CHAPTER 4

Parity detection using double correl ation

4.0 Introduction

The purpose of this chapter is to point out certain subtle
features  of the Knox- Thonpson (KT) techni que that are
i nconsequential in the triple correlation (TC) nethod. These
special features of the KT nmethod were mssed in the previous
morglaﬂich dealt with a point source: dealt only with SNR for the
R s. SNR for any technique involves a factor that depends on the
source structure s, in additionto the SNR for the double
correlation of the point source function (PSFDC). This dependence
is not very dramatic in the case of TC. Consider a binary star
(whose individual conponents are unresolved) wth conponent's
fl uxes say N, and Piand separation b. In the case of binaries the
only anmbiguity that is left over after measuring the
autocorrelation, is its parity (defined as the side of the
bri ghter component). In chapter 2 we estimated SNR for parity of
a binary using TC. Though the SNR for parity determ ned using TC
depends on the fluxes it does not strongly depend on the binary
separation b as long it is smaller than the seeing. In this
chapter we show that SNR for the parity of the binary detern ned
by wusing the double correlation (ie KT) nmethod depends linearly
on binary separation (for small separations conpared to the
seeing disk). As a consequence of this dependence KT has poorer
SNR for parity detection(for binaries close to the resolution
limt) than the TC inspite of it being a second order statistic

(the advantage due to | ower order statistics shows for magnitudes
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fainter than 1831. This result is contrary to the existing
anal yti cal calculations (which use a point source as a
representative) and is supported by numerical simulations for
conpl ex sources by Bel etik (1988)“\1/\'}10 finds the KT nethod to have
poorer SNR for conpl ex sources than the TC nethod. In section 4.1
we present our analytical estimates for parity detection using
the double correlation. MNunerical results are presented in

section 4.5.
4.1 Parity detection using double correl ation

Qur notivation for considering parity detection using doubl e
correlationis as follows. The crucial point in the KT method is
the limtation on AU viz AUCAU, . ~T,IAf where v is the Fried
parameter and f is the focal length of the speckle inaging
system The pupil plane |length scaler gives rise to the 'seeing
disk of size é=A/r, in the focal plane. |If T, were zero then
oy woul d becone zero rendering KT nmethod useless. In the limt
T/p—>0 (D is telescope dianeter) the focal plane pattern due to
a point source will becone stationary (statistically invariant
under shifts) in the focal plane. |If any process is stationary
then the only nonzero double correlation is the power spectrum
<IuI—u)‘ Thi s, of course, does not contain any phase infornation.
In reality the finite size of seeing disk saves the situation by
breaking stationarity in the focal plane. Note that t he
bi spectrum is a special case of the nost general triple
correl ation <IuIv Iw> wWith w=-y-v; and is meani ngful even
in thelimt Y,/p-0. For a binary (within an isoplanatic patch)

the focal plane image consists of two simlar speckle patterns
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due to the two stars formng the binary. Different speckl es due
to the same star have wuncorrelated intensities, however, for
every speckle due to star 1 there is one speckle due to the star
2 which has the same relative intensity and separation as the
true binary. Any information about the binary nust come from
these correlated pairs of speckles (otherwi se one can be happy
with the long exposure inmage). Above we argued that for KT to
work a finite seeing disk is a nmust. The statistic of speckles
change on the scale 6 of the seeing disk and this change nust be
felt by the correlated pairs of speckles with separation b. W
therefore expect a snmall paraneter pjg in front of SNR for parity
det ecti on using double correlation which goes to zero snoothly as
b/6—0. This is confirmed in the detailed calculations given
bel ow. Before presenting themwe give frequency domai n argunents
to show that this small paraneter should also be present for SNR
for phase determ nation for objects small conpared to the seeing
di sk.

Frequency domai n esti nates

The doubl e correl ation used in KT method can be expanded in

a Tayl or series as follows:

Ty o) =Ty Loy #0U CRy Ry ) Su VS| +8U(Ry VR ) S, Sy
+ 0(au*) (4-1)

The first termis just the power spectrum (11L1_u) .« The third
term contains only the power spectrumof the source and not its
phase. Only the second term contains phase information. Al so note
that both the second and the third termdepend on the choice of

the origin in the focal plane through the gradient. Since the
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second term contains phase information we show the origin

dependence explicitly. Let the binary be

L UX LUX
S(x)= 0, §(x=X)+ 0, 6 (x-X3) or S,= «, ¢ ,'f'<’6,‘8i : (4.2)

If b=X,-X, is the binary separation then one can wite the

coordi nates of the conponents as

_ - %2 i - oy .
XI_XC o<, 4, 7 X2 _XC+H<"+°<‘1b (4‘5)

i i - — K Xyt X .
where Xx. is the flux center of the binary: xc_.lz((,’+dz 2 with

this the second term(apart from <Ry R_y) ) becomes

AU, VS| = { AU X, (242 +2ec,c Cos (ub)) +EAU-b G2 (G==a)

a(‘l.[-a('z
2 -cub 2 .
. U . o cub
¢ L22 -b-¢ 12 . 44
< v e AU-b—¢ T, e AWb (4-4)

Note that the coefficient of the flux center x. is the power
spectrum of the binary. In general, though the second term
depends on the choice of the focal plane origin, the origin
dependent contribution is the power spectrum The KT signal
proper conmes when the flux center is chosen as the origin. Though
the first term(usual power spectrum) in Eq 4.1 is noisy it 1is
purely real by construction and cannot contaminate the purely
imagi nary part of the KT signal (for exanple the second term in
Eq 4.4). The noise on this cones fromthe third termof Eq 4.1.
Wthout any |oss of generality, we choose the origin for the
system response at the flux center so that in Au'<RuVR/_u)

term anal ogous to the first in Eq 4.4 is absent. R, and vg, can

be treated as uncorrelated and thus Ry VR vani shes.
RuR, ) . .

However, <[RuVR_u [}N __m_,_nﬁ__ as Aum is correlation scale

for Ry - Thus t he noi se on <RWIR Y is the sane as that for the

usual power spectrum We enphasize that the p dependence is true

for all light levels: the SNR for KT nmethod is .2. ti mes poorer
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than the corresponding SNR for the power spectrum nethod:

SR pase (k) ~ (bl§) SNR o eR (4.5)

SNR ppriry (KT) N(b/6)SNRnUTo (4-6)
Eq 4.6 follows fromEg 4.5 since information about the parity is
contained in Ng~ (-%)2 i ndependent phases: SNRPAR/ryNNs”z SNR pppse
Simlarly, autocorrelation is derived fromna, power spectrum
val ues. Suppl enenting the above results by known results for
autocorrelation nethod (Dainty 1974, Dainty et al 1979) we get

for SNR of the KT nethod

SNRPHHSE(KT) ~ (b/6) hiyh fLux (4-%a)
s (b)Y low flux N1 (4.7b)

1 . ‘

SNRPHRITY(KT) ~ (b/6) NS/R high flux (4.8a)
~ (b/6)/\{s’/zJp bow flUX N1 (z,.,gb)

where X' is photon count per speckle in an exposure. The factor

) - ) ) ) o
5— i s about st for binaries close to the resolutionlimt. For

...l/2 i
a 4 mtel escope Ny~ z5 »

Focal plane cal cul ations

In the follow ng sections we support the frequency donmain
argunments gi ven above by explicit analytic calculation of the SNR
for parity detection using the double correlation. Qur nethod is
as follows. First we calculate the general double correlation
(PSFDC) for the PSF which is inversion symetric. The general
double correlation for a binary is made of four PSFDCs. The
strengths and | ocations of these four PSFDCs are asymmretric about
the center of the binary double correlation. This leads to an

asymetry in the double correlation for the binary. This chapter
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is ainmed at locating those regions of the double correlation
which contribute nore to the asymetry at the cost of mninmm
variance. To calculate PSFDC we need to assume the statistics
obeyed by the pupil plane fields. W mmc at nospheri c
degradation by a single scale Gaussian correlation. In reality,
departure fromthe single scale correlation is known to result in
drifting centroids of the instantaneous speckle pattern. W
di scuss these issues later on in section 4.5. In this chapter we
are not interested in correlation effects due to secondary Airy
rings so use an apodized aperture to yield a Gaussi an beam The

parity statistic(when defined) will be of the form
P=[dxdy WX, Y)<I)I(Y)) (4-9)

the sign of which tells us the parity of the binary. A near
opti mumchoi se of W is made so that SNR is (apart from nunerica
factors of the order unity) at its best. The parity signal,
Eq 4.9, is second order in the intensity and is evaluated for the
singl e scal e Gaussi an nodel described bel ow. The variance of such
a general double correlation involves ternms second, third and
fourth order in the intensity. In the case of the autocorrel ation
it is enough to consider only the |owest second order
contribution if one is interested in "low' light levels (fainter
t han 1§?. Al though it is obvious that even in the case of a
general double correlation the second order terns shoul d dom nate
at sufficiently "low' light levels it is not known apriori what
"l ow' nmeans for a specific choise of the weight function.

Consider an extrenme exanple with w(x,v)=1 everywhere. The

statistic in Eg 4.9 is just the square of the total flux through
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the telescope. In this case there are two transitions before the
second order cantribution ultimtely dom nates. Since a sum of
(i ndependent) Poisson fluctuations is a Poisson distribution the
total photon count N in a realizationis a Poisson variable with
man N the classical intensity for that realization. The
unbi ased estimator of the square of the flux is pn(ny-1) . Using
the results derived in the third chapter we get the photonic

vari ance 2

N+ 47+ an
The average over atnospheric fluctuations can be done
approxi mately. Since the total flux is nade up of a large nunber
of independent Rayleigh fluctuations in the intensities of
i ndi vidual speckles we can treat the total flux as a Gaussian
random variable wth average N,J° and standered deviation
NZ’J@ . I't can be shown that the SNR for the square of the total

flux goes through two transitions:

SNR 1.,
FLux® ~ ?st 'Ld,&é' Lransition 47‘}(’: 1
, _'/2 '/2 ’/_z
One frame ~ g Ng N g lwwuﬁmM&iﬁ%M:1
m=1 L NN
~s T—i 's ?

Bel ow we show that the PSFDC contains two features A and B
Both these features are capable of yielding parity information.
The feature B, which is also the basis of the autocorrelation
anal ysis, yields parity wth better SNR than the feature A
(basically long exposure). For feature A there are two
transitions in the flux levels. Since the parity detection due to
the feature B has better SNR and "l ow' flux means fainter than 13"

for this feature we calculate only the |owest second order
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variance in this case. The calculation is based on a single scale
Gaussi an nodel for the pupil plane fields. The case of parity due
to the feature A, is described here for the sake of conpleteness
(it proves to be uninmportant for high resolution inmaging), needs
variance calculation in all orders and is treated wusing the
foll owi ng approximations. First of all, we use the pixel nodel of
the PSF descirbed in section 2.1. This avoids the conplexities of
handl ing high order pupil plane field correlations. The second
sinplification is to let the binary shrink to a point. This is
justified for the variance cal culations (not for the signal). If
the two conponents have widely different strengths then the
noi se, anyway, conmes fromthe brighter source. In the nore
general case letting the binary shrink to a point neglects terns
b/g times snaller than the leading terms. The type A term is

i mportant for binary separations of the order of the seeing disk.

4.2 The PSFDC

In Fig 4.1 the double correlation for PSF is showmn in the
(Y,,z,) plane. It consists of two features. The feature A has
extensi on of the order of the seeing disk while the feature B is
along the diagonal line x=Y with a width of the order of the
speckle size and length of the order of the seeing disk. In the
full four dinensional x-y space the feature Ais a four sphere
while the feature Bis a two dinensional layer. In our Gaussian
nodel all these features have Gaussian fall offs with the above
mentioned length scales. In the figure, however, the features are
shown nore like a step for clarity of depiction. The two features

have the same strength at the origin that can be readily

4-8



estimated. With our normalization n'N‘,R2 is the total photon
count per exposure for a zeroth magnitude star. This is
distributed over the entire seeing disk of extent 6=f/k4 . Thus
the average intensity density is N, knlz;f‘/,c" . The general
double correlation depicted in Fig 4.1 correlates intensity at

two points in the focal plane. Now if these two points are

separated more than a speckle size then their intensity
fluctuations will be independent. For these regions the double
correlation density will be the product of the individual

intensity densities. This is the reason for the term A whose

strength is therefore N;é"‘jlfgl’/f"_

Note that this feature is meaningful even for a long exposure
image. Nov consider those regions of the double correlation
where the two points involved in the correlation are within a
speckle size. This region is specified by the plane X=Y with
a tolerance of the speckle size. The intensity at these two
points is correlated and therefore in this region there is excess
correlation in addition to the term A. This excess is the term B.
Note that this feature is a genuine high resolution feature: it
does not exist for a long exposure image. The feature A
represents the long exposure image while the feature B represents
information coming from correlated pairs of speckles.

The double correlation for the binary is shown in Fig 4.2.
Note that it contains four units of PSF double correlations with
strengths and Ilocations shown in Fig 4.2. Because of the
asymmetry in their strengths and locations with respect to the

center of the double correlation the binary double correlation is
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asymmetric and one has to identify those regions of the double
correlation which contribute significantly to the asymetry. A
nore interesting question is to ask the relative inportance of
the two features of the PSF in determning the parity of the
bi nary. The answer to this question has inplications for the nore
general question of optinmmweight function. Intuitively one
expects the opti mumwei ght function to have two domai ns: one each
for the two features of the PSFDC. The relative weight of the two
dormai ns determ nes what fraction of information is obtained from
a specific feature. So one should, in principle, consider a
wei ght function with two domai ns whose rel ati ve weights are such
that the SNR for the resulting parity statistics is maxinmm

However, it is not necessary to carry out such a paranetric
optim zation. A kind of superposition approximtion holds for the
signal and the variance(but not for the SNR of course). |nagin
that one knows the signal and the noise for the two features
individually. Then the signal and the variance for any Iinear
conbi nation of the two features will be (approximately) the sane
l'i near conbi nation of the appropriate quantities for t he
indi vidual features. This sinplificationowes its existence to
the fact that the features A and B have vastly different four-
volumes. |If we take the four volume of the feature B as wunity
then the four volume of the feature A is about N =2000. For this
reason, the difference between signal and noise due to the
feature A and the feature A with voids of the size of the feature
B is negligible. It turns out that for binary separation snal

conpared to the seeing the feature B dominates while for

separations conmparable to the seeing the feature A dom nates. So
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we consider two kinds of weight functions: one designed to
emphasize the feature B and the second to emphasize the feature
A. We give the order of magnitude scalings below while the

details are left to the appendix A4.

4.3 NR for parity detection using feature B:

In Fig 4.2 we have taken the star 1 as the origin in the
focal plane. We have aligned the axes so that the binary lies
along the first axis. The center of the entire double correlation
(X'cr’xcx'Yc,’Ycz) is the same as the flux center of the long exposure

image (double correlation is, of course, four dimensional but for

the planes (x,,y) and (X:vyﬂ) the center coordinates are the same
. ozb
as the long exposure image i.e. X =Y = 2= X =Y =0). The center
€1 €] <y ‘ez €2
of the double correlation is shown by a cross in Fig 4.2. It is
closer to the brighter star which we take to be the star 1. We

note from the Fig 4.2 that the correlation ridges (feature B)

appear along three strips, labeled 81 ,Sz

(X ,Y ) plane. So our first choice of weight function which

and SSin Fig 4.2, in the

empasizes the feature B is one which is nonzero only along these
three strips. The weight function is shown in Fig 4.3. The strips
have equivalent width that of the feature B. The asymmetry in the
double correlation about the flux center can be considered as
asymmetry in the individual strips about a -45° line passing
through the flux center. This is because the middle strip passes
through the flux center and therefore its one side on inversion
through the center becomes the other. However, the upper part of
the strip 1 becomes the lower part of the strip 3 on inversion

through the center. But the strips 1 and 3 are identical in all
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real i zations so lower part of the strip 3 can be replaced by the
sane that of strip 1. Thus one can talk of asymmetry of various
+45° strips about the -45° line passing through the center of the
double correlation. The mddle correlationstrip has its center
di spl aced towards the brighter conponent of the binary while the
other two strips have their centers shifted towards the fainter
conmponent by half the amount of the nmiddle strip. For any other
4515trip consisting only of feature Athe center of the strip
deviates from the -45 line in third order in the binary
separation and thus neglected for small separations. Thi s
notivates our weight function showmn in Fig 4.3. In this and the
next chapter we have considered representative weight functions
whi ch take only three values: -1,0 and 1. In all figures the sign
of the weight function is shown whenever it is nonzero.

Two points need to be clarified. The first point to note is
that by definition the double correlation is synmetric in X and Y
for every realization of the atnospheric and photonic noise.
Therefore, the strips 1 and 3 are identical and do not contain
i ndependent information. Qur weight function, however, does draw
information from both these strips. As the follow ng argunent
shows the SNR woul d have been the sanme if we had restricted the
wei ght function to one side of the X=Y plane. W show this for
low light I|evels which are relevant for this feature. At |ow
light |Ievels the variance for the double correlation, Eq 4.9, 1is
gi ven by

[ dy W06V LG+ W X)IKI00T) (4.10)

Now consider a weight function Wwhich is symmetric in X and Y
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l'i ke our weight functionin Fig 4.3. Then the variance is given
by

V= 2% dYy Wix,y){TeHIm) (4-11)
Now consider a weight function w, which is obtained from W by
retai ning only the upper half of it

Wp (V)= WYY Y 2%
-0 othenstse
It is obvious that for this weight function the signal s, is half
of the signal S for the weight function W s, =0.5S . Since there
is no overlap of w+(x,Y) and WL(Y,X) only one term in Eq 4.10
contributes to the variance and that too half of what it would
for W
V= [d3dly WyBIOINY = L fdkdy Wi vI<TOIT) = Lv

Thus the SNR for W _and Wis the sane. Further it nmakes no
sinmplification to favour w, which involves integrals for the
mddle strip split hal fway. The second point to be noted is that
the strips 1 and 2 come with the same weight. Actually one should
wei gh the strips differently and work out the SNR for a choi ce of
the relative weight. The relative weight is to be chosen so that
the SNR is maximum This question is best answered for W,_. The
signal due to the strip 1 is equal to the signal due to the upper
half of the strip 2. The variance due to the strip 1 and the
upper half of the mddle strip is x,2+5-<,a<2+xj and a(lz+x,o(2+a<;
respectively in proper units. The difference in the variance is
not alarmng especially when one is interested in binaries wth
widely differing strengths. It is well known that if two
i ndependent variables estinmate the same quantity then the best

linear conbination is the one which weighs the two variable by
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the reciprocal of their variances. Since the variances for all
the strips are nearly the same we consider equal weights for
simplicity.

Al t hough the weight function is designed to enphasis feature
B it cannot filter out the all pervading term A which contributes
mainly to the noise. It is shown in the appendix A4 that the

parity signal fromall the three strips is

s _ 7]",.5 Nj k13R2b "(/‘(2 (‘(l—x2) 4 1
% = 25° £ (x+q) (4. 11a)

The low light |evel variance is

2 2 2
V= £ N £ RY (1)) (4.11b)

Thus our estimate for the SNR for parity detection using the

feature B is

Ir -
SNR ::-—;_;7/\12 ‘x’/')(,z(-){; \x:-!)

PARITY (kT/8) (J(;+N-2)2 (4-12)

2
wher e ‘)F:%is photon count per speckle in an exposure,

JB=—I?:{%,9' is the binary separation in units of dianeter /;:z’; of
the PSF in the absence of atnospheric noise, g is detector
quantumefficiency and M is the nunber of frames of data used. As
noted before the cause of the asymetry is that the four PSFDCs
are asymetrically distributed about the center. |If the four
PSFDCs are taken futher apart then the asymretry will increase,
This is the reason why SNR depends on the binary separation. It
may appear that only a fraction (% of the strips contribute to
the signal. This is not true: for exanple the signal density
along the central stripis (apart fromoverall strength) of the

form
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2 2
S(n) o< 7 &xp{—%-fiq:‘} (4-13)
wher e ] is the coordinate along the strip. The signal density is
obt ai ned by taking the difference between the double correlation
val ues at two points in away fromthe center of the strip. So the
signal cones fromall parts of the strip. If it were comng from
some |ocalized region then one could inprove the SNR by
restricting the weight function to this area thus cutting down
noise from regions with no or little signal. Thus the weight
function chosen is near optimum and one can inprove SNR only
slightly by fine tuning the weight function; the scalings with b
or won't be affected.
I n autocorrel ation analysis one is interested in getting the
bi nary separation so one integrates along all 4ézstrips. For the
correlation strips the result will stand out relative to its

nei ghbours.
4.4 SNR for parity detection using feature A

Now we consider the asymetry due to the uncorrelated
regions of the double correlation. A representative weight
function is shown in Fig 4.4. As nentioned before the
contribution to asynmetry is inthe third order in the binary
separation. A straightforward calculation gives the parity

contribution for this weight function

2 2 0 2
.- 5 2 YL K § o o (o= )+ 7 X (%= q) ] (41t)

However, the noise calculation is not very straightforward
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because in the context of general weight function the term "l ow
. flux" needs qualification. In the followng we derive an
expression for the variance of a general double correlation valid
for all light levels. Then we show that for autocorrelation (as
is well known) and for the weight function used in the previous
section low light |evels indeed nean per speckle photon count in
an exposure less than unity. For the weight function of the
second kind considered in this section the varignce is obtained
in all orders. Consider, then, a general second order

statistic

PN UFRRY (4.15)
wher e ﬁé is the intensity on the i’th pixel. The noise on this
statistics involves intensity correlations of second, third and
fourth order. The |owest second order contribution is already
given in Eq 4.10. This is what is ultimately relevant in the case
of fainter and fainter objects. For brighter objects the fourth
or der contribution domnates. This is just the classica
variance. The internmediate third order contribution should be
relevant only in the transitional reginme. In order to avoid the
task of dealing with field correlations of rather high order we
use the PSF nodel of section 2.1. Another sinplifying factor is
that while considering the variance one can take a point source
as representative. In the case of the parity signal it was
essential to consider the binary nature: the signal being in the
first order in the separation. This is not so for the variance.

The variance does not depend on the binary separation in its

leading term In the notation of chapter 2 the pixel intensity 1i,
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is made of two speckl es

o
=~ (- &)

@Z}L{‘{—‘Fi—b ) X =

S5

where W's are independent Rayleigh variables. Let us begin wth
classical fourth order contribution to the variance. The square

of the statistics in Eq 4.15 is given by

s oo\ 4
{,‘Zu Wij Wiy ST LT T >“t.jzkl<fﬁ'f‘jf‘kf‘1> LWz Wyt Werp i Mt 24b

T« [Nij P sz' Nitbg T Nigep Wee + Wepp j Wz d |
2
+ LWy oo Wit + Nepo 5 Wer 2 + e, 7 Nie b (4-16)

+ Wz ipo Nipo 2 THE b Wi g6 T Nij Wi 24b |

3
+ o LN G Wiy ere + Wiy 7 Wit 24b + Werg 546 Ne gab +Nirp b “mu]}
Since the four point intensity correlation does not vary nuch (by
orders of magnitude) on the scale of the binary separation, for
noi se consideration, one can let b=0Oin the above expression.

This reduces the nunber of ternms to just one with appropriate

wei ght :
(4.17)
- 4
) 5‘: Woj Wit (R B d= () o Wi W SR by
The cl assical variance is given by
Vp = (14 2 W Wice CSR B abted ™ Sab) (o] (4-18)

For the statistical nodel for the;i’s(section 2.1) the fourth

order correlation <f‘£f‘j/"kf‘1> can be shown to be

el e Ko = B Gt d e + 8 <Pt Yt F e S <h5 Y S
+ 84'1 <H«. >2</‘(j ><ﬂk> + 6.‘7'/4 (/'ﬁ> <HJ >2<f11> + 6;’,( <H¢> </"_'7')2</1k>
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+ Sk,(<[~':‘-> </1]) (Iuk)z + 8‘] Skl <,U4_)2</1-k>2 + &k 6;1 <lu¢'>2</u,'>2

2
+ 820 b4 1) P> R84 <u. )%)3 + 28 p LY <H5)

> 3
R 7 MG T2 G +6 S <3 (4.19)

Fromthis one nmust subtract the square of the nean

KM ) = SRS G S + 65 <MY << He)+ Sl g IS Yt S,
* 5;)' Skt </‘£>2(Fk>2 (4.20)
to get the variance:

= ii M o W << Y + 4 & Py (b 05 ) e Y <H

1] <

+82 Wi ;o ¥ gy 162 Wiz w* (4-21)
<j

In deriving Eq 4.21 from Eq 4.17 and (Eq 4.19-Eq 4.20) the
symmetric nature of the Ws used in this chapter and the fact
that two W's appear was used.

We consider two kinds of weight functions. The first one
covers the case of the autocorrelation and the one considered

before stressing the feature B in parity detection:

Fout kind sz = f; SL-]- (4.22)
For this weight fuction all the ternms in the variance are of the
form N5N4 . It wll be shown later that the third order
contribution is of the form NSJ(3. V& have seen above that the
second order contributionfor this weight function is NSJ(‘2

Thus for weight fuctions of this kind low flux nmeans KN'¢1 1i.e.

fai nter than 13m.

Now consi der the wei ght function of the second kind shown in
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Fig 4.4 . The di screte anal ogue of which is
Second kind N,éiiﬂ'1 32~ 5‘:_‘]"[‘.,'*}.1] (4-23)

where we have witten the vector subscript ¢ in terms of its
conponents and chosen {, to be along the binary. The conponents
run fron1-%g? to-fgé . The restriction actually cones from the
fact that all intensity correlations extend only upto the seeing
disk. In the spirit of the second chapter all correlations are
treated constant inside the seeing disk and the limtationin the

extension is taken up by the indices. For this weight fuction it

can be shown that

E W. - .- =2a¢{(N 4.24)
Tradariy @12 s (
The case is simlar to one shown in Fig 5.5 after summi ng over 4,
and j, which just gives N, as Wdoes not depend on these indices.
Thus the fourth order contribution to the variance is
(1)t [ E NNt +12NG N +6 Nsx"Jm(/+ac)‘*.§N§M" (4.25)
As an application of the results derived in chapter 3 on Poisson
fluctuations and wusing the symetry of the weight function

together with the fact that two Ws appear we get the third order

contribution to the variance of a general double correlation:
3
= + W..W. 2
Vo = 4(1#eY 2o Wi Wi DB Q) + 8545 + 82k oYy >
2 3
ok Y FR&G<peY ]
Note that for the weight function of the first kind all termnms are
of the form AEJCB . Coming back to the weight function of the
second kind we get the third order variance
3
(a0 [E NG +ENTHENT v & (el NE o0 (4-26)

The second order contribution is of the form
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20PN (NG +1G) ~ 2 (1) NEG (4-27)
For this weight function there are two transition regions. The
first one is when the dom nant variance cones from the third
order ternms instead of the classical fourth order which dom nate
for bright sources. This happens for objects between 1§nand 19,
The second transition occurs when the total flux is less than
unity. The second order terns take over finally. The SNR for

parity detection using the feature A is given by

/2 2,42 . A
= _8 M7 W N (N-)G)+ L NNy (N -XL 3w
SNRKT/H 3T N R Ll 5 ZL]B R e
(NG+ N3P "y
N +4 N -4)” ‘
= 8 §OMY NN (N Ka) 3 N NG (G- Na) "B medium flux  (4.288)
N, (N F+H)*° m

,, 118

2
_ a6 9m? P -NFE N N M) s (2s)

One can ask the follow ng question. For given brightness of the
source what is the binary separation beyond which the parity is
better detrmined by the feature A than the feature B W do this
for a typical binary: w;%m’m_&:%m .« (This binary is
expected to have better SNR as alnost all SNR expressions have
NN (W) in the nunmerator). Equating the two expressions for the
SNR we find this separation to be

B=2 g™ N g (4.29)
This formula is wvalid for 2$M<1(as we have wused 'low  flux
calculations for the feature B) and %7N¢WN(as we use ' mediun
flux variance for the feature A. Wen N=1 we get zB.—_N;’Zi.e. t he
separation is equal to the seeing disk (this is a rather risky

extrapol ation of the Taylored calculations). As &' reduces the
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bi nary separation for which the two features contribute equally
al so decreases. For a 4 mtel escope, q=0.2, we have given in
table 4.1 the values of B beyond which | ong exposure feature A
determ nes the parity better than the high resolution feature B
Tabl e 4.1 Binary separations beyond which the feature A has

a better SNR than the feature B

Magni t ude 14 15 16 17 18 19

Sep% ation 34 26 21 17 13 10

The feature A in the double <correlation represents
uncorrelated fluctuations in the intensities of the two points
for which the double correlationis considered. So the weight
function under considerationis actually dealing with a |ong
exposure inage. To see this nore cleary we wite

LHGnT)= B ey o<+ Z bz TR W 14, T,

#4itb (4-30)
The last two terns represent contribution due to correlation

ri dges. For separations |arger than those given in the table 4.1
the last two terns are negligible. The first termcontains 7. and
i% whi ch are uncorrel ated as the separati on between the pixels is

different fromthe binary separation. Thus the average is

Z NG AT~ W (7<) (4.31)
We can think of this as equivalent to a first order statistics
Z:jﬁgil (4-32a)
where the equival ent weight function f,is given by
f‘.‘::zj' w—ij ﬁj (4-32b)
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Now, if we goto the flux center of the |ong exposure binary
i mage then a constant wei ght function would give the total fl ux;
a linear weight fuction gives zero(by the definition of the fl ux
center); a parabolic weight function gives the width of the inage
and thus can tell about the binary nature; a cubic weight
function gives the parity. Now since W;j is i nver si on
anti symretric fngjijfﬁ contains only odd powers of Q in the
average sense. So we see that our weight functionis essentially
playing the role of an equival ent weight function {?in the case
of first order parity statistics. In fact it is worse than that.
The equivalent function has fluctuating nature as apposed tof?
which is determnistic. In the specific case of binary stars the
feature A may have larger SNR for |arge separations but it cannot
be considered as a truely high resolution feature: for nore
conplicated sources with fine structure only feature B is of any

rel evance.
4.5 Nunerical results and di scussion

In this section we present nunerical results for the SNR for
parity detection using double correlation. W are concerned only
with the SNR due to the correlation ridges which, as argued
before, are the true high resolution information carriers. First
of all letting w}:Jﬂ—JZ:\él we see that for reasonabl e
observational paranmeters (10 ns exposure,léiframes,1oon bandw dt h
and detection efficiency 0.2) a SNRof 3 can be achieved for
obj ects brighter thanl@nfor separations close to the resolution

limt. Al so note fromthe SNR expression Eq 4.12 that the SNR
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(for fixed B ) is independent of the tel escope dianeter. This is
because of the small factoréi whi ch masks the usual N? factor in
the SNR If in any technique individual speckles carry
information then there is a factor N? due to i ndependent
information in N, speckles. W also note that the OSNR depends
linearly on the binary separation. W recall here the SNR for

parity detection using TC

SNR - (5.8)
Tee = 4 a"5 " N W W (W-0)
(.Secffon 5.3 Z,ﬁr_(‘?‘x;3+7w;2‘)(&+7w;‘x;l+’?‘}(}3) (2-’5)

Chapter 2) (4.33)

where the nunerical factor is provided by the field calculations
given in the chapter 5 (otherwi se the expression is the same as
given in chapter 2). Note that the SNR inproves with the dianeter
of the telescope. The TC nethod does not depend on the breakdown
of the stationarity in the focal plane statistics. Thus every
speckle in the PSF carries the parity information: this gives the
factor A&h whi ch increases linearly with the tel escope dianeter.
W see that both KT and TC nethods have an advantage and a
di sadvantage each. The KT nmethod is second order and so
intrinsically capable of beating the TC which is a third order
method at sufficiently low flux levels. However, the TC nethod
respects stationarity and thus wins a factor M? over the KT
nmethod. W enphasise that this comparison is true for binary
separations near the diffractionlimt. For w der separation the
KT inproves. In the concluding chapter we present our nunerical
results for the SNR for parity detection using both these

nmet hods.
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A discussion about the flux center. W have, throughout,
assumed that the flux center is a given quantity. This is
certainly not so. It is well known that the flux center for every
frame wanders in the focal plane and significant inprovenment is
possi bl e by\ centering all the franes. The reason for this
centroid shift is attributed to the turbul ence scales |arger than
the decorrelations length (especially scales of the telescope
size or larger). These scales in the refractive index tilt the
wavefront as a whole. The effect of these | arger scales can be
m m cked, however, by a larger value of 6. This is for the
foll owi ng reason. Consider a frane of focal plane intensity. W
can calculate the intensity double correlation for this. Now | et
us shift this image in the focal plane. The double correlation
will also shift but the shift is along the 45° plane. Thus it
can only increase the & and not diffuse the correlation ridges
normal to their plane. This, of course, |leads to a poorer SNR as
the small paraneter g' becones smaller. Beletik (1988f‘t%n hi s
nunerical sinulations finds the TC nethod to have better SNR than
the KT method for conplex sources. This he attributes to the
wandering of the centroid. As we have argued this is indeed true.
The wandering does nake the KT method poorer but that is not the
entire effect. The main reason why KT is poorer for conplex
sources is the fact that this method depends on stationarity

breakdown crucially and has a small source size paraneter in its

SNR.
APPENDI X A4

The focal plane intensity due to a point source (the PSF) is
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gi ven by nggn
kR 2.2 2 {‘}k_x@f'fz) * - I'IRTQ

ROV=N, (z7) [d,d%, € Pl P(5,) € (4.34)

where N, is nornalization(see below) ,k=2am/p , f is the foca

length of the imaging systenlcxp-qﬁgjyzéﬂ is apodization
designed to give Gaussian beamif the pupil plane input fields
were not corrupted by atnosphere. In the latter case q%§)=1 for a

poi nt source at the origin and the PSF R,(X) is given by

A _lﬁRjXq
Rx)=ro "z e 7 (4.35)
The speckle dianeter o i s defined as area equivalent of the
ideal PSF
_h“R;‘x2 : _
L rot= (£ f = Af
;R = [dx e or P= IR (4-36)

The normalization A, is photon counts in an exposure per unit

area due to a zeroth nmagnitude star i.e.

Jdk R0 = N,TR | (4.3%)
gives the total photon count in an exposure due to zeroth
magni tude star (bandwi dth taken into account) incident on a
tel escope of radius R Ve assume that the pupil plane fields ¢(z)

due to atnospheric distortions are stationary Gaussian fields

with two point correlation function

2
* —4(£-%5,Y/0*
<PENPGENY= ¢ 55 (4.38)
Wth this pupil plane field statistics the |ong exposure PSF is
given by
2,22 _RAAes?
Rey= N RLR
R(X)= et € 4-39)

The equi val ent di ameter of this seeing is given by
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8-/:32"}(2/76,‘2

2
e = [ oo =5 (4-40)
In this Gaussian nodel the average nenber of speckles N, is
2 2
6  _ R
NSZ—;_E = 16?’ (44”

For exanple, if the seeing is 1" the decorrelation | ength defined
by EQ 4.38 is 20 cm This is purely due to the definition of the
two point field correlation Eq 4.38. The general two point
correlation can be obtained using Eg 4.38 and the well known
pairing theorem for four point field correlation. The pairing
theorem allows one to wite a higher order correlation as a sum
of products of double correlations. Consider N Gaussian random
vari abl e ]k,-~,%@ and their conjugates yf:.-,ygl Then form N
distinct pairs out of these 2N variables. Take the average of
every pair. The average of the original 2N product is a sum of
such paired products obtained in all possible ways. However, in
speckl e interferonmetry one can inpose the further constraint that
every pair must have one v, and one?.JN Every path in the earth's
at mosphere has a randomoptical path Iength of the order of
hundreds of wavel engths. Therefore, the phase of }e'ya i's
conpl etely random The PSFDC is given by

a ,2 2 2 2 2,2
_ 2 RERt ¢ -EL oy | BB e -Ehaoen?

A tern Bterm (4.42)
Now consi der a binary with separation b

S(X)= oty §(X)+ K, E(X-b) (4.43)

where we have chosen the focal plane originto be the star 1. The

coordinates of the flux center are %2 b . Since any asymetry
aC‘-f-o(_.l
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in intensity double correlation is due to the binary separation
we have chosen the first axis along the binary. The general two

point correlation for the binary contains four PSF double

correl ati ons

LIGVIMY= <X ROI) R + ;3 CRIX-BIR(Y)Y + o, o, K R(X)R(Y-b))
+ &} (R(X-B)R(Y-b)) (4.44)

This correlation is shown in Fig 4.2. Now consider the weight
function of the first kind shown in Fig 4.3. This has three
strips whose wdth is equal to the width of the feature B
Consider the central strip. It contains B features due to the
first and the third basic PSF double correlation wunit. |In
addition it also covers part of A features due to all the four
units. The overlap of a A-feature and the weight function is
equivalent to a B-feature as can be seen from By 4.42 and noting
the fact that the width of the weight function is the sane as
that of a B-feature. The centers of the A-features due to the
second and the fourth unit are off center but since we are
dealing with small binary separations the overlap is nearly the
sanme as that due to other units (the difference is in the third
order in the binary separation). So the central strip contains
six equivalent B features. Their centers and strengths are shown
in Fig 4.3 whi ch al so shows containts of other strips. In this
figure equivalent B features are prined and the subscript tells
us the PSFDC unit which has generated it. It is possible to
project the double correlation on the 45 line by integrating X ,vY
al ong ~45'1ine as the wei ght function chosen is independent of
Xt X%

these coordinates. Let 7=—5—jand =7« Integration can be
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done for £ . For an equivalent B-feature with strengthg say and
center 7. away fromthe junp in the weight function we can get the
signal and the contributionto the variance as 1-d4d integrals

al ong the 45°1 i ne

1.5 2 3
s= 70 NG RLTRS | gfz(v, =8
275 f J; a, w0y, € (4.45)
15 2 - 1(77 )7(:
e’ R8 o7 (1
v= TRREEE g w5y € (4-46)

wher e Wn) is the weight along the 45°line. A representative of
antisymretric weight functions is shownin Fig 5.4c. This is a
step function centered at the flux center. As shown in Fig 5.4c
(which deals with simlar case) the result of such a weight
function on a B-feature is a contribution equivalent to the
centraltp part of the B-feature where 5 is the distance of t he
B-feature fromjunp in the weight function. So one has to note
down the distances, fromthe junp, of all the effective B-feature
contributing for all the three correlation ridges. For snal

binary separations the central part (the area between £7,. ) 1is
wel | approxi mated by 21, into the height of the feature. Note
that 7, for all features is of the order of the bi nary
separati on. uﬁv) is unity everywhere. So doing the integrals in
Eq 4.45 and Eq 4.46 we get the contribution to the signal and the
variance by a typical B-feature with strength 8 and distance e

fromthe junmp in the weight function:
5 NG RLZR3B W (M) 7|

5= %% F

(4.47F)

V= ;’, N2 g? R,e (4-48)

I'n the expression Eq 4.47 the factor wi(y,) comes because dependi ng
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on which side of the -45°1ine the center is the contribution is
+ve Oor -ve. Note that both the signal and the noise are additive

in features. This gives us the signal due to individual strips:
5,= =—1—$
1793~ 292

o = TN RECR b ety (4= &)
2

2¥5  f(«+3)

The net signal is given by
_ 71'"5 N:l klszb"C,“Cz("C:“’Q)
KT(8) - 236 £ (OC,')"UC:() (4.49)

S

The variance calculationis trivial as the square of the weight
function entering the expression for the variance is everywhere
unity. We get

2
— 1T 2.,2._2 4

This gives us the SNR for parity determnation using double

correlation for the weight function of the first kind.

1/2
_ 49M7 NN (N, -d2)
SNR, reg) = R ATRTSE B (4-12)

One can choose other antisymetric weight functions instead of

the step function but the results do not alter the scalings with
uN,b
This is because the actual signal density along the 45° line is

gi ven by KRR 2
~ 5727
S(p)ec 7], € (4.51)

wher e 7, is the coordinate along the 45%ine. W& see that the
signal comes from all over the seeing disk and one can not
drastically inprove the SNR by chossing any other wei ght
function. Some fine tuning i s, of course, possible. If the signa

were comng fromsone | ocalized part of the strip then one could

4-29



restrict the weight function to that part thus cutting down the
noi se from other regions which contributed little to the signal.

In particular, for a linear weight function of the form W(77)=7]

the SNR is poorer by a factor 7 .
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kb A

Fig4.2 Double corvelation for a binavy. Insets strengths of the four
PSFDCs compTising binavy double cerrelation.
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the feature A.




