
CHAPTER 4 

Parity detection using double correlation 

4.0 Introduction 

The purpose of this chapter is to point out certain subtle 

features of the Knox-Thompson (KT) technique that are 

inconsequential in the triple correlation (TC) method. These 

special features of the KT method were missed in the previous 
b,15_) 

work which dealt with a point source: dealt only with SNR for the 

R:s. SNR for any technique involves a factor that depends on the 

source structure Suin addition to the SNR for the double 

correlation of the point source function (PSFDC). This dependence 

is not very dramatic in the case of TC. Consider a binary star 

(whose individual components are unresolved) with component's 

fluxes say N,and N and separation b. In the case of binaries the 
2 

only ambiguity that is left over after measuring the 

autocorrelation, is its parity (defined as the side of the 

brighter component). In chapter 2 we estimated SNR for parity of 

a binary using TC. Though the SNR for parity determined using TC 

depends on the fluxes it does not strongly depend on the binary 

separation b as long it is smaller than the seeing. In this 

chapter we show that SNR for the parity of the binary determined 

by using the double correlation (ie KT) method depends linearly 

on binary separation (for small separations compared to the 

seeing disk). As a consequence of this dependence KT has poorer 

SNR for parity detection (for binaries close to the resolution 

limit) than the TC inspite of it being a second order statistic 

(the advantage due to lower order statistics shows for magnitudes 



m 
fainter than 18). This result is contrary to the existing 

analytical calculations (which use a point source as a 

representative) and is supported by numerical simulations for 
C111 

complex sources by Beletik (1988) who finds the KT method to have 

poorer SNR for complex sources than the TC method. In section 4.1 

we present our analytical estimates for parity detection using 

the double correlation. Numerical results are presented in 

section 4.5. 

4.1 Parity detection using double correlation 

Our motivation for considering parity detection using double 

correlation is as follows. The crucial point in the KT method is 

the limitation on AU viz A U < A U m a r ~ ~ / A f  where $ is the Fried 

parameter and f is the focal length of the speckle imaging 

system. The pupil plane length scale 5 gives rise to the 'seeing' 

disk of size 6 = ~ f / ~  in the focal plane. If T, were zero then 

dU,u would become zero rendering KT method useless. In the limit 

TID+() (D is telescope diameter) the focal plane pattern due to 

a point source will become stationary (statistically invariant 

under shifts) in the focal plane. If any process is stationary 

then the only nonzero double correlation is the power spectrum 

auI-u). This, of course, does not contain any phase information. 

In reality the finite size of seeing disk saves the situation by 

breaking stationarity in the focal plane. Note that the 

bispectrum is a special case of the most general triple 

correlation <1U12F I*) with Z I T ~ - U - ~  and is meaningful even 

in the limit x ~ + o .  For a binary (within an isoplanatic patch) 
the focal plane image consists of two similar speckle patterns 
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due to the two stars forming the binary. Different speckles due 

to the same star have uncorrelated intensities, however, for 

every speckle due to star 1 there is one speckle due to the star 

2 which has the same relative intensity and separation as the 

true binary. Any information about the binary must come from 

these correlated pairs of speckles (otherwise one can be happy 

with the long exposure image). Above we argued that for KT to 

work a finite seeing disk is a must. The statistic of speckles 

change on the scale 6 of the seeing disk and this change must be 

felt by the correlated pairs of speckles with separation b. We 

therefore expect a small parameter b/6 in front of SNR for parity 

detection using double correlation which goes to zero smoothly as 

b/6+O. This is confirmed in the detailed calculations given 

below. Before presenting them we give frequency domain arguments 

to show that this small parameter should also be present for SNR 

for phase determination for objects small compared to the seeing 

disk. 

Frequency domain estimates 

The double correlation used in KT method can be expanded in 

a Taylor series as follows: 

The first term is just the power spectrum ( I ~ I - ~ )  . The third 

term contains only the power spectrum of the source and not its 

phase. Only the second term contains phase information. Also note 

that both the second and the third term depend on the choice of 

the origin in the focal plane through the gradient. Since the 



second term contains phase information we show the origin 

dependence explicitly. Let the binary be 
iux, C' uXz 

S ( X ) = ~ ~ , ~ ( X - ~ , ) + ~ , ~ ( X - X ~ )  or su=0c,e + 4 a e  
(4.2) 

If b=X2-XI is the binary separation then one can write the 

coordinates of the components as 

where Xc is the flux center of the binary: xC= H ~ X , + c s 2 x 2  with 
d, + 42 

this the second term (apart from ( R ~  R-U) ) becomes 

Note that the coefficient of the flux center Xc is the power 

spectrum of the binary. In general, though the second term 

depends on the choice of the focal plane origin, the origin 

dependent contribution is the power spectrum. The KT signal 

proper comes when the flux center is chosen as the origin. Though 

the first term (usual power spectrum) in Eq 4.1 is noisy it is 

purely real by construction and cannot contaminate the purely 

imaginary part of the KT signal (for example the second term in 

Eq 4.4). The noise on this comes from the third term of Eq 4.1. 

Without any loss of generality, we choose the origin for the 

system response at the flux center so that in A U - < R ~ V R / - ~ )  
term analogous to the first in Eq 4.4 is absent. RU and V R ~  can 

be treated as uncorrelated and thus ( R ~ V R / - ~ )  vanishes. 

However, < I ~ U V R ,  1) .J is correlation scale 

for Ru . Thus the noise on <a,vg,) is the same as that for the 

usual power spectrum. We emphasize that the b dependence is true 

for all light levels: the SNR for KT method is b times poorer 
6 



than the corresponding SNR for the power spectrum method: 

S N R ~ ~ ~ ~  ( K T )  " (b16) SNRmwEn (4 -5 )  

Eq 4.6 follows from Eq 4.5 since information about the parity is 
2 

contained in Ns- (%) independent phases : 
S N R ~ f i ~ ~ ~ y  ~ N F  SNRpHaSE 

Similarly, autocorrelation is derived from I V ~  power spectrum 

values. Supplementing the above results by known results for 

autocorrelation method (Dainty 1974, Dainty et a1 1979) we get 

for SNR of the KT method 

sNRPHRSE ( K T )  
N (b16) hiyh f l u  (4.7~ ) 

w (b/d)N Cow flux N<1 (4.;~b) 

hiyh flu% S N R ~ ~ ~ ~ ~ ~ l ~ ~ )  a (616) $ ( 4 - 8 ~ )  

N ( b / 6 ) @ ~  flu x(l (4.86) 

where Jf is photon count per speckle in an exposure. The factor 

-h 
is about NS for binaries close to the resolution limit. For T 

- 2  I 
a 4 m telescope h+ . 

Focal plane calculations 

In the following sections we support the frequency domain 

arguments given above by explicit analytic calculation of the SNR 

for parity detection using the double correlation. Our method is 

as follows. First we calculate the general double correlation 

(PSFDC) for the PSF which is inversion symmetric. The general 

double correlation for a binary is made of four PSFDCs. The 

strengths and locations of these four PSFDCs are asymmetric about 

the center of the binary double correlation. This leads to an 

asymmetry in the double correlation for the binary. This chapter 



is aimed at locating those regions of the double correlation 

which contribute more to the asymmetry at the cost of minimum 

variance. To calculate PSFDC we need to assume the statistics 

obeyed by the pupil plane fields. We mimic atmospheric 

degradation by a single scale Gaussian correlation. In reality, 

departure from the single scale correlation is known to result in 

drifting centroids of the instantaneous speckle pattern. We 

discuss these issues later on in section 4.5. In this chapter we 

are not interested in correlation effects due to secondary Airy 

rings so use an apodized aperture to yield a Gaussian beam. The 

parity statistic (when defined) will be of the form 

P = J ~ ' X ~ ' Y  W [ X , Y ) < I ( X ) I ( Y ) )  ( 4 - 9  1 

the sign of which tells us the parity of the binary. A near 

optimum choise of W is made so that SNR is (apart from numerical 

factors of the order unity) at its best. The parity signal, 

Eq 4.9, is second order in the intensity and is evaluated for the 

single scale Gaussian model described below. The variance of such 

a general double correlation involves terms second, third and 

fourth order in the intensity. In the case of the autocorrelation 

it is enough to consider only the lowest second order 

contribution if one is interested in "low" light levels (fainter 

than 1 3 .  Although it is obvious that even in the case of. a 

general double correlation the second order terms should dominate 

at sufficiently "low" light levels it is not known apriori what 

"low" means for a specific choise of the weight function. 

Consider an extreme example with W(X,Y)=l everywhere. The 

statistic in Eq 4.9 is just the square of the total flux through 



the telescope. In this case there are two transitions before the 

second order cantribution ultimately dominates. Since a sum of 

(independent) Poisson fluctuations is a Poisson distribution the 

total phot0.n count N in a realization is a Poisson variable with 
- 

mean N the classical intensity for that realization. The 

unbiased estimator of the square of the flux is N ( N - ~ )  . Using 

the results derived in the third chapter we get the photonic 

variance 2 
g4+-+a3+na 

The average over atmospheric fluctuations can be done 

approximately. Since the total flux is made up of a large number 

of independent Rayleigh fluctuations in the intensities of 

individual speckles we can treat the total flux as a Gaussian 

random variable with average N,N and standered deviation 

N ~ N  . It can be shown that the SNR for the square of the total 

flux goes through two transitions: 

S N R ~ L u X ~  - $N2 1 +&bsiii-m 47K=1 
'I2 '12 I/< 

One frame - + N S  K 9 
M = l  

4 4ewn.d t m n ~ % m  Z p y M = f  - $ ~ s X q  

Below we show that the PSFDC contains two features A and B. 

Both these features are capable of yielding parity information. 

The feature B, which is also the basis of the autocorrelation 

analysis, yields parity with better SNR than the feature A 

(basically long exposure). For feature A there are two 

transitions in the flux levels. Since the parity detection due to 
m 

the feature B has better SNR and "low" flux means fainter than 13 

for this feature we calculate only the lowest second order 



variance in this case. The calculation is based on a single scale 

Gaussian model for the pupil plane fields. The case of parity due 

to the feature A, is described here for the sake of completeness 

(it proves to be unimportant for high resolution imaging), needs 

variance calculation in all orders and is treated using the 

following approximations. First of all, we use the pixel model of 

the PSF descirbed in section 2.1. This avoids the complexities of 

handling high order pupil plane field correlations. The second 

simplification is to let the binary shrink to a point. This is 

justified for the variance calculations (not for the signal). If 

the two components have widely different strengths then the 

noise, anyway, comes from the brighter source. In the more 

general case letting the binary shrink to a point neglects terms 

b/d times smaller than the leading terms. The type A term is 

important for binary separations of the order of the seeing disk. 

4.2 The PSFDC 

In Fig 4.1 the double correlation for PSF is shown in the 

(Y, , Z , )  plane. It consists of two features. The feature A has 

extension of the order of the seeing disk while the feature B is 

along the diagonal line x=Y with a width of the order of the 

speckle size and length of the order of the seeing disk. In the 

full four dimensional X-Y space the feature A is a four sphere 

while the feature B is a two dimensional layer. In our Gaussian 

model all these features have Gaussian fall offs with the above 

mentioned length scales. In the figure, however, the features are 

shown more like a step for clarity of depiction. The two features 

have the same strength at the origin that can be readily 



2 
e s t i m a t e d .  With o u r  n o r m a l i z a t i o n  TTN,R is  t h e  t o t a l  pho ton  

c o u n t  p e r  e x p o s u r e  f o r  a z e r o t h  magnitude star. T h i s  i s  

d i s t r i b u t e d  o v e r  t h e  e n t i r e  s e e i n g  d i s k  o f  e x t e n t  d = f / k d .  Thus 

t h e  a v e r a g e  i n t e n s i t y  d e n s i t y  is  N, k~ ' R /+ . The g e n e r a l  

doub le  c o r r e l a t i o n  d e p i c t e d  i n  F i g  4 . 1  c o r r e l a t e s  i n t e n s i t y  a t  

two p o i n t s  i n  t h e  f o c a l  p l a n e .  Now i f  t h e s e  two p o i n t s  a r e  

s e p a r a t e d  more t h a n  a  s p e c k l e  s i z e  t h e n  t h e i r  i n t e n s i t y  

f l u c t u a t i o n s  w i l l  be  i ndependen t .  For  t h e s e  r e g i o n s  t h e  d o u b l e  

c o r r e l a t i o n  d e n s i t y  w i l l  be t h e  p roduc t  o f  t h e  i n d i v i d u a l  

i n t e n s i t y  d e n s i t i e s .  T h i s  i s  t h e  r e a s o n  f o r  t h e  t e r m  A whose 

a 4 4 4  + s t r e n g t h  is t h e r e f o r e  % k -4' R /f . 

Note t h a t  t h i s  f e a t u r e  is meaningfu l  even  f o r  a l o n g  e x p o s u r e  

image. Now c o n s i d e r  t h o s e  r e g i o n s  of  t h e  d o u b l e  c o r r e l a t i o n  

where t h e  two p o i n t s  i n v o l v e d  i n  t h e  c o r r e l a t i o n  a r e  w i t h i n  a 

s p e c k l e  s i z e .  T h i s  r e g i o n  is s p e c i f i e d  by t h e  p l a n e  X=Y w i t h  

a t o l e r a n c e  of  t h e  s p e c k l e  s i z e .  The i n t e n s i t y  a t  t h e s e  t w o  

p o i n t s  i s  c o r r e l a t e d  and t h e r e f o r e  i n  t h i s  r e g i o n  t h e r e  is e x c e s s  

c o r r e l a t i o n  i n  a d d i t i o n  t o  t h e  t e r m  A .  T h i s  e z c e s s  is t h e  t e r m  B. 

Note t h a t  t h i s  f e a t u r e  is a g e n u i n e  h i g h  r e s o l u t i o n  f e a t u r e :  it 

d o e s  n o t  e x i s t  f o r  a long  exposu re  image. The f e a t u r e  A 

r e p r e s e n t s  t h e  long  exposu re  image w h i l e  t h e  f e a t u r e  B r e p r e s e n t s  

i n f o r m a t i o n  coming from c o r r e l a t e d  p a i r s  o f  s p e c k l e s .  

The d o u b l e  c o r r e l a t i o n  f o r  t h e  b i n a r y  is  shown i n  F i g  4 . 2 .  

Note t h a t  it c o n t a i n s  f o u r  u n i t s  o f  PSF d o u b l e  c o r r e l a t i o n s  w i t h  

s t r e n g t h s  and  l o c a t i o n s  shown i n  F ig  4 . 2 .  Because o f  t h e  

asymmetry i n  t h e i r  s t r e n g t h s  and l o c a t i o n s  w i t h  r e s p e c t  t o  t h e  

c e n t e r  o f  t h e  doub le  c o r r e l a t i o n  t h e  b i n a r y  d o u b l e  c o r r e l a t i o n  is 



asymmetric and one has to identify those regions of the double 

correlation which contribute significantly to the asymmetry. A 

more interesting question is to ask the relative importance of 

the two features of the PSF in determining the parity of the 

binary. The answer to this question has implications for the more 

general question of optimum weight function. Intuitively one 

expects the optimum weight function to have two domains: one each 

for the two features of the PSFDC. The relative weight of the two 

domains determines what fraction of information is obtained from 

a specific feature. So one should, in principle, consider a 

weight function with two domains whose relative weights are such 

that the SNR for the resulting parity statistics is maximum. 

However, it is not necessary to carry out such a parametric 

optimization. A kind of superposition approximation holds for the 

signal and the variance (but not for the SNR of course). Imagin 

that one knows the signal and the noise for the two features 

individually. Then the signal and the variance for any linear 

combination of the two features will be (approximately) the same 

linear combination of the appropriate quantities for the 

individual features. This simplification owes its existence to 

the fact that the features A and B have vastly different four- 

volumes. If we take the four volume of the feature B as unity 

then the four volume of the feature A is about Ns=2000. For this 

reason, the difference between signal and noise due to the 

feature A and the feature A with voids of the size of the feature 

B is negligible. It turns out that for binary separation small 

compared to the seeing the feature B dominates while for 

separations comparable to the seeing the feature A dominates. So 



we c o n s i d e r  two k i n d s  of  we igh t  f u n c t i o n s :  one d e s i g n e d  t o  

emphasize t h e  f e a t u r e  B and t h e  second t o  emphas ize  t h e  f e a t u r e  

A .  We g i v e  t h e  o r d e r  of  magni tude  s c a l i n g s  below w h i l e  t h e  

d e t a i l s  a r e  l e f t  t o  t h e  appendix  A4. 

4 . 3  SNR f o r  p a r i t y  d e t e c t i o n  u s i n g  f e a t u r e  B: 

I n  F i g  4 . 2  we have t a k e n  t h e  star 1 a s  t h e  o r i g i n  i n  t h e  

f o c a l  p l a n e .  We have a l i g n e d  t h e  a x e s  s o  t h a t  t h e  b i n a r y  l i e s  

a l o n g  t h e  f i r s t  a x i s .  The c e n t e r  o f  t h e  e n t i r e  d o u b l e  c o r r e l a t i o n  

( X  X Y , Y  ) is  t h e  same as t h e  f l u x  c e n t e r  o f  t h e  l o n g  e x p o s u r e  
CI' c2' C1 C2 

image ( d o u b l e  c o r r e l a t i o n  is ,  of  c o u r s e ,  f o u r  d i m e n s i o n a l  b u t  f o r  

t h e  p l a n e s  ( x , , ~ )  and O$,Y,) t h e  c e n t e r  c o o r d i n a t e s  a r e  t h e  same 

as t h e  l o n g  exposu re  image i . e .  X =Y = -  H z  X =Y = 0 )  . The c e n t e r  
ci c l  5+4; ca cz 

o f  t h e  d o u b l e  c o r r e l a t i o n  i s  shown by a c r o s s  i n  F i g  4 . 2 .  I t  is 

c l o s e r  t o  t h e  b r i g h t e r  s t a r  which we t a k e  t o  be t h e  s t a r  1. W e  

n o t e  from t h e  F i g  4 . 2  t h a t  t h e  c o r r e l a t i o n  r i d g e s  ( f e a t u r e  B )  

a p p e a r  a l o n g  t h r e e  s t r i p s ,  l a b e l e d  S , , S  and S  i n  F i g  4 . 2 ,  i n  t h e  
2 3 

( X  ,Y ) p l a n e .  So o u r  f i r s t  c h o i c e  of we igh t  f u n c t i o n  which 

e m p a s i z e s  t h e  f e a t u r e  B is one which is nonze ro  o n l y  a l o n g  t h e s e  

t h r e e  s t r i p s .  The we igh t  f u n c t i o n  i s  shown i n  F i g  4 . 3 .  The s t r i p s  

have  e q u i v a l e n t  w id th  t h a t  of  t h e  f e a t u r e  B.  The asymmetry i n  t h e  

d o u b l e  c o r r e l a t i o n  a b o u t  t h e  f l u x  c e n t e r  c a n  be  c o n s i d e r e d  a s  

asymmetry i n  t h e  i n d i v i d u a l  s t r i p s  a b o u t  a  -45' l i n e  p a s s i n g  

t h r o u g h  t h e  f l u x  c e n t e r .  T h i s  i s  because  t h e  middle  s t r i p  p a s s e s  

t h r o u g h  t h e  f l u x  c e n t e r  and t h e r e f o r e  i ts one  s i d e  o n  i n v e r s i o n  

t h r o u g h  t h e  c e n t e r  becomes t h e  o t h e r .  However, t h e  uppe r  p a r t  o f  

t h e  s t r i p  1 becomes t h e  lower  p a r t  o f  t h e  s t r i p  3 on i n v e r s i o n  

t h r o u g h  t h e  c e n t e r .  But  t h e  s t r i p s  1 and 3  are i d e n t i c a l  i n  a l l  



realizations so lower part of the strip 3 can be replaced by the 

same that of strip 1. Thus one can talk of &symmetry of various 

t45O strips about the -45O line passing through the center of the 

double correlation. The middle correlation strip has its center 

displaced towards the brighter component of the binary while the 

other two strips have their centers shifted towards the fainter 

component by half the amount of the middle strip. For any other 

45astrip consisting only of feature A the center of the strip 

0 
deviates from the -45 line in third order in the binary 

separation and thus neglected for small separations. This 

motivates our weight function shown in Fig 4.3. In this and the 

next chapter we have considered representative weight functions 

which take only three values: -1,O and 1. In all figures the sign 

of the weight function is shown whenever it is nonzero. 

Two points need to be clarified. The first point to note is 

that by definition the double correlation is symmetric in X and Y 

for every realization of the atmospheric and photonic noise. 

Therefore, the strips 1 and 3 are identical and do not contain 

independent information. Our weight function, however, does draw 

information from both these strips. As the following argument 

shows the SNR would have been the same if we had restricted the 

weight function to one side of the X=Y plane. We show this for 

low light levels which are relevant for this feature. At low 

light levels the variance for the double correlation, Eq 4.9, is 

given by 

~ d ? r  d2y W ( X , Y )  [ w(x,Y)+ W ( Y , X ~ ~ < I ( X ) I ( ~ ) )  (4 .lo) 

Now consider a weight function W which is symmetric in X and Y 



like our weight function in Fig 4.3. Then the variance is given 

by 

v= 2Jd31 d S  w~~%,Y)<I(x)I~Y~) (4-7 I)  

Now consider a weight function W+ which is obtained from W by 

retaining only the upper half of it 

w + t x , ~ ) = h I ( x * v )  $ % & X I  

= 0 cfoiuuu.ire 

It is obvious that for this weight function the signal S+ is half 

of the signal S for the weight function W: S+=0.5 S . Since there 
ie no overlap of W+(X,Y) and W (Y,X) only one term in Eq 4.10 + 
contributes to the variance and that too half of what it would 

for W: 
2 2 2 v+=Id xd y ~ ; ( * , Y ) ( I ( X ) I ( Y ) ) = $ J ~ $ ~ $  W(X,Y)< I (X) I (Y) )  =$-v 

Thus the SNR for W+and W is the same. Further it makes no 

simplification to favour W+ which involves integrals for the 

middle strip split halfway. The second point to be noted is that 

the strips 1 and 2 come with the same weight. Actually one should 

weigh the strips differently and work out the SNR for a choice of 

the relative weight. The relative weight is to be chosen so that 

the SNR is maximum. This question is best answered for W+. The 

signal due to the strip 1 is equal to the signal due to the upper 

half of the strip 2. The variance due to the strip 1 and the 

2 a z 2 upper half of the middle strip is a, +311c,++d2 and 5+.c,ocqf 5 

respectively in proper units. The difference in the variance is 

not alarming especially when one is interested in binaries with 

widely differing strengths. It is well known that if two 

independent variables estimate the same quantity then the best 

linear combination is the one which weighs the two variable by 



the reciprocal of their variances. Since the variances for all 

the strips are nearly the same we consider equal weights for 

simplicity. 

Although the weight function is designed to emphasis feature 

B it cannot filter out the all pervading term A which contributes 

mainly to the noise. It is shown in the appendix A4 that the 

' parity signal from all the three strips is 

The low light level variance is 

Thus our estimate for the SNR for parity detection using the 

feature B is 

where d'= r'2'0~ is photon count per speckle in an exposure, 
16 

B=k@ is the binary separation in units of diameter p= - 
2 f 

I f  of 
k R  

the PSF in the absence of atmospheric noise, q is detector 

quantum efficiency and M is the number of frames of data used. As 

noted before the cause of the asymmetry is that the four PSFDCs 

are asymmetrically distributed about the center. If the four 

PSFDCs are taken futher apart then the asymmetry will increase, 

This is the reason why SNR depends on the binary separation. It 

b may appear that only a fraction - of the strips contribute to 
6 

the signal. This is not true: for example the signal density 

along the central strip is (apart from overall strength) of the 

form 



where 9 is the coordinate along the strip. The signal density is 

obtained by taking the difference between the double correlation 

values at two points + away from the center of the strip. So the -7 
signal comes from all parts of the strip. If it were coming from 

some localized region then one could improve the SNR by 

restricting the weight function to this area thus cutting down 

noise from regions with no or little signal. Thus the weight 

function chosen is near optimum and one can improve SNR only 

slightly by fine tuning the weight function; the scalings with b 

or wo'n't be affected. 

In autocorrelation analysis one is interested in getting the 
0 

binary separation so one integrates along all 45-strips. For the 

correlation strips the result will stand out relative to its 

neighbours. 

4.4 SNR for parity detection using feature A 

Now we consider the asymmetry due to the uncorrelated 

regions of the double correlation. A representative weight 

function is shown in Fig 4.4. As mentioned before the 

contribution to asymmetry is in the third order in the binary 

separation. A straightforward calculation gives the parity 

contribution for this weight function: 

However, the noise calculation is not very straightforward 



because in the context of general weight function the term "low 

. flux" needs qualification. In the following we derive an 

expression for the variance of a general double correlation valid 

for all light levels. Then we show that for autocorrelation (as 

is well known) and for the weight function used in the previous 

section low light levels indeed mean per speckle photon count in 

an exposure less than unity. For the weight function of the 

second kind considered in this section the varignce is obtained 

in all orders. Consider, then, a general second order 

statistic 

where fi is the intensity on the i'th pixel. The noise on this 

statistics involves intensity correlations of second, third and 

fourth order. The lowest second order contribution is already 

given in Eq 4.10. This is what is ultimately relevant in the case 

of fainter and fainter objects. For brighter objects the fourth 

order contribution dominates. This is just the classical 

variance. The intermediate third order contribution should be 

relevant only in the transitional regime. In order to avoid the 

task of dealing with field correlations of rather high order we 

use the PSF model of section 2.1. Another simplifying factor is 

that while considering the variance one can take a point source 

as representative. In the case of the parity signal it was 

essential to consider the binary nature: the signal being in the 

first order in the separation. This is not so for the variance. 

The variance does not depend on the binary separation in its 

leading term. In the notation of chapter 2 the pixel intensity5. 
i 



is made of two speckles 

where fJ-;'S are independent Rayleigh variables. Let us begin with 

classical fourth order contribution to the variance. The square 

of the statistics in Eq 4.15 is given by 

3 
+ "' ' W i j + b  ' k t b l t b  'if-& j Wk+b l+b + u i + b  j+b Wk P M  +ui+b  j+b %+ble]] 

Since the four point intensity correlation does not vary much (by 

orders of magnitude) on the scale of the binary separation, for 

noise consideration, one can let b=O in the above expression. 

This reduces the number of terms to just one with appropriate 

weight: 
(4.1 7 ) 

4 t ' k l  ( V i  Fiij Akfi l)=(l+d) L Nij W k L < ~ i ~ j ~ k ~ l )  
i j k l  " f ijkL 

The classical variance is given by 

For the statistical model for the S (section 2.1) the fourth P' 
order correlation <kpjpRp1)  can be shown to be 



From this one must subtract the square of the mean 

to get the variance: 

In deriving Eq 4 . 2 1  from Eq 4 . 1 7  and (Eq 4.19-Eq 4 . 2 0 )  the 

symmetric nature of the W's used in this chapter and the fact 

that two W's appear was used. 

We consider two kinds of weight functions. The first one 

covers the case of the autocorrelation and the one considered 

before stressing the feature B in parity detection: 

F a  k i d  qj = fi Sij (4- 2 1) 

For this weight fuction all the terms in the variance are of the 

4 form %& . It will be shown later that the third order 

3 
contribution is of the form $g. We have seen above that the 

2 
second order contribution for this weight function is N , N  . 
Thus for weight fuctions of this kind low flux means &<I i.e. 

fainter than 1 3m . 
Now consider the weight function of the second kind shown in 



Fig 4.4 . The discrete analogue of which is 

where we have written the vector subscript i in terms of its 

components and chosen i, to be along the binary. The components 
'13 ,,,'Ja 

run from -!!k to +A . The restr,iction actually comes from the 
2 2 

fact that all intensity correlations extend only upto the seeing 

disk. In the spirit of the second chapter all correlations are 

- 
treated constant inside the seeing disk and the limitation in the 

extension is taken up by the indices. For this weight fuction it 

can be shown that 

The case is similar to one shown in Fig 5 . 5  after summing over i2 

and j2 which just gives Ns as W does not depend on these indices. 

Thus the fourth order contribution to the variance is 

( I + ~ ) ~ c ~ N ~ x ~ + I ~ N ~ ~ K ~ ~ + ~ N ~ J C ~ ~ ~ ( ~ + ~ ) ~ ~ N ~ ~ ~  3 S ( 4 . 2 5 )  

A s  an application of the results derived in chapter 3 on Poisson 

fluctuations and using the symmetry of the weight function 

together with the fact that two W's appear we get the third order 

contribution to the variance of a general double correlation: 

Note that for the weight function of the first kind all terms are 

of the form N x3 . Coming back to the weight function of the s 

second kind we get the third order variance 

The second order contribution is of the form 



a P 1 1 2  
Z(1 - l~ )  IN' ( ( N + N ~ )  ~ 2 ( 1 + 4 )  N , N  (4-27) 

For this weight function there are two transition regions. The 

first one is when the dominant variance comes from the third 

order terms instead of the classical fourth order which dominate 
m 

for bright sources. This happens for objects between 13 and 19: 

The second transition occurs when the total flux is less than 

unity. The second order terms take over finally. The S N R  for 

parity detection using the feature A is given by 

One can ask the following question. For given brightness of the 

source what is the binary separation beyond which the parity is 

better detrmined by the feature A than the feature B. We do this 

for a typical binary: J C = ~ - J ~  4-31;~- 
2 2 1 9  : 4 . (This binary is 

expected to have better S N R  as almost all S N R  expressions have 

3(;,,V!![~-Jc1)in the numerator). Equating the two expressions for the 

S N R  we find this separation to be 

This formula is valid for zqSC(l (as we have used 'low' flux 

calculations for the feature B) and $q~s~)?(as we use 'medium' 

'b flux variance for the feature A). When &I we get B=NSi.e. the 

separation is equal to the seeing disk (this is a rather risky 

extrapolation of the Taylored calculations). As df reduces the 



binary separation for which the two features contribute equally 

also decreases. For a 4 m telescope, q=0.2, we have given in 

table 4.1 the values of beyond which long exposure feature A 

determines the parity better than the high resolution feature B. 

Table 4.1 Binary separations beyond which the feature A has 
a better SNR than the feature B 

Magnitude 14 15 16 17 18 19 

Separation 34 26 21 17 13 10 
IS 

The feature A in the double correlation represents 

uncorrelated fluctuations in the intensities of the two points 

for which the double correlation is considered. So the weight 

function under consideration is actually dealing with a long 

exposure image. To see this more cleary we write 

The last two terms represent contribution due to correlation 

ridges. For separations larger than those given in the table 4.1 

the last two terms are negligible. The first term contains flj and 

5. which are uncorrelated as the separation between the pixels is 
3 

different from the binary separation. Thus the average is 

L Nij <ii; wj > - Wij  ( f i i } (7 i j )  (4 .31)  

We can think of this as equivalent to a first order statistics 

where the equivalent weight function fiis given by 



Now, if we go to the flux center of the long exposure binary 

image then a constant weight function would give the total flux; 

a linear weight fuction gives zero (by the definition of the flux 

center); a parabolic weight function gives the width of the image 

and thus can tell about the binary nature; a cubic weight 

function gives the parity. Now since hj.. is inversion 
43 

antisymmetric fi=Zhj..fl contains only odd powers of i, in the 

average sense. So we see that our weight function is essentially 

.3 
playing the role of an equivalent weight function t, in the case 

of first order parity statistics. In fact it is worse than that. 

Q 3 
The equivalent function has fluctuating nature as apposed toi, 

which is deterministic. In the specific case of binary stars the 

feature A may have larger SNR for large separations but it cannot 

be considered as a truely high resolution feature: for more 

complicated sources with fine structure only feature B is of any 

relevance. 

4.5 Numerical results and discussion 

In this section we present numerical results for the SNR for 

parity detection using double correlation. We are concerned only 

with the SNR due to the correlation ridges which, as argued 

before, are the true high resolution information carriers. First 

of all letting &=~,-,~'= % we see that for reasonable 
2 

5 
observational parameters (10 ms exposure,lO frames,loOC) bandwidth 

and detection efficiency 0.2) a SNR of 3 can be achieved for 
nr 

objects brighter than 14 for separations close to the resolution 

limit. Also note from the SNR expression Eq 4.12 that the SNR 



(for fixedB ) is independent of the telescope diameter. This is 

'h because of the small factor which masks the usual Ns factor in a 
the SNR. If in any technique individual speckles carry 

information then there is a factor due to independent 

information in NS speckles. We also note that the SNR depends 

linearly on the binary separation. We recall here the SNR for 

parity detection using TC 

SNR - 
TC/€ - 4 q"5 MI* N? Jl; rH; (4-x2) 

(section 5.3 3 f i ( q 4 3 + 7 ~ z 4 + 7  43(;'+~4~) 
Chaptey 2 ) 

where the numerical factor is provided by the field calculations 

given in the chapter 5 (otherwise the expression is the same as 

given in chapter 2). Note that the SNR improves with the diameter 

of the telescope. The TC method does not depend on the breakdown 

of the stationarity in the focal plane statistics. Thus every 

speckle in the PSF carries the parity information: this gives the 

factor ~2 which increases linearly with the telescope diameter. 

We see that both KT and TC methods have an advantage and a 

disadvantage each. The KT method is second order and so 

intrinsically capable of beating the TC which is a third order 

method at sufficiently low flux levels. However,the TC method 

respects stationarity and thus wins a factor N: over the KT 

method. We emphasise that this comparison is true for binary 

separations near the diffraction limit. For wider separation the 

KT improves. In the concluding chapter we present our numerical 

results for the SNR for parity detection using both these 

methods. 



A discussion about the flux center. We have, throughout, 

assumed that the flux center is a given quantity. This is 

certainly not so. It is well known that the flux center for every 

frame wanders in the focal plane and significant improvement is 

possible bj? centering all the frames. The reason for this , 

centroid shift is attributed to the turbulence scales larger than 

the decorrelations length (especially scales of the telescope 

size or larger). These scales in the refractive index tilt the 

wavefront as a whole. The effect of these larger scales can be 

mimicked, however, by a larger value o f 6 .  This is for the 

following reason. Consider a frame of focal plane intensity. We 

can calculate the intensity double correlation for this. Now let 

us shift this image in the focal plane. The double correlation 

will also shift but the shift is along the 45O plane. Thus it 

can only increase the 6 and not diffuse the correlation ridges 

normal to their plane. This, of course, leads to a poorer SNR as 

b C l  I ?  
the small parameter - becomes smaller. Beletik (1988) in his 

6- 

numerical simulations finds the TC method to have better SNR than 

the KT method for complex sources. This he attributes to the 

wandering of the centroid. As we have argued this is indeed true. 

The wandering does make the KT method poorer but that is not the 

entire effect. The main reason why KT is poorer for complex 

sources is the fact that this method depends on stationarity 

breakdown crucially and has a small source size parameter in its 

SNR. 

APPENDIX A4 

The focal plane intensity due to a point source (the PSF) is 



given by 
5:+~: 
2 R~ 

(4.34) 

where No is normalization (see below) , k = z r r / ~  , f is the focal 

length of the imaging system, ~ X ~ E - ~ ; - ~ : { / ~ R Y  is apodization 

designed to give Gaussian beam if the pupil plane input fields 

were not corrupted by atmosphere. In the latter case q(5)=1 for a 
1 

point source at the origin and the PSI? R,(x) is given by 

The speckle diameter p is defined as area equivalent of the 

The normalization nl, is photon counts in an exposure per unit 

area due to a zeroth magnitude star i.e. 

gives the total photon count in an exposure due to zeroth 

magnitude star (bandwidth taken into account) incident on a 

telescope of radius R. We assume that the pupil plane fields ~ ( 5 )  

due to atmospheric distortions are stationary Gaussian fields 

with two point correlation function 

With this pupil plane field statistics the long exposure PSF is 

The equivalent diameter of this seeing is given by 



In this Gaussian model the average nember of speckles N5 is 

For example, if the seeing is 1" the decorrelation length defined 

by Eq 4 . 3 8  is 20  cm. This is purely due to the definition of the 

two point field correlation Eq 4 . 3 8 .  The general two point 

correlation can be obtained using Eq 4 . 3 8  and the well known 

pairing theorem for four point field correlation. The pairing 

theorem allows one to write a higher order correlation as a sum 

of products of double correlations. Consider N Gaussian random 
* * 

variable * , . . ;FN and their conjugates -$,..,If". Then form N 

distinct pairs out of these 2N variables. Take the average of 

every pair. The average of the original 2N-product is a sum of 

such paired products obtained in all possible ways. However, in 

speckle interferometry one can impose the further constraint that 
N- 

every pair must have one $. and one?. Every path in the earth's 
1 

atmosphere has a random optical path length of the order of 

hundreds of wavelengths. Therefore, the phase of $ is 

completely random. The PSFDC is given by 
a x 

4 4 4 - k Q  
1 2 k - e  R ( R [ X ) R ( Y ~ ) =  2 N, f +  j + e 

A tern 8 t e r m  ( 4 . M )  

Now consider a binary with separation b 

Stx) = 4, S(x)  +a, 8(x-b) (4.43) 

where we have chosen the focal plane origin to be the star 1. The 

coordinates of the flux center are 5 b . Since any asymmetry 
=5+% 



in intensity double correlation is due to the binary separation 

we have chosen the first axis along the binary. The general two 

point correlation for the binary contains four PSF double 

correlations 

< I ( x ) I ( Y ) )  = 4: ( R ( x )  R(YI) + 4 d 2  <R(x-bl R ( Y ) )  + C C , ~ ~ ~ , ( R ( X )  R(Y-b)) 

This correlation is shown in Fig 4 . 2 .  Now consider the weight 

function of the first kind shown in Fig 4 . 3 .  This has three 

strips whose width is equal to the width of the feature B. 

Consider the central strip. It contains B features due to the 

first and the third basic PSF double correlation unit. In 

addition it also covers part of A features due to all the four 

units. The overlap of a A-feature and the weight function is 

equivalent to a B-feature as can be seen from Eq 4 . 4 2  and noting 

the fact that the width of the weight function is the same as 

that of a B-feature. The centers of the A-features due to the 

second and the fourth unit are off center but since we are 

dealing with small binary separations the overlap is nearly the 

same as that due to other units (the difference is in the third 

order in the binary separation). So the central strip contains 

six equivalent B features. Their centers and strengths are shown 

in Fig 4 . 3  which also shows containts of other strips. In this 

figure equivalent B features are primed and the subscript tells 

us the PSFDC unit which has generated it. It is possible to 
0 

project the double correlation on the 4 5  line by integrating X ,Y 
0 

along - 4 5  line as the weight function chosen is independent of 

%, - Y/ these coordinates. Let 7/=? and F=T . Integration can be 



done for { . For an equivalent B-feature with strengthp say and 

centerTc away from the jump in the weight function we can get the 

signal and the contribution to the variance as 1-d integrals 
0 

along the 45 line 
k21 -- 2 

S= F'. N: kf' R% ,p (7,- '7c ) 
p . 5  f (4.45 1 

0 
where IrS(7) is the weight along the 45 line. A representative of 

antisymmetric weight functions is shown in Fig 5.4~. This is a 

step function centered at the flux center. As shown in Fig 5 . 4 ~  

(which deals with similar case) the result of such a weight 

function on a B-feature is a contribution equivalent to the 

central&% part of the B-feature where ~ ) c  is the distance of the 

B-feature from jump in the weight function. So one has to note 

down the distances, from the jump, of all the effective B-feature 

contributing for all the three correlation ridges. For small 

binary separations the central part (the area between fljlc ) is 

well approximated by 2% into the height of the feature. Note 

that for all features is of the order of the binary 

2 separation. O(~J) is unity everywhere. So doing the integrals in 

Eq 4.45 and Eq 4.46 we get the contribution to the signal and the 

variance by a typical B-feature with strengthp and distance '7t 
from the jump in the weight function: 

2 2 1  v= d y p  Rp z3 (4.48) 

In the expression Eq 4.47 the factor l.Y[)7!) comes because depending 



on which side of the -45Oline the center is the contribution is 

tve or -ve. Note that both the signal and the noise are additive 

in features. This gives us the signal due to individual strips: 

The net signal is given by 

The variance calculation is trivial as the square of the weight 

function entering the expression for the variance is everywhere 

unity. We get 

This gives us the SNR for parity determination using double 

correlation for the weight function of the first kind. 

One can choose other antisymmetric weight functions instead of 

the step function but the results do not alter the scalings with 

N ,  b 
0 

This is because the actual signal density along the 45 line is 

given by 
& a  2 

S ' 7 d o c  7, e 
Sf '  7, 

a 
where 7, the coordinate along the 45 line. We see that the 

signal comes from all over the seeing disk and one can not 

drastically improve the SNR by chossing any other weight 

function. Some fine tuning is, of course, possible. If the signal 

were coming from some localized part of the strip then one could 



restrict the weight function to that part thus cutting down the 

noise from other regions which contributed little to the signal. 

In particular, for a linear weight function of the form W(I)=? 

the SNR is poorer by a factor f i  . 
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