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Introduction 

1.1 Liquid Crystals 

In a solid crystal the molecules are organised in a regular three dimensional 

lattice,  i.e., the centres of mass of the molecules have long range three dimensional 

translational order. Usually the molecules are not spherical. In a solid crystal, the 

average orientations of the molecules within a unit cell are fixed in specific directions, 

i.e., the molecules also have long range orientational order. On the other hand, in an 

isotropic liquid, there is no long-range order either in positions or in orientations of 

the molecules. A solid crystal, on heating, usually looses both the translational and 

orientational order at a well defined temperature (the melting point) and transforms 

into an isotropic liquid. But certain crystalline solids pass through one or more 

intermediate phases (mesophases) before transforming into an isotropic liquid. 

If the molecules are globular in shape, on heating the solid crystal, the 

orientations of the molecules may become random before the positional ordering is 

lost. This results in an orientationally disordered, positionally ordered mesophase 

called plastic crystal. On the other hand, if the molecules have a pronounced shape 

anisotropy (rod-like, disc-like or with a bent-core), then, the positions become random 

(in one, two or three dimensions) resulting in a liquid that still retains a long-range 

orientational order. Such phases, characterised by long-range orientational order 

without long-range three dimensional translational molecular order are called liquid 

crystals, since they have some properties of liquids (for example, they can flow) as 

well as those of crystals (for example, birefringence). 

Liquid crystals obtained purely by the thermal process mentioned above, are 

called thermotropic liquid crystals. Liquid crystalline phases may also be induced by 

solvents, in which one of the components consists of amphiphilic molecules 

(molecules having lyophilic and lyophobic groups at the two opposite ends). Such 

mesophases are called lyotropic liquid crystals in which, the parameter which brings 

about the phase transition is the relative concentration of the components. Certain long 
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chain polymers exhibit liquid crystalline behaviour and are called polymeric liquid 

crystals [1,2]. 

In this thesis, we consider only some thermotropic liquid crystals made of low 

molecular weight rod-like molecules. Their nomenclature is based on the type of order 

present in the phase. In the next section, we describe the classification of the 

mesophases relevant to the work reported in this thesis. 

1.2 Classification of liquid crystals 

It is now known that [1,2] liquid crystals can exhibit more than about 35 types of 

symmetries. Mainly, there are two fundamentally different types of liquid crystals 

made of rod-like molecules namely, the nematic and the smectic. 

1.2.1 Nematic liquid crystals 

Figure - 1.1. Schematic representation of the ordering of the rod-like 

molecules in the isotropic and the nematic phases. The director n
^
 and the 

choice of axes in the laboratory frame of reference are also shown. 

The nematic liquid crystal (N) has the following characteristics[1]:  

1. The nematic medium has a long-range orientational order and no long-range 

translational order of the molecules i.e., the centres of mass of the molecules are 

randomly arranged in three dimensions, whereas the long axes of the rod-like 

molecules are approximately aligned (see figure-1.1).  

2. The preferred axis of orientation in the nematic liquid crystal, called the 

director, is represented by the unit vector n
^
. The orientational ordering in the nematic 

liquid crystal is different from that found in a solid ferroelectric crystal. In the latter, 

n 
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the molecular dipole moments have a long range correlation. This results in the 

formation of rigid domains having a net electric polarisation. Hence, the „up‟ and 

„down‟ configurations of the molecules are energetically different, leading to a long 

range polar orientational order. In the nematic liquid crystal, there is no such polar 

long range correlation, i.e., the „up‟ and „down‟ configurations of the molecules are 

equally probable. Hence the director is apolar, i.e., the states of the director n
^
 and -n

^
 

are indistinguishable and the system is not ferroelectric.  

3. The apolar orientational order, in general, is represented by even rank tensors. 

The most important one is the second rank tensor which can be represented as 

Sij


= 

1

2
3ij - ij      (1.1) 

where, the tensor indices  and  represent the orthogonal axes (X, Y, Z) in the 

laboratory frame of reference (see figure-1.1), while i, j represent the orthogonal axes 

(X', Y', Z') in the molecular frame of reference.  and ij are the Kronecker deltas 

and the brackets   denote the thermal average. Sij


is symmetric in i,j and in  . It 

is also a traceless tensor with respect to either pair i.e., Sij


= Sii


= 0, where the 

repeated tensor indices imply the usual summation convention. The usual uniaxial 

nematic medium is cylindrically symmetric about the director taken to be along the Z 

axis and the X-Y plane is a plane of reflection for the structure. Hence,  

Sij

ZZ
 = -2 Sij

XX
 = -2 Sij

YY
 = Sij      (1.2) 

If the molecules are assumed to be cylindrically symmetric, the state of alignment of 

the molecules is described by a symmetric, diagonal and traceless ( 3 X 3) matrix Sij  

represented as  

Sij  = 





















S

S

S

2 0 0

0 2 0

0 0

     (1.3) 

Hence, the extent of orientational order of the uniaxial nematic liquid crystal is 

represented by the so-called scalar order parameter S defined as 

S = 
1

2
3cos

2i  –1     (1.4) 
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where i  is the angle between the long axis of the i
th

 molecule and the director. The 

order parameter takes a maximum value equal to 1 when all the rods are perfectly 

aligned and is zero when all the orientations of the long axes are equally probable (in 

the isotropic phase). 

4. The nematic phase occurs only in materials whose molecules do not have 

handedness, i.e., either each constituent molecule must be identical to its mirror image 

(nonchiral) or, if it is not, the system must be a racemic (1:1) mixture of the right- and 

left-handed species. The molecules become chiral if they have an asymmetrically 

substituted carbon atom. Then, the medium becomes optically active and the structure 

acquires a spontaneous twist about an axis perpendicular to the director. The resulting 

phase is called cholesteric liquid crystal denoted as N*. The cholesteric phase is not 

considered in this thesis any further. 

1.2.2 Smectic liquid crystals 

Figure -1.2. Schematic representation of ordering of rod-like molecules in 

the smectic A and the smectic C phases, showing the nematic director n
^
, 

the average spacing d between the layers, the wave vector q


 representing 

the density wave along the layer normal. q


 and n
^
 are parallel in the 

smectic A liquid crystals whereas in the smectic C liquid crystals, n
^
 is 

tilted with respect to q


 by an angle . 

The smectic liquid crystal (Sm) has the following characteristics: 

1. The centres of mass of the molecules are approximately arranged in layers, the 

lateral arrangement within the layers being random. The Z axis is taken along the layer 

normal (see figure-1.2).  

smectic C

 n
^

smectic A

n
^

 q


 Z

 q




 d
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2. The medium has a density modulation along the Z axis. It is known that a true 

one dimensional order in three dimensional space is not possible since it leads to 

Landau-Peierls instability [1] and the mean square displacement diverges 

logarithmically with the linear size of the sample. However, samples having a linear 

size of a few hundred metres are required to have the root mean square displacement 

of the order of the lattice spacing [1]. This size is much bigger than that of the 

experimental samples. The X-ray scattering by a sample of small size shows quasi-

Bragg peaks corresponding to quasi-long range one dimensional order. Hence, in 

addition to the long range orientational order, the smectic liquid crystal has quasi-long 

range one dimensional translational order. 

3. The resulting density modulation, on Fourier analysis, can be expressed in a 

series of sinusoidal functions. Of these, the dominant one is the first harmonic.  

Hence, the density wave can be represented by  

zcos(qz)]    (1.5) 

where  is the average density of the medium, q


 is the wave vector along the layer 

normal with q = |q


| =2/d and d is the average spacing of the layers. The extent of 

layering (smectic) order is measured by the normalised amplitude of this density wave, 

called the smectic order parameter , given by  

cos(2zi/d )     (1.6) 

where, zi is the z coordinate of the centre of mass of the  i
th

 molecule. When there is no 

layering order,  = 0 and the medium has uniform density o as in a nematic liquid 

crystal. 

4. Different variations of the layering and inlayer order are possible leading to 

different types of smectic liquid crystals. If q


||n
^
, i.e., the nematic director is normal to 

the layers, it is termed as the smectic A (SmA) liquid crystal. In this thesis, apart from 

the N and the SmA liquid crystals, we also consider the smectic C (SmC) liquid 

crystal. In SmC liquid crystals, q


 and n
^
 are not parallel (see figure-1.2). The angle  

between q


 and n
^
 represents the average tilt of the long axes of the rod-like molecules 

with respect to the layer normal. 
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In this thesis, we develop molecular theories of various liquid crystalline phases 

exhibited by polar compounds. The presence of polar bonds in the molecules is  

important in the formation of some liquid crystals. It is known that the liquid crystals 

composed of strongly polar molecules exhibit some unusual phase sequences (see 

section 1.5). In the next section, we give examples of some polar bonds and their 

dipole moments. 

1.3 Examples of polar bonds and their dipole moments 

Generally, molecules are electrically neutral, i.e., the algebraic sum of all the 

charges in a given molecule is zero. When the electronegativities of the two 

neighbouring atoms forming a bond are unequal, the common electron pair of the 

covalent bond is shifted towards the more electronegative atom. Hence, the centres of 

the positive and the negative charges do not coincide. This results in molecules with 

permanent electric dipole moments, called polar molecules. The direction of this 

electric dipole moment (p


) is, by convention, taken from the negative charge towards 

the positive charge. The magnitude (p) is defined as 

p = q l      (1.7) 

where q is the magnitude of the equal and opposite point charges having the 

separation l. The electric dipole moment is usually expressed in debye (1D=10
–18

esu). 

The SI unit is coulomb-metre (C m) and 1D=1/3 x 10
-29

 C m. One electron charge 

displaced by one angstrom results in 4.8D. Magnitudes and directions of permanent 

electric dipole moments of some polar bonds are given in table 1.1.  

Table 1.1 

Group or bond Direction of moment Magnitude of moment (D) 

C – H C   H 0.44 

C – N N  C 0.68 

C – O O  C 1.24 

O – H O  H 1.76 
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N – H N  H 1.84 

C  N N  C 4.37 

NO2 O2  N 4.4 

Magnitudes and directions of permanent electric dipole moments of some 

polar bonds. 

In the next section, we consider some typical examples of rod-like mesogenic 

compounds. 

1.4 Typical examples of rod-like mesogenic compounds 

Typical examples of mesogenic compounds consist of rod-like organic molecules 

having a few phenyl rings with or without bridging groups and end chains. A typical 

mesogenic molecule can be roughly taken as a rigid rod of length    20Å and  width   

5Å. 

In the examples given below, the single headed arrows in the structural formulae 

indicate the direction of the dipole moment. The double headed arrows below the 

structure indicate phase transitions. The number above the double headed arrow gives 

the transition temperature in 
0
C. The latent heats (in kilojoule per mole) are given 

below the arrow in those cases for which the data are available. The carbon and the 

hydrogen atoms in the phenyl rings are not shown. 

1.4.1 Compounds exhibiting only the nematic liquid crystalline phase 

(a) Pentyl cyanobiphenyl(5CB) [3] 

(b) p-azoxyanisole (PAA) [4] 

C N  H11C5 

22.50 C 

17.2 kJ 
I N Solid 

350 C 

0.8 kJ 
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(c) Quinquephenyl [5] 

The compound 5CB (structure (a) above) has two phenyl rings without any bridging 

group in between. It has a strong longitudinal dipole moment due to the C=N group. 

The nematic phase is stable over a small range at low temperatures. The compound 

PAA  (structure (b) above) has a strong dipole moment due to the NO group inclined 

at a large angle (60
0
) with respect to the molecular long axis. Note that the nematic 

phase of PAA is stable over a larger range at higher temperatures compared to that of 

5CB. The compound (c) has no chains or bridging groups and very nearly resembles a 

long rigid rod. Also, it has no permanent dipole moment. Note that the transition 

temperatures are quite high. These examples illustrate that the molecular shape (length 

to breadth ratio) plays a more important role in stabilizing the nematic phase than the 

presence of the bridging groups, end chains or the permanent dipoles. However, the 

presence of end chains plays an important role in stabilizing the smectic phase, as 

illustrated in the following examples. 

1.4.2 Compounds exhibiting the smectic A liquid crystalline phase 

Compounds exhibiting the SmA phase usually have 2 or 3 phenyl rings, with  

sufficiently long end chains. The electrons in the phenyl rings (aromatic cores) are 

N 

N 

O 

O 

H3C 

Molecular long axis 

O 

CH3 

118.20 C 

29.57 kJ 
I N Solid 

135.30 C 

0.57 kJ 

4010 C 

 
I N Solid 

4450 C 
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relatively free within the ring due to resonant configurations. Hence, the aromatic 

cores of the neighbouring molecules overlap due to the strong dispersion interaction 

and tend to arrange themselves in layers. If the chains are sufficiently long, they act as 

separators between such cores and the layered structure (SmA) is stabilised. 

A series of compounds which differ only in the number of carbon atoms in the 

end chain(s) with the rest of the structure being the same, are called homologues. 

Usually, the shorter homologues of typical mesogenic compounds exhibit only the I 

and N phases before solidifying. The longer homologues exhibit the smectic phase 

also. For example, the longer homologues of 5CB (structure „a‟ above), in general 

denoted as nCB having n carbon atoms in the end chain with n8, exhibit SmA phase. 

For 8CB we have [3] 

 

Note that the first order SmA-N transition is weaker than the N-I transition. 

Often, the shorter homologues of the smectogens exhibit a second order SmA-N 

transition. As the chain length of the homologues is increased, the nature of the 

transition changes over to first order, the temperature range of the N phase decreases 

and finally vanishes. Very long homologues exhibit a first order SmA-I transition.  

There are rare examples of molecules without any chain resulting in the SmA 

phase. As an example sexiphenyl that has the phase sequence solid-SmA-N-I, is 

shown below. 

 

1.4.3 Compounds exhibiting the smectic C phase 

240 C 

25.3 kJ 
I  N   

SmAN 

Solid 
340 C 

0.13 kJ 
42.60 C 

0.97 kJ 

4350 C 

 
I   N   SmA Solid 

4650 C 

 

5650 C 
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The compounds exhibiting the smectic C phase usually have a lateral component 

of dipole moment. A typical example is terepthal-bis-butyl aniline(TBBA) whose 

structural formula is shown below. 

 

Some compounds exhibit a variety of smectic phases before transforming into the 

nematic phase [1]. However, in this thesis, we consider only the SmC, SmA and the N 

phases. Strongly polar compounds exhibit some unusual phase sequences. This is 

described in the next section. 

1.5 Re-entrant phases and smectic polymorphism exhibited by 

strongly polar compounds 

When a typical mesomorphic compound is cooled from the isotropic (I) phase, the 

usual sequence of phase transitions is (with K for solid crystal):   I  N  K  or    I  N 

 SmA  K. In other words, the more ordered phases, i.e., the phases having lower 

symmetries, are expected to occur at lower temperatures. Indeed, this sequence is 

followed in most of the liquid crystals. However, liquid crystals composed of 

molecules having strongly polar end groups show some unusual phase sequences. 

This is illustrated in the following examples. 

1.5.1 Nematic reentrance 

Cladis [6] found that mixtures of certain compounds with strongly polar cyano or  

nitro end groups, on cooling from the isotropic phase, exhibit  the following sequence 

of transitions: I N  SmA  NR  K. The second nematic phase that occurs at 

N 

C 

H C4H9 

  H9C4 

N 

C 

H 

172.50 C 

 
I N SmA SmC 198.30 C 

 

236.50 C 

 

144.10 C 
Solid 
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temperatures below the range of existence of the smectic phase is called the re-entrant 

nematic (NR) phase. Later, she found a similar phenomenon in pure compounds, as for 

example, octyloxy cyano biphenyl (or 8OCB) under elevated pressures [7]. 

Subsequently, such a phase sequence has been found in case of pure compounds at 

normal pressures also [8]. 

1.5.2 Double  and multiple reentrance 

In some strongly polar pure compounds or binary mixtures, at temperatures below 

the range of existence of the re-entrant nematic phase, another smectic phase re-enters 

leading to the sequence: I  N  SmAd   NR  SmA1  K , as for example in 

octyloxybenzoyloxy cyano- stilbene or T8 [9]. This phenomenon is called  double re-

entrance. The lower temperature re-entrant smectic phase is called the smectic-A1 

(SmA1) phase and the higher temperature smectic phase is called the smectic-Ad 

(SmAd). X-ray measurements show that [10] the SmA1 phase has a layer spacing d  l, 

whereas the SmAd phase has l < d < 2l, where l is the molecular length. This partial 

bilayer arrangement is understood on the basis of formation of appropriate antiparallel 

dimers of the molecules (see figure-1.3 in section 1.6.5). Hence the suffix „d‟ is used 

to denote  dimers and the suffix „1‟ for the monomers.  

There are some rare examples of pure polar compounds which, on cooling, show 

the quadruple reentrant sequence: I  N  SmAd  NR  SmAdR  NR  SmA1 as for 

example, DB9ONO2 [11], the ninth homologue of n alkyloxy phenyl-nitro benzoyloxy 

benzoate, denoted in general as DBnONO2. This behaviour is also seen in a few 

mixtures over a very narrow range of concentrations, as in 50% molar mixture of 

DB8ONO2 and DB10ONO2 [12]. Apart from these, the pressure-temperature and 

temperature- concentration phase diagrams show a first order  SmA1 - SmAd transition 

ending in a critical point, SmA1 - SmA2 transition etc., where the SmA2 phase has       

d  2l. The occurrence of different types of SmA phases is in general called smectic A 

polymorphism. Some mixtures of strongly polar compounds also show a re-entrant 

nematic lake surrounded by the SmAd region [13] or a SmAd island surrounded by the 

nematic region [14] or a weak first order nematic-nematic transition [15].A general 

review of phase transitions and critical phenomena in polar compounds has been given by 

Chandrasekhar [2] and Shashidhar et al [16]. the most detailed study of the first order SmAd - 
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SmA2 transition ending in a critical point in temperature - concentration phase diagram has 

been reported by Shashidhar et al [17] in the binary mixtures of undecyloxyphenyl 

cyanobenzyloxy benzoate (11OPCBOB) and  nonyloxybiphenyl cyanobenzoate (9OBCB).   

There have been many attempts to explain these phenomena theoretically. In the 

next section, we briefly review some of the theories of phase transitions in liquid 

crystals. 

1.6 Review of some theories of phase transitions in liquid crystals 

In this thesis, we first develop molecular theories of various liquid crystalline 

phases (described in section 1.5) exhibited by a medium consisting of strongly polar 

molecules with longitudinal components of dipole moments. Prost has developed a 

very successful phenomenological theory of various phases exhibited by such 

compounds. Our model provides a molecular basis for some of the assumptions made 

in the phenomenological theory. Also, in this thesis, we propose a molecular theory of 

the SmC phase exhibited by a medium consisting of molecules with lateral 

components of dipole moments. Experimental data of the temperature variations of 

the order parameter and the specific heat, associated with the SmC to SmA transition, 

have been often analysed on the basis of the phenomenological Landau theory. A 

general review of the Landau theory of phase transitions is given below.  

1.6.1 Landau theory of phase transitions 

The Landau theory was initially developed to describe 2
nd

 order phase transitions. 

The order parameter , characterising the phase of lower symmetry,  continuously 

goes to zero at a 2
nd

 order phase transition. As  is extremely small near the transition 

point, it is assumed that, the free energy density F can be expanded in powers of  

[18]. In the absence of any external fields the expansion is given by 

F(T, ) = F0 + 
A

2
 

2
 + 

B

3
 

3
 + 

C

4
 

4 
+ 

D

5
 

5  
+ 

E

6
 

6
  ……  (1.8) 

where F0 is the free energy of the disordered phase ( = 0). The term linear in  is 

absent to ensure the stability of the disordered phase. The linear term can be non zero 

when an external symmetry breaking field is introduced. The magnitude of the order 
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parameter near the phase transition is determined by minimising F(T, ) with respect 

to .  

A > 0 ensures that  = 0 corresponding to the higher temperature phase has a 

minimum in F and A < 0 corresponds to the lower temperature phase with   0. 

Landau assumed  that  

A = a(T  T*)    (1.9) 

where T* is the transition temperature. The coefficients a, B, C … are normally 

assumed to be independent of temperature. For a system in which the free energy is 

independent of the sign of , i.e., F()=F(), as for example, in a ferromagnetic 

system, the cubic and higher odd powers in  are not allowed. Hence, with B = 0, C > 

0 and neglecting the terms with higher powers in , a second order phase transition is 

obtained between the states  = 0 and   0 at T = T*. Minimising F with respect to  

gives 

 = 






a(T*  T )

C

1

 2

.    (1.10) 

The above argument can be extended to describe weakly first order phase 

transitions. If the symmetry of the system prevents the presence of odd ordered terms 

(i.e., B = D = 0), then, a first order transition can be obtained by having C < 0. In that 

case, a sixth order term with a positive coefficient (i.e., E > 0) is required for stability. 

If C > 0, the transition is of second order. 

In some cases with B = D = 0 and E > 0, the coefficient of the fourth order term 

(C) may depend on some parameter x (for example, the concentration in a binary 

mixture or the chain length in a homologous series). Then,  as a function of x, the 

positive coefficient C may tend to zero or even change sign. This leads a change in the 

nature of the phase transition from second order to first order as a function of the 

parameter x. The point on the transition line in the T-x phase diagram at which this 

happens is called the tricritical point. This trend is seen in the N-SmA transition and 

is discussed in section 1.6.3 
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If the symmetry of the system allows for odd powers of , then, a first order 

transition results when a third ordered term in  is retained with C > 0. This is 

described in the next section, taking the N-I transition as an example. 

1.6.2 Landau- de Gennes theory of the N-I transition 

de Gennes [19] proposed a phenomenologial description of the N-I transition on 

the basis of the Landau theory of phase transitions. The nematic order parameter S is 

basically a second rank tensor (see section 1.2.1). It is clear from equation 1.4  that 

S>0 represents a structure with the molecular long axes nearly parallel to n
^
 while for 

S<0 they are nearly perpendicular to n
^
. Since these two arrangements are energetically 

different, the expansion of the free energy density for the nematic phase should 

include the cubic term in S. 

 The free energy density for the nematic phase is hence written as 

F(T, S) = F0 + 
a(T–T*)

2
S

2
 – 

B

3
S

3
 + 

C

4
S

4   
(1.11) 

where T* is the hypothetical second order transition temperature below which the 

isotropic phase can not be supercooled. The cubic term is assumed to be negative to 

get S >0 in the nematic phase for B > 0. Minimising F(T, S) with respect to S gives the 

solutions 

S = 0   ( isotropic phase) 

and  S = 
B

2C
 








1  








1– 
4Ca(T–T*)

B
2  

1/2

   (1.12) 

where S– corresponds to the free energy maximum and is not an acceptable solution, 

while, S+ corresponding to the free energy minimum represents the stable phase. At 

the N-I transition temperature (TNI), we have, F(T, S) = F0. Also, the equilibrium 

condition, (F/S) = 0, is valid at the transition value of S (i.e., at S = SNI). With these 

conditions imposed on F, equation 1.11 gives,  

SNI =  
2B

3C
            (1.13) 

 TNI = T* + 
2B

2

9aC
 .           (1.14) 
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Equation 1.12 has solutions only when B
2
 > 4Ca(T–T*), leading to an upper 

temperature limit for super heating the nematic phase. This temperature T 
h
 is  

T 
h
 = T* + 

B
2

4aC
  >TNI .    (1.15) 

Thus when the third order term is present, the N-I transition is first order in 

nature. Typically, the order parameter at the transition point SNI  0.3, which is not 

very small. However, from the thermodynamic point of view, the N-I transition is a 

weakly first order transition since the heat of transition is very small ( eg:  0.8 kJ/mol 

for 5CB) compared to that of the crystal - melting transition (eg:  17 kJ/mol for 

5CB). The coefficients a, B and C for a given liquid crystal compound can be found 

using the values of SNI, TNI and the heat of transition. 

1.6.3 Landau-de Gennes theory for the  N - SmA transition 

As described in section 1.2.2, the SmA phase is characterised by a density 

modulation in a direction z


 orthogonal to the layers [1]: 

zcos(2z/d +) + ……]         (1.16) 

where  is the amplitude of the first harmonic of the density wave and  is an orbitrary 

phase which can be taken as zero by a suitable choice of the origin.  is zero in the 

nematic phase. Hence,  is the natural order parameter for the smectic phase.  

In the vicinity of the N-SmA transition, the free energy density can be expanded 

in powers of : 

FA = 
1

2
AA

 2+ 
1

4
CA

 4
 +...     (1.17) 

Only even powers of  are required since  differ only in the choice of the origin of 

the Z-axis. AA = aA(T–T0) and CA are the usual Landau coefficients. This leads to a 

second order transition at a temperature TAN = T0 if CA > 0. However,  the appearance 

of smectic order usually increases the degree of alignment of the molecular long axes. 

Hence, we have [1],  

S = S0(T) + S     (1.18)
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where, S0(T) is the orientational order parameter in the absence of the layering and S 

is the additional orientational ordering due to the onset of the layering order. The 

lowest order coupling term of the translational order and the orientational order must 

have the form 

FAN = – 
2S     (1.19)

where  is positive. The nematic free energy which is minimum when S = 0 is given 

by 

FN = FN(S0) + 
1

2
(S)

2
        (1.20)  

where,  is a response function. The overall free energy of the smectic phase obtained 

by adding FA , FAN and FN is 

FS = 
1

2
 aA(T– T0) 

 2+ 
1

4
CA 

4
 – 

2S + 
1

2
(S)

2
 + FN(S0).  (1.21) 

Minimising this with respect to S gives 

S =  
2
           (1.22) 

which upon substituting into the equation 1.21 gives 

FS = 
1

2
 aA(T– T0) 

 2+ 
1

4
 C*4  + FN(S0)  (1.23) 

where the modified coefficient C* of the fourth ordered term is given by 

C* = CA –22 .    (1.24) 

If T0 is close to TNI, i.e., when the nematic range is small, S0 is relatively small 

and hence  is large and C* is negative. Then the term in  
6
 with a positive coefficient 

must be included in the equation 1.17 to ensure stability. This results in a first order 

N-SmA transition at a temperature TAN>T0. On the other hand, if T0 is significantly 

smaller than TNI, i.e., when the nematic range is large, S0 is practically saturated and 

is small and C* is positive. This leads to a second order N-SmA transition at a 

temperature TAN =T0. In this case, for T<T0 near the transition, as in equation 1.10, we 

have 

  (T0 –T)
1/2

.       (1.25)
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The point at which C* = 0 is the tricritical point. This is a point on the transition 

line, where the first order nature of the transition changes to second order. With C* = 

0, and with a positive term in 6, a second order N-SmA transition results at a 

temperature TAN =T0. For T<T0 near the transition, unlike the equation 1.25, we have 

  (T0 –T)
1/4

.       (1.26) 

The tricritical behaviour may be observed experimentally by varying . This is 

possible by varying the length of the end chain, or by preparing mixtures, or by the 

application of pressure [20].  

The phenomenological theory explains the appearance of the smectic phase as the 

nematic liquid crystal is cooled. However, as described earlier, experiments on 

strongly polar compounds show that the nematic phase reenters when the smectic 

liquid crystal is cooled further. Also, the smectic phase can be stabilised with various 

layer spacings. In order to explain the phenomenon of smectic A polymorphism and 

multiple reentrances, Prost extended the Landau theory using two coupled order 

parameters for the smectic phase. In the next section we briefly describe this theory.

1.6.4 Phenomenological theory with two coupled smectic order 

parameters 

As described in section 1.5.2, X-ray measurements show that [9] the lower 

temperature re-entrant smectic phase (SmA1) has a layer spacing d  l, whereas the 

higher temperature smectic phase (SmAd) has l < d < 2l, where l is the molecular 

length. Prost [21] argued that the „natural‟ length is the molecular length l and there is 

a „competition‟ between this length and the other incommensurate length in forming 

the smectic phase, leading to frustration. Based on this idea, he developed a successful 

Landau theory of these unusual phase transitions. A brief review of this theory is 

given in this section. The molecular origin of the „two lengths‟ is discussed later. 

Since there are two different lengths at which the SmA density modulation can 

take place, the Landau free energy density is expanded in terms of the two order 

parameters  and   corresponding to these two lengths and it is necessary to consider 

the phase of the modulation (see equation 1.16). This is conveniently written using 

complex notation following Prost [21] as,  
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 = 
1

2
[1exp(i

 
 q


 r


) + complex conjugate] 

and     = 
1

2
[2exp(i

 
 q


 r


) + complex conjugate]              (1.27) 

in which  corresponds to the partial bilayer order and  to the monolayer order, 1 

and 2 are the corresponding amplidues and q


 is the wave vector of the one 

dimentional density wave in the SmA phase. An appropriate form of the free energy 

density is given by 

F = 
A1

2
2+

C1

4
4+

A2

2
2+

C2

4
4 

+A12 
B12

2
2 

 + 
C12

3
22.   (1.28) 

As the two order parameters correspond to two different periodicities, it is 

appropriate to write 

A1 
2
 = a1 

2
 + A01(( + q1

2
))2

 

and               A2 
2
 = a2 

2
 + A02((  + q2

2
))2

     (1.29) 

where,  

  a1 = (T  T1*) ,   a2 = (T  T2*)   (1.30) 

 = 
2
/z

2
 if the layers are condensed along the Z-axis and q1 = 2/ld , q2 = 2/l1, 

ensuring that  condenses with a wave vector q1, and  with q2. This very general 

expression can give rise to many different structures depending on the relative 

importance of the coupling terms [1]. 

In the SmA1 phase, ld  l1 and the () term dominates. In the SmA2 phase, ld  2l 

which results from the dominance of the 2 term, while the () term is negligible. 

Satisfying these two tendencies simultaneously is not possible, hence the name 

frustrated smectics. Similarly, with suitable dependences of the constants A1 and A2 

on temperature and concentration or temperature and pressure, and with proper 

weightages given to the other constants, the equation 1.28 leads to single and double 

reentrant behaviours, SmA1-SmAd critical point etc., in the appropriate parameter 

space [1]. Some of the phase diagrams predicted by this theory will be reproduced 

later in chapter-2 and chapter-3.  
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As de Gennes and Prost remark [1], “if the phenomenological approach provides 

a unifying framework for the description of the frustrated smectics, it does not give 

much detail on what is happening at a molecular scale”. In the next section, we give a 

brief review of some of the molecular theories of reentrant phases. 

1.6.5 Review of theories of reentrant phases based on attractive molecular 

potential 

As described in section 1.5, the phenomenon of  reentrance is exhibited by 

strongly polar compounds. Hence, the dipolar interaction is important in any 

molecular theory describing this phenomenon. Indeed, Max Born [22], who was  the 

first to propose a molecular theory for the N-I transition, assumed an alignment of 

permanent dipoles in the nematic phase and predicted the nematic phase to be 

ferroelectric. However, as described in section 1.2.1, the theory is not valid since the 

nematic phase is exhibited even if the compound is non polar and the nematic liquid 

crystal is not ferroelectric even if the compound has polar molecules.   

An important property of a liquid crystal is the dielectric anisotropy. It is defined 

as the difference in the dielectric constants
†
 measured with the electric field applied in 

the directions parallel and perpendicular to the molecular long axisdirector, i.e., 

= || - .         (1.31) 

Usually, a medium with nonpolar rod-like molecules will have a small positive 

(<1) due to the anisotropy in the polarisability of the molecules. However, when 

the molecule has one or more permanent dipoles, the orientational contribution to the 

polarisability becomes important. When a low frequency external electric field is 

applied, the molecular reorientation in a liquid crystal is relatively easy compared to 

that in a solid. This results in a large value of For nematic liquid 

crystalsconsisting of polar molecules with dipoles along the long axes, can be as 

large as +20 or morehigher. This helps in decreasing the operating voltage in twisted 

                                                           
†
 Note that, in SI units, absolute permittivity is denoted as  and the relative permittivity (or 

dielectric constant) is denoted as r. For the sake of convenience we omit the subscript „r‟  

and use  for dielectric constant. 
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nematic display devices. Due to itstheir technological importance, a large number of 

polar compounds have been synthesised and studied.  

If the  iarises only due to from the polarisability of the molecules, a small 

decrease in the average  is expected across the N-I transition due to a small increase 

in volume. However, an early experimental observation [23] on a cyano compound 

shows that the average  has a positive jump as the temperature is increased across the 

N-I transition point. To explain this, it is proposed that [24] the interaction between 

the permanent dipoles favours an antiparallel configuration of the nearest neighbours. 

Later of X-ray [9,25] and neutron scattering [26] studies on the strongly polar 

compounds in the nematic phase have shown that they have a SmA like short range 

order, with a typical the layer spacing  1.4 times the molecular length i.e., there is a 

partial bilayer arrangement. This is interpreted [2518] to be the result of the overlap 

of the aromatic parts of the neighbouring antiparallel molecules due to the strong 

dispersion interactions (see figure-1.3). This picture also accounts for the 

„incommensurate length‟ of the SmAd liquid crystals, used in Prost‟s 

phenomenological theory based on two coupled order parameters (see previous 

section). However, during In the compounds which show double reentrance, the lower 

temperature smectic phase (SmA1) has the monolayer structure [9]. Hence, as the 

temperature is decreased, the partial bilayer arrangement of molecules changes over to 

the monolayer arrangement. We consider a few molecular models which attempt to 

explain the origin of these „two lengths‟ assumed in Prost‟s phenomenological theory 

[21] of during double reentrance. 

 

 

 

Formatted
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Figure -1.3. Schematic diagram showing the mutual configuration in an 

antiparallel pair of molecules resulting in a partial bilayer arrangement. 

The zig-zag line represents the aliphatic chain, tThe rectangular box 

attached to it represents the aromatic part and the arrow at the end 

represents the permanent dipole. 

1.6.5.1 Molecular model by Cladis and its extensions 

The first attempt to develop a molecular picture model for reentrance was by 

Cladis [27]. In this, the medium is assumed to consist of antiparallel pairs. Since the 

antiparallel pairs have the overlapping aromatic parts, the cores of the pairs are more 

bulky than the end chains. Hence, the pairs have an effective shape as shown in figure-

1.4a. When the nematic liquid crystal (figure- 1.4b) is cooled, the number of dimers 

increases and they come closer. The overlapping of cores and a layering order of the 

molecules dimers (figure- 1.4c) leads to a lowering of internal energy which more than 

compensates for the decrease of entropy due to ordering. This leads to the SmAd phase 

with a partial bilayer structure. On further cooling, the pairs come still closer. The 

bulky central parts of  the dimers can not be accommodated in the central plane of the 

layers, thus destroying the layering arrangement (figure- 1.4d) leading to a re-entrant 

nematic phase. When this is further cooled, a still closer packing leads to a the SmA1 

phase with d l (figure- 1.4e). This is only a pictorial model. The proposed packing in 

the SmA1 phase is solid-like and hence can not describe the SmA1 liquid crystal which 

is a fluid. 

l 

1.4l 
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Figure-1.4. Pictorial model given by Cladis [27] for double rentrance. 

(a)Effective shape of an antiparallel dimer. The figures (b), (c), (d) and 

(e) represent the organisation of monomers and dimers in the higher 

temperature nematic (N) phase, SmAd phase with partial bilayer 

structure, lower temperature reentrant nematic (NR) phase and the SmA1 

phase with a mono layer structure respectively. 

molecular picture and a proper thermodynamic calculation is required to assess 

the feasibility of this.  

Luckhurst and Timimi [28] have also developed a qualitative model assuming 

that the medium consists of loose dimers whose structure may change with 

temperature. Hence the strength of layering interaction (the parameter  in the 

McMillan theory [29] of the SmA phase, see section 3.2 of chapter-3 for a description 

of the McMillan theory) is taken to be temperature dependent. If  decreases with 

temperature, the SmA phase becomes unstable and the nematic phase reenters. Further 

decrease of temperature would again stabilise the SmA phase, since a lower  is 

sufficient to stabilise the SmA phase at low temperatures. To incorporate this trend,  

is assumed to decrease with temperature over the middle range of temperatures 

whereas it is taken to be a constant over the higher and lower ranges of temperatures. 

Monomer Dimer 

(a) 

Isotropic 

Temperature increasing 

SmA d 

N R (b) (c) 

(d) 
(e) 

SmA 1 N 
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By a proper suitable choice of the dependence of  on temperature , they are able to 

obtain double reentrance. They suggested that the assumed form of the temperature 

dependence of   may be due to structural changes in the molecular dimers which 

have not been worked out. 

The Af irst microscopic theory of the reentrant nematic phase exhibited by polar 

liquid crystals was proposed by Longa and de Jeu [30] extending McMillan‟s theory 

[29] of the SmA phase. In this model, the medium is assumed to be a mixture of 

monomers and dimers which interact through attractive soft interactions as well as 

hard-core repulsions. They have shown that the higher temperature smectic phase is 

stabilised because of dimers having a stronger layering interaction than that of 

monomers. On cooling, more dimers are formed and the dimers have bulky central 

parts. Hence, due to difficulty in packing into layers, as proposed by Cladis, the 

repulsive steric forces dominate and thus the nematic phase reenters. However, in the 

model, the equilibrium concentration of dimers at a given temperature is an input 

parameter based on the permittivity data and is not calculated in a self consistent 

manner. Also, the calculations are restricted to the case of ideal orientational order. 

Further, the appearance of the SmA1 phase below the NR phase is not discussed.   

Bose et.al.,[31] have developed a model more closely based on the molecular 

picture given by Cladis. They point out that the repulsion between the central parts is 

not absolutely essential for the reentrant phenomenon whereas in the model by Longa 

and de Jeu[30], this repulsion plays the main role. In theis model by Bose et.al., the 

medium is assumed to be a mixture of monomers and dimers in chemical equilibrium. 

The dimers when arranged in layers leave void spaces which are filled by the 

monomers thus stabilising the high temperature SmAd phase. With lowering of 

temperature, more monomers combine to form dimers. The neighbouring layers 

intercalate for better packing. This results in a decrease of layer thickness without 

changing  the core length of the dimers remaining unchanged and hence the McMillan 

parameter  decreases, leading to nematic reentrance. As the temperature is further 

lowered, the medium mostly consists of dimers. Due to complete intercalation, this 

results in a smectic phase with the layer thickness comparable to the length of the 

monomers (SmA1) as in figure 1.4e. They have ignored the smectic interaction 

between the monomers assuming it to be small, and have assumed that the McMillan 
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parameter d for dimers remains constant up to some critical monomer concentration. 

Below this concentration, the intercalation starts decreasing the layer thickness and  d 

starts decreasing. The assumed variation of  is ad hoc as in the case of Luckhurst and 

Timimi model [28] described above.appears artificial.  

Mirantsev [32] has extended the model of Longa and de Jeu [30], including a self 

consistent calculation of the dimer concentration and modifying the mean field 

potential to allow for the smectic periodicities of both the monomer and dimer 

lengths. Later [33], he has developed a simple microscopic description of the reentrant 

phenomenon. In this model, it is assumed that each molecule not only feels a 

molecular mean field due to the long range anti-ferroelectric order, but also interacts 

with the nearest neighbours within the layers to produce a short range anti-

ferroelectric order of the Ising type. It is shown that if the increase of the latter with 

decrease of temperature is sufficiently rapid, then the nematic phase reenters. The 

claculations are restricted to the case of saturated nematic order. In the SmA1 phase, a 

short range anti-ferroelectric order is predicted. This means that the aromatic core of 

one molecule overlaps with the aliphatic chain of the neighbouring one, which is 

unlikely. Also, recent experiments [34] showing the presence of polar short range 

order at low temperatures do not support this arrangement of molecules. 

More recently, Luckhurst et.al.,[35] have developed a model extending 

McMillan‟s model [29] of the SmA phase, considering isomerisation and dimerisation 

of molecules. In the model, lowering of temperature below that corresponding to the 

SmAd phase results in the dissociation of the dimers thus increasing the concentration 

of monomers and also increasing the total number of interacting particles. Since the 

monomers are assumed to have a lower value of the McMillan parameter , this leads 

to the reentrant nematic phase. On further cooling, the SmA1 phase consisting mostly 

of the monomers is stabilised. In the model, the near neighbours interact and associate 

as dimers at higher temperatures. At lower temperatures, they dissociate and remain as 

monomers even though they are more closely spaced than at higher temperatures. This 

behaviour is obtained by choosing a suitable value of the equilibrium constant for 

monomer-dimer association. This model, which is opposite to that proposed by Cladis 

and others, appears artificial. Also, an increase in the number of monomers due to the 

lowering of temperature is not explained on any physical basis and can not explain the 
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recent experimental observation [34] showing the presence of polar short range order 

at low temperatures.   

 

The molecular model which is often referred to in the literature is the frustrated 

spin gas model. We describe this in the next section.   

1.6.5.2 Frustrated spin-gas model  

The frustrated spin gas model was proposed by Berker et.al [36]. The key factor 

aspect in this model is that, when a third polar molecule comes near an antiparallel 

dimer, its orientation can not be antiparallel to both the molecules in the dimer leading 

to frustration in orientation. To incorporate this idea, they consider triplets of 

molecules in a two dimensional triangular lattice with the molecular long axes having 

an ideal orientational order in a direction perpendicular to the lattice plane. The 

molecules are free to have only the axial displacement. Positional fluctuations 

transverse to the molecular axes are ignored. Each molecule is assumed to have 

notches which create potential barriers to prevent free movement of neighbours 

axially. The  number of notches is assumed to be related to the number of carbon 

atoms in the alkyl chain. Along withThe terminal axial dipoles lead to antiparallel 

near-neighbour interaction and also the frustration of a third molecule. They develop 

the theory incorporating different „up‟ and „down‟ arrangements of the molecules in a 

triplet with different extents of axial overlapping of the notches. Presence of  smaller 

„sub-notches‟ allows for slight axial vibrations. The effective averaged couplings 

between the molecules in each triplet are classified as „strong‟, „moderate‟ and „weak‟. 

They develop the model in analogy with the spin gas theory of ferromagnetism using a 

two dimensional distorted triangular Ising model [37].is obtained. If the moderate 

coupling has strength close to that of the strong coupling, then, according to the 

theory, the molecular triplets form a two dimensional „polymer‟ with long range anti-

ferroelectric order in the plane perpendicular to the direction of the nematic director. 

This phase is interpreted as leads to a stable smectic phase. In the absence of such a 

correlation, , otherwise, the stable phase is taken to be the nematic. The relative 

weights of these couplings depend on the number of notches etc. By adjusting these, 

they get various phase diagrams showing 

Formatted
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The model predicts double, quadruple, sextuple and octuple re-entrances. The 

phase diagrams are calculated with the variation of intermolecular separation and 

number of notches (chain length). With suitable conversions, these diagrams can be 

compared  with experimental  temperature-concentration or pressure-temperature 

phase diagrams. The topology of the theoretical phase diagrams as well as the 

predicted specific heat variation compare well with experimental ones. But, the theory 

has the following drawbacks: 

 

 

 As de Gennes and Prost [1] remark, the model is two dimensional. Hence, the 

piling of layers can not be considered i.e., the phase identified as the SmA1 could be 

SmA2 or longitudinal ferroelectric as well. Also, since the model corresponds to a 

two dimensional system, the transitions are strongly displaced towards low 

temperatures as compared to what they should be in a three dimensional system. As 

the authors themselves remark, the temperatures calculated do not directly 

correspond to experimental values. 

 The model produces only phase diagrams and does not give the order parameters 

and their temperature dependences. 

 Only „up‟ and „down‟ spins are considered and extensions are not made to 

include unsaturated nematic order. Hence, the theory can not explain the nematic-

nematic transition which has been confirmed experimentally [14]. Also, the phase 

diagrams can not contain the isotropic phase. 

 The notches are identified with the zig-zag nature of the alkyl chain. As Cladis 

remarks [38] [31], , the pressure data showing universality depending only on the 

number of  benzene rings, suggests that chains may not be the most important 

molecular entities determining the reentrance. 

 As Garland [39] has pointed out, the re-entrant nematic loop (or lake) found in 

experiments is associated with the SmA1 - SmAd transition, whereas  in the spin-gas 

theory this is not found to be true. 
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1.7 A  New molecular model based on pairs with parallel 

dipole moments at low temperaturesto explain the reentrant 

sequences: 

A simple model to explain the molecular origin of the „two lengths‟ assumed in 

the Prost‟s phenomenological model [21] was proposed by Madhusudana and 

Jyothsna Rajan [40]. The basic concept in thisour model is that the molecular pairs 

can change over from anti-parallel (A) to parallel ( P ) configuration as the 

intermolecular separation (r) is reduced due to cooling or due to increase of pressure. 

The medium is treated as an equilibrium mixture of the A and P types of pairs. The 

formation of „two lengths‟ assumed in Prost‟s model [21], the temperature variation of 

dimer concentration, the variation of the McMillan parameter assumed in Luckhurst 

and Timimi model [28] and reentrant phase diagrams are explained as natural 

consequences of the temperature variation of the relative concentration of the two 

species. The model, with suitable modifications gives a variety of phase diagrams. 

Since we adopt this model for various extensions, a detailed discussion of this model 

is given in the next chapter. 

 

We treat the medium as a mixture of the A and P type of pairs. We extend the 

Maier-Saupe and the McMillan theories including this concept and develop a mean 

field theory for the nematic and the smectic phases. The different possible extensions 

of this are discussed in subsequent chapters of the thesis. In the next section, we give 

an outline of the contents of different chapters of the thesis. 

1.8 Scope of the thesis 

In the next chapter (chapter-2), we describe the model proposed Madhusudana 

and Jyothsna Rajan [40] for double reentrance. In this model, tconsider the dipole-

dipole, dipole-induced dipole, chain-chain and aromatic core dispersion interactions 

with reasonable values of dipole moment, polarisability etc. we show that, as the 

intermolecular separation is decreased, the parallel(P) configuration of pairs is 

energetically favoured over the anti-parallel(A) configuration. To reflect this, a 

suitable form of the temperature dependence of the pairing energy is assumed. he 

medium is considered to be a mixture of A and P types of pairs. We develop a simple 
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theory for nematic mixtures consisting of these two types of pairs by extending the 

Maier-Saupe theory [41]. We consider the orienting potential of the A-type of pairs to 

be different from that of the P-type of pairs. Usually, the mutual interaction between 

the two different species in a mixture is assumed to be the geometric mean of the 

interaction of the pure species. The consequence of a deviation from this 

approximation is investigated. Under certain ranges of the model parameters, aA first 

order N-N transition ending in a critical point is predicted [42]. Also, the jump in the 

relative concentration of the A and P types of pairs, the jump in the order parameters 

and the variation of the specific heat at constant volume are calculated near the N-N 

transition. The results are discussed in comparison with a few available experimental 

data on the N-N transition. 

In chapter-3, the above theory is extended to binary mixtures of smectic liquid 

crystals based on the McMillan model [29]. We consider the layering potential of the 

A-type of pairs to be different from that of the P-type of pairs as in reference [40]. 

Initially, we treat the nematic order to be saturated. With this, various phase diagrams 

showing first order SmA1-SmAd transition ending in a critical point, NR lake 

associated with the SmA1-SmAd boundary and the merger of the NR lake with the 

main nematic sea are obtained [43]. Next, the temperature dependence of the nematic 

order is also included [44]. For different ranges of the model parameters, in addition 

to the earlier results with a saturated nematic order, the calculated phase diagrams 

show the N-N transition associated along withwith the SmA1-SmAd transition and the 

phase sequence N-SmAd-NRd-NR1-SmA1 on cooling. The results are discussed in 

comparison with experimental data and other theoretical models. 

In chapter-4, the model is extended to include the effect of an external electric 

field. The nematic director aligns parallel to the applied field since the medium 

consisting of molecules with strong longitudinal dipoles has a large positive dielectric 

anisotropy.medium tends to have an orientational order due to orientational 

polarisability of the medium with polar molecules, or due to anisotropic polarisability 

of the medium with molecular dielectric anisotropy. Since Tthe additional orienting 

potential due to the external field results in an increase of the nematic order parameter. 

Indeed, the external electric field produces a weak orientational order even in the 

otherwise isotropic phase (paranematic phase). The nematic-isotropic transition 
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temperature, which now becomes the nematic-paranematic transition temperature, 

increases with field. AAs the field is further increased, the first order nature of the 

nematic-paranematic transition becomes weaker and finally results in a continuous 

change-over from a strongly oriented to a weakly oriented phase beyond some critical 

field, as also described by the Landau theory. Our calculations show that the 

temperatures of  N-N transition, SmAd-NR transition and SmA1 - SmAd transition also 

increase with the field. Further, we show that the temperature range of the SmAd 

phase decreases and finally vanishes with an increase of the field, resulting in a 

bounded SmAd region in the electric field-temperature phase diagram. All these 

effects and also on the basis of our model in chapter-4.E Electric field-temperature 

phase diagrams are calculated for various ranges of the model parameters [45]. Some 

of the results are compared with the available experimental data. 

In chapter-5, the model is extended to include the effect of external pressure on 

the various phase transitions. When a medium is compressed, the molecules come 

closer. This effect is similar to that produced by cooling under constant pressure. 

Hence, the phenomenon of multiple re-entrance and smectic polymorphism can be 

expected when pressure is applied over a nematic liquid crystal. At a fixed 

temperature, when pressure is increased on the nematic phase, a double re-entrant 

sequence  N  SmAd   NR  SmA1 is observed [8]. As the temperature is increased, 

the SmAd region decreases. At high temperatures, the thermal energy is sufficient to 

destabilise the SmAd phase and the phase disappears, i.e., a typical pressure-

temperature phase diagram shows a bounded SmAd region. When the pressure is 

applied at a fixed temperature, since the thermal energy is not changed, the size and 

shape of the molecules play an important role in stabilising the different phases. 

Hence the hard rod features and the effect of excluded volume on packing are to be 

included in the theory to explain the effect of pressure. In this chapter, a hybrid model 

is developed by including the hard rod features as well as the attractive interactions. 

The hard rod model developed by Kimura et.al [46] has been extended to include the 

mean field potential and short-range parallel or anti-parallel correlations. Calculations 

are carried out assuming the medium to have a saturated nematic order. Calculations 

are carried out for smectic phase with saturated nematic order.The pressure-

temperature phase diagrams calculated using this model show the N-N transition, 
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double re-entrance with a bounded SmAd region and the N-N transition associated 

with double reentrance. We have also calculated pressure versus A (a parameter which 

increases with chain length in a homologous series) phase diagrams. These show the 

NR lake associated with the SmA1-SmAd transition, N-N transition occurring inside 

such an NR lake, quadruple reentrance at constant pressure, and widening and merging 

of the NR lake with the main nematic sea [47]. As shown in chapters 2 and 3, if the 

hard rod effects are not taken into account, a negative deviation from the geometric 

mean approximation for the mutual attractive interaction is necessary to get the N-N 

transition. Our calculations including the hard core interactions in chapter-5 clearly 

show that, neglecting these interactions is equivalent to a negative deviation in the 

geometric mean approximation for the effective mutual interaction between A and P 

types of pairs and this deviation increases as the two components become structurally 

more dissimilar. The results are discussed in comparison with the available 

experimental data and other theoretical models.  

In chapter-6, the subject matter is different from that of the previous chapters. 

Wwe no longer consider molecules with longitudinal components of dipole moments. 

We discuss a molecular theory of the SmA-SmC transitionphase . As it is already 

mentioned in section 1.2, the SmC phase which is exhibited by compounds whose 

molecules have lateral components of electric dipole moments (see section 1.4.3). 

The SmC phase is characterised by long-range one dimensional layering order and a 

long range orientational order with the director tilted with respect to the layer normal 

see figure 1.2). This phase stabilises on cooling the SmA phase. It is known by 

experiments that, on heating the SmC phase, the average tilt angle   of the nematic 

director continuously decreases leading to a second order SmC -SmA transition or 

jumps to zero leading to a first order SmC-SmA transition. In this chapter, various 

earlier molecular theories of the SmC-SmA transition are critically reviewed. As 

Goossens points out in his detailed criticism [48], these theories for the SmC -SmA 

transition are not satisfactory. We propose that the molecular origin of the tilt is the off 

axis location of the lateral dipole in the molecule. Using reasonable values of dipole 

moment etc., we show that a tilted structure lowers the energy of the medium. An 

appropriate single particle potential is proposed to develop a molecular mean field 

model for the SmC phase.on the basis of this. Phase diagrams calculated on the basis 



Chapter-1 -31- 

of the model show SmC-SmA-N-I transition sequence or a direct SmC-N or SmC-I 

transition [49]. Over an appropriate parameter space, nature of the SmC-SmA 

transition changes from first order to second order (tricritical behaviour). The results 

are discussed in comparison with experimental data. We also estimate the specific 

heat at constant volume. Close to a second order SmC-SmA transition, using the 

calculated temperature variation of the tilt angle, the Landau coefficients have been 

evaluated and are compared with those estimated from experimental data. Over a very 

narrow range of the parameters, a first order SmC-SmC transition ending in a critical 

point is also predicted. The calculations have been extended to include a higher order 

term in the tilting potential and to include the effect of different tilt angles of the core 

and the chain in the SmC phase. Some possible extensions of the model have been 

pointed out. 
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