U = 
 NXA 

 2 
 UAi + 

 NXP 

 2 
 UPj  NXP E     

  N E  2 (XA cos
2
 Ai + XP cos

2
 Pj) –Np E cos Pj    (4.30) 
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where the factor 2 on the left hand side reminds that we have a mole of pairs, the 

factor ½ appears in the first two terms since each pair is counted twice while 

averaging over the mutual interactions and we have also added the concentration 

dependent part of the configurational energy. Proceeding as in chapter-3, the molar 

entropy is given by: 

2S =  N kB 











XA 
1

d
 
– d/2

+d/2

dzAi
0

1

d(cosAi) fAi ln fAi + XP 
1

d
 
– d/2

+d/2

dzPj
0

1

d(cosPj) fPj ln fPj  

            N kB ( XA ln XA  + XP ln XP )                                                                 

(4.31) 

where the last term is the entropy of mixing and fA and fP are the normalised 

distribution functions of A and P types of pairs respectively. The Helmholtz free 

energy is given by: 

F = U  TS                                                        (4.32)  

The distribution functions fA and fP are found by minimising F. It can be shown 

that the decoupling assumption [19] (see equation 4.15) leads to the result  

fA = fAo fAt  , and  fP = fPo fPt                              (4.33) 

where fAo and fAt are the orientational and translational distribution functions of the A-

type of pairs and fPo and fPt are those for the P-type of pairs. We have 

fAo = 
1

ZAo
exp 















UAA

 kBT
 [ XASA(1+AA

2
) + P Y XPSP(1+EAP)] + 

2E 2

3 kBT
P2(cosA )   

fPo = 
1

ZPo
exp 











UAA

 kBT
 [ YXPSP(1+PP

2
) + P Y XASA(1+EAP)] + 

2E 2

3 kBT
P2(cos P) 

 + 


pE

 kBT
 cos P   

fAt = 
1

ZAt
exp 







UAA

 kBT
 SA[A XASAA + P Y E XPSPP]cos(2zA/d)       

fPt = 
1

ZPt
exp 







UAA

 kBT
 SP[YP XPSPP + P YE XASAA]cos(2zP/d)                       (4.34) 
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where ZAo, ZPo, ZAt and ZPt are the appropriate normalising integrals. Hence the order 

parameters are given by:  

SA = 
0

1

 d(cosAi)P2 (cos Ai) fAo     (4.35) 

and  

A = 
0

1

 d(A)cos(A) fAt      (4.36) 

where the reduced co-ordinate A = (2zA/d) is used. SP and P are obtained by 

interchanging the suffixes A and P in equations 4.35 and 4.36. The free energy per 

mole of pairs can now be written in the simplified form  

2F =+
N UAA

2
 [XA

2
SA

2
(1+3AA

2
)+ Y XP

2
 SP

2
 (1+3PP

2
)+ 2P Y XA XP SA SP(1+3EA

 

P
 
)] 

  –
1

3
 N E 2  

 NkBTXA ln






ZAo ZAt

 XA
  NkBTXP ln







ZPo ZPt

 XP
   NXP E          (4.37) 

The terms depending on S and  cos  cancel in F on substituting equations 4.34 in 

equation 4.31 for entropy. However, the ‘p   ’ part affects SP and hence F through fPO 

(see equation 4.34). The equilibrium value of the mole fraction of the A-type of pairs 

(XA)is found by minimising F  with respect to XA. We get, with XP = 1– XA, 

XP

XA
 = 

ZPo ZPt

 ZAo ZAt
exp



UAA

 kBT
[A XASA

2A
2
 YP XPSP

2P
2
 +P Y E SA SP AP(XPXA)]+ 



E

kBT 
              (4.38) 

Calculations have been made as in the previous chapters, for R2(0) = 0.8 and 0.6 

with R1 = 15 and 6. We have used p= 4D and N =1080. Thus, at low fields, Np   

(~10
6

  ) is much larger than N   
2
 (~10

3
   

2
), and we can expect the polar short range 

order to have significant effect at low fields, especially when XP is relatively large. We 

evaluate all the necessary integrals using a 32 point Gaussian quadrature method in 

double precision. We look for the following types of solutions: 
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1) SA, SP   0, A = P = 0 leading to nematic phase which is  N1 if XA is relatively 

small and Nd if XA is relatively large, and, 

2) SA, SP   0, A , P  0 leading to the smectic phase which is  SmA1 if  XA is 

relatively small and SmAd if XA is relatively large. 

The average orientational order parameter is given by 

S 


 = XASA + XPSP     (4.39) 

4.2.3 Results and discussion 

4.2.3.1 Effect of electric field on the nematic - paranematic transition 

 We first consider the simplest case in which P = Q = 1, i.e., the geometric mean 

rule is assumed to be valid and further Y =1, i.e., the orientational potentials for both 

A and P types of pairs are equal. When the field is applied, the first order N-I 

transition changes over to first order nematic(N)-paranematic(NP) transition. The first 

order transition ends in a critical point as the field is increased. This behaviour is seen 

in the variation of the average orientational order parameter shown in figure 4.4 for R1 

= 15, R2(0) = 0.8. The transition is associated with a negligible jump in  XA. The 

theoretical variation compares qualitatively with the experimental diagram shown in 

figure 4.1. However, experimentally the critical temperature of the N-NP transition is 

~1K above TNI (=300K) whereas the calculated critical temperature is about 15K 

above TNI (see figure 4.4). Also, the calculated critical field is about 3 times larger 

than the experimental value. The mean field theory is known to overestimate the 

values of the critical temperature and field [14].  
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Figure - 4.4. Variation of the average orientational order parameter S 


 at 

the first order nematic-paranematic transition, with R1 = 15,  R2 = 0.8, 

and P = Q = Y =1. The lines from left to right correspond to an external 

electric field E = 0, 500, 1000, 1250, 1500 and 1650 esu respectively. 

The N-NP transition temperature increases quadratically with the external field. 

With TNI = 500K and with the same set of parameter values used for figure 4.4, the 

calculated variation of T = TN-NP – TNI in kelvin, as a function of E 
2
 is shown in 

figure 4.5a. It can be seen that the slope T/E 
2
  10

–5
 K/(esu)

2
 agrees with the 

experimental value ( 510
–6

 K/(esu)
2
 [22]), for a compound with a cyano end group 

(having TNI 400K). The calculated increase in the order parameter S = S(E ) –S(0) 

as a function of E 
2 

is shown in figure 4.5b. At TR = 0.96 (figure 4.5b, line i), S varies 

quadratically with the external field and the slope S/E 
2
10

–8
/(esu)

2
. At low values of 

T, S is relatively high and the susceptibility  (i.e.,  ~ S/   
2
, see equation 4.19) is 

low and nearly constant with respect to electric field. At higher values of T (TR = 1), S 

is low and  is high. Also, as the electric field is increased, S increases significantly 

and hence  decreases. Since  varies with  , S is no longer quadratic in    and 

tends to have slower variation with field for higher fields (figure 4.5b, line ii). The 

average slope increases to 3.510
–8

/(esu)
2
 at TR =1.0. 

S 

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Figure - 4.5. Variation of (a) T = TN-NP – TNI in kelvin and (b) increase in 

the order parameter S= S(E  ) – S(0) for (i) TR= 0.96and (ii) TR = 1.0, as  

functions of E 
2
, for the set of parameters as in the figure 4.4. 

The calculated quadratic enhancement of S due to the field is microscopic in 

origin and is usually known as the Kerr effect. From the experimental data [17] for the 

compound CP7B, extracting the contribution from the Kerr effet only, it is shown that 

[17]  ~ 10
–7

/(esu)
2
 and increases with temperature. 

4.2.3.2 Effect of electric field on the N1-Nd transition 

As already described in chapter-2 (see section 2.4.3), we get a first order N1-Nd 

transition for R1 = 15,  R2(0)= 0.8, P =0.71 and Y = 2. We have calculated the effect of 

an external electric field on the N1-Nd transition using these parameters. The 

temperature variations of XA and the average order parameter S 


 associated with the 

transition  are shown in figure 4.6(a) and (b) respectively. We see that, as the field is 

increased, the first order N1-Nd transition ends in a critical point at E  1100esu and at 

TR0.9. The calculated increase in the N1-Nd transition temperature (T) is plotted 

with respect to E 
2
 in figure 4.7. 
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Figure - 4.6. Variation of (a) the mole fraction of the A type of pairs (XA) 

and  (b)  the average order parameter (S 


) as functions of the reduced 

temperature with R1 = 15,  R2 = 0.8, P =0.71 and Y = 2. The lines from left 

to right correspond to the external field E =0, 500, 700, 1000 and 1100 esu 

respectively.  

Figure - 4.7. (a)Variation of the shift in the N1-Nd transition temperature 

at low fields, as a function of E 
2
 with TNI = 500K, for the parameter set as 

in figure 4.6. The slope is constant at high fields (b).  

As mentioned earlier (see section 4.22), the linear term dominates at low fields 

and T is large (figure 4.7a). For example, at   = 10 esu, slope T/   
2
  210

–4
 

K/(esu)
2
. As the external field is increased, the 

2
 term dominates and the slope 

decreases. A graph of T vs   
2
 at high fields is practically a straight line (figure 

4.7b), with the slope  710
–6

 K/(esu)
2
. It is clear that the enhancement of T at low 

fields is due to the presence of polar short range order in the medium. Experimentally 

[16], for the compound CP7B contained in a thin cell, it is estimated that a field of 

300V/mm (=10 esu) increases the N1-Nd transition temperature by about 1
0
C, which 

corresponds to T/E 
2
  10

–2
K/(esu)

2
. The experimental value of T is nearly 50 times 

the calculated value ( 0.02K for 10 esu). This may be due to the presence of clusters 

with more than two molecules in the P-type configuration, thus enhancing the polar 

short range order effect. On the other hand, for the N-NP transition, as mentioned 

earlier, XA is relatively large and has a negligible jump at the transition. Hence, the 

linear coupling with field does not have a significant influence.  
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4.2.3.3 Effect of electric field on the reentrant transitions 

As described in chapter-3 (see section 3.4.2), with P = Q =Y = 1 and R1 = 15, 

R2(0) = 0.8 and A =1.05, a double re-entrant sequence, viz, N-SmAd-NR-SmA1, can 

be obtained as the temperature is lowered. With the same set of parameters and with C 

= 10
–8

 cgs units as estimated after equation 4.20, we have calculated the effect of 

electric field on the N-SmAd  and SmAd-NR  transition temperatures. The results are 

shown in figure 4.8a. The SmAd range with E =0 is relatively large (~90
0
C) compared 

to that of the experimental system (see figure 4.3). At low fields, as in the 

experimental system, both the N-SmAd and SmAd-NR transition temperatures increase 

with field. The lower transition temperature increases more rapidly than the upper one. 

As the field is increased beyond some value, the N-SmAd  transition temperature 

actually starts to decrease. This would imply that for a large enough field, the SmAd 

phase can disappear. This is reminiscent of the bounded nature of SmAd phase in 

pressure-temperature phase diagrams. Indeed if we reduce R1 to 6 and A to 0.96, we 

get the phase diagram with bounded  SmAd  region (figure  4.7b) for E  400esu. In 

this case, when E =0, as in the experimental system, the SmAd range is 0.05TNI  

18
0
C, using TNI  350 K (see section 4.2). The N-SmAd transition temperature 

decreases with field even at low fields. 
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Figure- 4.8. (a) Calculated phase diagram showing NR-SmAd and SmAd-

N transition temperatures as functions of electric field E  with P = Q =Y = 

1, R1 = 15, R2(0)= 0.8, A =1.05 and C = 10
–8

 cgs units. Note that the 

temperature scales are different for the two transitions. (b) Calculated 

phase diagram showing bounded SmAd region obtained when R1 and A 

are reduced to 6 to 0.96 respectively. 

We have also calculated the electric field phase diagram which exhibits an N1-Nd 

transition line in addition to the reentrant phases. For this, we use the set of parameters 

viz, R1  = 15,  R2(0)= 0.6, P = 0.7935, Y = 2 , Q = 1 which gives an N1-Nd transition 

associated with double reentrance for A < 0.542, as shown in chapter-3 (see text in 

section 3.4.2.2 and  figure 3.21). 
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With E =0, for A = 0.56, there is no N1-Nd transition and the SmAd range is 18
0
C 

in this case also. With E  0, for A = 0.56, the N1-Nd transition appears at higher 

fields. The electric field –temperature phase diagram obtained with C = 10
–8

 cgs units 

is shown in figure 4.9. At E ~ 300 esu, the SmAd-NR branch bifurcates showing a 

nematic-nematic transition. As in the previous chapters, we have indicated the two 

nematic liquid crystals which arise in the reentrant region by N1 and Nd, which signify 

that N1 has a higher concentration of P-type of pairs compared to the Nd  phase. Above 

400 esu, the SmAd-NR line varies more rapidly with field than at lower fields and the 

SmAd phase is bounded. 

Figure - 4.9. Calculated phase diagram showing the nematic-nematic 

transition line branching off from NR-SmAd transition line at E   300 esu 

and TR  0.679, for R1  = 15,  R2(0)= 0.6,  P = 0.7935, Y = 2 , Q = 1, A = 

0.56 and C = 10
–8

 cgs units . The inset shows the topology near the 

branching point on an exaggerated scale.  

As we have discussed in chapter-2 (see section 2.4.3), as a function of either P or 

Y, the first order N1-Nd  transition ends in a critical point at which XA varies 

continuously. In the present calculations, the N1-Nd  transition ends in a critical point 

as a function of field as already described in section 4.2.3.2. For the present set of 

parameters, the jump in XA decreases as the field is increased and we have not 

extended our calculations all the way to the critical point. In the experimental phase 

diagram (figure 4.3), the change in the slope of the SmAd-NR line is opposite to the 
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one shown in figure 4.9 (the thick line in the inset). As such, it is unlikely that the 

possible change of slope is associated with the development of N1-Nd  transition.  

In all the above calculations, the value of C in equation 4.20 was taken to be 10
–8

 

cgs units on the basis of experimental data on 5CB. The dielectric measurements on 

the 6OCB-8OCB mixture used in the experiment [8] clearly indicate that the 

susceptibility  has a value 3 10
–7

 near the NR -SmA transition temperature. The 

larger value shows that the concentration of parallel pairs is relatively high in this 

mixture, compared to that in 5CB, as it should be for the occurrence of the reentrant 

nematic phase. This value of  is about 8 times the earlier value used to estimate C 

(see discussion under assumption -5, section 4.2.1). Hence, in the next calculations we 

assume that C = 8 10
–8

 cgs units in equation 4.20. We have made calculation on the 

influence of the electric field on the phase diagram for the following set of parameters, 

R1 = 15, R2(0)= 0.6, Q = 0.55, A = 0.95 and P = Y =1, which gives a SmA1-SmAd 

transition associated with double reentrance, as shown in chapter-3 (see section 

3.4.2.2).The phase diagram obtained is shown in figure 4.10. 

Figure - 4.10. Calculated phase diagram showing the SmA1-SmAd 

transition line meeting the NR-SmAd transition line at E 700 esu and at 

TR 0.618 for R1 = 15, R2(0) = 0.6, Q =0.55, A =0.97, P = Y =1 and 

C=810
–8

 cgs units. Note that the temperature scale for the SmAd-N 

transition is different from that for the NR-SmAd transition. The inset 

shows the topology near the meeting point on an exaggerated scale. 
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Both the SmAd-SmA1 and SmA1-NR transition temperatures increase with field. 

However, the SmA1 range decreases and finally the SmAd-SmA1 and SmA1-NR 

transition lines meet at E  700 esu. At higher fields, only an SmAd-NR transition is 

realised. The change of slope of the smectic to NR transition line (thick line in the 

inset of figure 4.10) is now similar to that  seen in the experimental diagram (see 

figure 4.3). X-ray studies have been conducted by Cladis [23] on the mixture used in 

generating the experimental diagram shown in figure 4.3. However, X-ray 

measurement is not accurate enough to have detected a smectic A to smectic A 

transition. It would be interesting to look for such a transition in the system 

investigated. We should however note that in view of the approximations made in 

developing the molecular model and in particular with the mean field approach, 

quantitative agreement between the theoretical calculations and experimental data 

cannot be expected.  

4.3 Conclusions 

In this chapter, we have included the effect of an electric field in our molecular 

model of reentrant phases in highly polar compounds, in which the mutual orientation 

of near neighbour molecules changes from an antiparallel (A) to a parallel (P) 

configuration as the temperature is lowered. It is argued that the A to P cross-over 

temperature increases with field which accounts for the observed trends. By using a 

combination of linear and quadratic couplings of the orienting potential with field, we 

have shown that, as the field is increased, the first order nematic-paranematic as well 

as the N1-Nd transition temperatures increase and the SmAd phase gets bounded. 

Comparison of the results with the available experimental data shows that the linear 

coupling with field for P-type of pairs does not have significant influence on the 

nematic-paranematic transition since the concentration of the P-type of pairs (XP) is 

small near the transition. On the other hand, XP is quite high near the N1-Nd transition. 

Thus, the linear term has significant influence on the N1-Nd transition. This results in a 

large increase of the N1-Nd transition temperature, especially at low fields. For 

suitable values of parameters, we have shown that either a nematic-nematic transition 

line can branch off from the SmAd-NR line or a SmA1-SmAd transition line can meet 

the SmAd-NR line at an appropriate field. In the latter case, the smectic to NR 
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transition line has an associated slope change which is consistent with the available 

experimental data. 
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