CHAPTER 3

General Results for Poi sson Noise on Inage Intensity Correl ations

3.1 Introduction

I mage intensity correl ation techni ques have proved useful in
i magi ng through turbulent nedia. For exanpl e, in speckle
interferonetry one is concerned with reconstructing high
resolution stellar inmages which have been affected by the earths
turbul ent atnmosphere. For bright sources one is concerned wth
the noise due to the randomnediumitself. At low light levels,
in addition to this noise, noise due to the photonic nature of
light needs to be considered. The Poisson fluctuations in the
nunmber of photons detected introduce bias terns which dom nate at
low light levels. These bias terns are present even for tine
i ndependent i mages and nust be conpensated for. The basic reason
for the existence of these bias terns is that the average of a
product of random variables is not (except when they are
statistically i ndependent) the product of their aver ages.
Consi der a detector which detects n photons with average n. The

probability distribution P(n) is the Poisson distribution:

-F =0
Pin)= € %— (3.1)

For this distribution(we denote the Poi sson average by =™ ) the
estimator of ® is n. However, the estinator of ﬁz i's not hz si nce
;F=Tﬁ¥ﬂ . The 7 termrepresents the bias termwhich dom nates at
low light levels (fi<1). In speckle interferonetry low Iight
levels nean stars fainter than about 13'th nagnitude. The

unbi ased estimator for ﬁz is obtained by subtracting the bias
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term Hence the wunbiased estimator of T S n"—-n « For one

detector it is well- knovg'r?‘%hat the unbiased estimator for

m

A is nm-)-+m-m+i). W& denote unbi ased estimtor by ve¢ |. Thus
VEST J=n(n-=1) «*+(n-m+|) (2.2)

The variance on this estimtor involves the knowl edge of the

expect ati on

L uesnmg? (3.3)

In the case of a detector array with average nunber of detected

phot ons ’ﬁl: in the i"th pixel one needs unbiased estimators for

products |ike ﬁiﬁjﬁu . Here, bias terns come from coincident
pi xels: i =j etc. as the Poisson fluctuations in different pixels
are statistically independent. 1In the bispectrum nethod of phase

- 8] :
recovery proposed by Weigelt the bispectrum

— = = CUX;

My My Ny s My=2ne (3.4)
is used where X; is the poisition of the i'th pixel. W rni t zef'3
has shown that the unbiased estimator for the bispectrumis
VES ﬁuﬁwﬁ_u_v, $= My My N ~ M Ny =Ny = Mg Moy +2M,
One way to obtain unbiased estimators is as follows. Replace
"ﬁu"ﬁv-- by nng: and take the Poisson average 'nunv_.. . This
contains lower order bias terns like ﬁuﬁv- whi ch cannot be
replaced straightaway by My, as the latter contains the bias

—

e In this way one can systematically go on conpensating

bias terns until on the right hand side all ternms are of the form
Ty Ny with a single Poisson average. The average of the
squared nodul us of the bispectruminvol ves averages of products
of the ng's upto sixth order. It turns out that a straight

forward calculation generates hundreds of terns (434 in this
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case) ,which conspire by mracul ous cancellationyielding only a
handful of terns (33 in the case of bispectrumr;"?n the end. In
t he course of our study of this problemcertain general patterns
and rul es becane apparent and they are presented in this chapter.
In section 3.2 we state our results for a general Nth order
correlation and give a diagramatic representation for book-

keepi ng. The Appendi x A contains a derivation of these results.

3.2 Ceneral Results for Poisson Noise on image correl ations

In this section we state our results on Poisson statistics
for frequency domain correlations of the n,/s although the results
are easily extended to a general Nth order correlation (real
or frequency domain).

Rule a) Average of Nth order products: Consider the
foll owi ng speci al cases:
N=1  Tiy=",

N=2 WMy Ny T+ 7y,

=i

N=3 MMM = MMM + 0y N + T Ty 0 Apr + A

The general rule underlying these special cases is the follow ng.
Consider all N subscripts (Fourier conponents in above exanple).
Then form mclusters out of these N subscriptsin all possible
ways. For a specific way of partitioning sumall the subscripts
within a cluster. Use these msuns as subscripts for #'s to
obtain one mth order terminthe fA;s. Here a cluster nust
contain at |east one elenent. For N=2 case there is only one way
of formng two clusters which gives the first termand only one

way of forming a single cluster which gives the second term Thus
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there are (according to this rule) seven second order terns in

the average of ﬂu‘ﬂu,'n“,ﬂr: NNy rir+r , ﬁvﬁu+w+r s M Ny

Ty Mg i

Mgy Nrpr > Mgy Pirgr 3 Ny Napgeir
Note that two kinds of clusters can be forned out of four

synbols. One is partitioning four as one and three and the second
is as two and two. These give four and three terns respectively.
We depict a cluster by a | oop around the synbols involved. In

Fig 3.1 we show di agramatically the 52 terns involved in the

average of YluY]v,Y]w.Y}vY‘ls-
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out of N synbols. The qus can al so be generated on the |ines of
Pascal s triangle as shown in Fig 3.2 . The rule for generating the
triangle is also shown in the figure. The nunerical coefficients
in the triangle give the nunber of terms in the nobre genera
mul ti pi xel case. One can verify this for N=5 case shown in the
triangle and in Fig 3.1
Rul e b) Unbi ased estimators: 1In the Fourier donai n unbi ased

estimators are given by a generalization of the well-known one
pi xel rule (Eq 3.2):

VELT, 1= Nu

VE{ Ty, Ty 3= Mo (M= Gypy )= My M=,

UVE { 1, R nu(n,,—-amu)(nw—awu-a,_,v)
where the synbol szaLJ i ndi cates addition of vto u The Nth
order unbi ased estimator is obtained by induction. The N th order
estimator is related to the (N-1)'th through a nultiplicative

f act or

vef My ﬁuN-,' My 3= (nuN ——7;&« Ay pu,, JUET Ty, iy 3 (3.6)
Note that the ordering is just to avoid overcounting; the result
i s independent of the order in which the u's show up

Rule <) Noise on the wunbiased estimators: The Poisson
average of the square nodul us of the unbiased estimator in Eq 3.6
has an even sinpler diagramatic interpretation. First consider

speci al cases:




Fig 3.3

We have shown in Fig 3.3 how the terms in Eq 3.7 arise. First we
write in a column all the subscripts of the N'th order product
for which the averaged square modulus is sought. Then we draw a
vertical line and write all the conjugate (negative sign in case
of frequencies) subscripts to the right of this line. Note that
there are N symbols in all. The 2N'th order term is a product of
N n)s with these subscripts. For the next lower order term we
draw a loop around two of the 2N subscripts. However, there are
constraints to be observed. The two subscripts must be on
different sides of +the vertical line. The N'z' terms in the
(2N=-1)'th order are obtained by drawing one two loop in all
possible ( N2 ) ways and using these 2N-1 subscripts (remember

that when we draw a loop we add the subscripts involved). For

example, with N=2 we have four third order terms in Eg 3.7.



Successive |lower order terms are obtained by drawing nore and
nore two- |loops. We call these as two-1obps because as a part of
our diagramatic rule for the variance only two synbols enter a
| oop as opposed to the rule for the average where any nunber of
synbols are allowed to enter a |oop. Furthernore the two synbols
entering a loop nust be on different sides of the verical Iine.
Also two two-loops should not have a synmbol in common for this
woul d nean a three [oop. One can verify that this rule yields all
33 terns for the bispectrum averaged nodul us al ready known in the
I iterature('?’M}The 3 of ways of dr?a.lwi ng mtwo loops with the above
mentioned constraints is ma_ This is the nunber of terns in
the (2N-m)'th order in the R}s. As a special case the averaged
square of the Nth order one pixel estimator Eq 3.2 is

N 2.
2N (N1 -m
>

e

p Ny o2 =
LUESTIT =7 & Srriwmiiz " (3.8)

The constraints on the way one draws two | oops are reflections of

the fact that the set of subscripts on either side of the |Iine
represent unbi ased estimators and so do not permt drawi ng |oops
within thenmselves. This is a very special property of the Poisson
statistics considered here. Take a product of any nunber of the
mjs and any nunber of unbiased estinmator of the kind VE{f#, 3.
Then the average of such an expression is given by rule a) wth
the constraint that in any unbiased sector no | oop can be drawn
around nore than one synbol. For exanple, the average
VEZ N Wye - - Ty 3 Uefﬁpﬁ7- - 7,3

is obtained just like usf-ﬁu ﬁv-"'ﬁvg yg{ﬁ_uﬁ_v. , 'ﬁ-w'z
Wi th P?‘b"'ﬂ' playing the role of the right hand subscripts.

Rule d) Extension to a general correlation of the Nth
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order: So far we stated results for Fourier conponents i.e.
functions of the pixel counts with weights efuxt. The results
are applicable not only to weight fuctions of the forn1§:k&?& but

al so to even nore (nost) general weight function

Z N' ; ﬁ'u-lﬁu
4t Gy Yy

Hey 1N w (2.9)
The results for this nost general weight function are obtained by
treating the indices on the Ws |ike the subscripts in the case of
Fourier weights. Instead of reading the rule as "add the
subscripts " we read "set the two indices equal”. Wen we set two
or nore indices equal to say { only one ?& appears. For the
special case of Fourier weights this ammounts to adding the

frequencies. Mre specifically, the unbiased estimator of the

—

n ‘;V by

nil"(“i~‘£§#lwhere the synbol &, ., is nowreplaced by a Kronecker &

quantity is obtained by replacing the product ¥, -- -

synbol . To obtain the averaged square nodulus of the wunbiased
estimator of the quantity Eq 3.9 repeat proceedure c) above
wth the indices of Wplaying the role of u, v ... and the

indices of w playing the role of the conjugate subscripts -u, -v
For example, with N=2
UE§Z Wy 7,7} UEFZ NG, T3 = ZL Wj

W.. (W
+§-k 41(/\4 Ny +uk+u,ej) 7,7 k*,Z_%j(M-:*'N:-

3.3 CONCLUSI ONS
We have derived results of reasonable generality on the
Poi sson noise, due to the photonic nature of light, on inmage

intensity correlations. The results nmay be very wuseful if
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correl ations of high orders need to be considered. Even for |ower
order correlations the generality of the weight functions
consi dered all ows one to discuss issues related to optinmum wei ght
function one should use to extract a particular piece of

information fromthe correl ati ons.

APPENDI X A3
W have wused the well known technique of nonent generating
functions to the derive results presented in this chapter. First we
give a derivation of one pixel results for sinplicity and as an
illustration of the proceedure followed. The relevance of single
pixel results is that the nunerical coefficients in this case
give the nunber of terms in the general case.

Let n be a Poisson variable with probability distribution

-7 n
= a_ .
Pm)= e Wi (3.10)
We define the nonent generating function as
Y= e’ = exp{a(e] (3.1

Average of n" i's obtained by taking the Nth derivative of the
noment generating function with respect tg, and then setting
A=0,It is easy to verify by successive differentiation the rule

for nunerical coefficientsis that given by the triangle rule

(Fig 3.2).
Let
d=4  men 'V =1" (3:12)
The oper at or
H=e*4 (3.13)
satisfies ﬁN‘}P[A):: ﬁ'N’P[/\) (3.14)
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Note that in Eq 3.14 A can take any value while in Eq 3.12 it
is zero. The interplay between the operators o'{ and f) respecting
the constraint A=¢0 is the key el ement of our derivation. Wen we
have expressionin ¥ and want to get it interms of N we start
replacing @ by D and then wite this in terms of @ and vice
versa. This interconversion of ﬁ and gal lows one to obtain
unbi ased estimators and t he noi se on them Consider the operator

AN _A A) (3.15)

which acting on ”% gi vesﬂ‘ as an eigenvalue. The unbiased
estimator for "n'N i s obtained by expandi ng (é"\é{‘)N in such a way
that in any termthe & s appear to the right of t‘.f—A « Such
expression can be readily obtained
(e 3 d\'=e™ (d-n+1) - - (d-1)d (3.16)
Now t he oper at or a or any polynom al in g is rreani ngful only with
t he constraint A=¢. Therefore one can renove e (vx/m ch is unity
when A=0) and get the unbi ased estinmator of ‘ﬂ by repl acing ) by n:
UE{ﬁN}.—: NM=1) * =+ (N=N+1) (3.17)
which is a well-known result. To get the average of the square
of this we start with the operator
LA - (d-N+1I™ (3.08)
which is equivalent to [‘n(‘n—l)'--[n-/\l-i-l)]z- The idea nowis to
express this interms of the operator B in such a way that all
factor in powers of eA appear to the left (this a way of making
things valid for all A and thus circunventing the constraint on

in BEq 3.12. FromEq 3.16 we get
A A A~ A ~
CAQ-1) - (d-nenT = € (den)( den-1) -+ (L0 D"
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One has to expand the operator (J¢):++(d+N)  in powers of

But as %.m— ém'\a\[j) p " o (the last relationis
= “Deesld-meD =
’ @-m!

purely notational). So |et

(d ) N 2' __ZN: N, mA AM
#1)oo (AHN) = , AmiZom) =4 Am€ D (3.19)

One can obtain th following recursion relations for the

§Mz

-

.. N . A
coefficients "A,, by relating (J-I‘N)"[(,?-H) to (d+N-D) - .(oﬁ—]):
N N Ny _ Nt
Aa—-N( A,) > MA,=""4,.,

. N’I N—I
otherwise Nﬂm—': (’V*‘"‘)( Am )"' Am-, (3.20)
One can showthat the diagramatic rule for the variance satisfies

this recursion i.e.

2.
Ny = (N!)
m T N-m)] (m])* (3.21)

as given by the two | oop rule.

In the case of a pixel array one needs to introduce one
generator, say /\4: . for every pixel. The nmonent generating fuction
is product of the nonment generating functions for individual

pi xel s as the Poi sson fluctuations m, are i ndependent :

W(5a3)= ep3z At
= exp{Z 7, (eA"—t)z (3.22)

Any Nth order statistics is of the form

Z: N o) * .
4,) )‘N N n nN (3.23)

where the N dunmmy |nd| ces i's take all possible pixel |ables. The

operator equival ent of this general correlation is

ZZ R j}. co D
4,- 4 N (3‘-?4)
wher e anal ogous to the one pi xel case we define the operators »
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and _'Pé for every pixel:

d.= oA ;D=8 7, (3.25)

The unbi ased estinator for the correlation Eq 3.23 "

2 W, n(n =8 ) (n; _.5_;_”51”‘,,,) (3.26)

Yot aty 4edy
follows fromthe |dent|ty
A A -Z:A“' A A
» « e e m . = s E} ] . - .0 e s n -— 0 \d .
D3, by=e” Y 0(8-8) (95 Siin) G2
The squared nodufus of the unbiased estimator Eq3.36 is equi val ent

to the operator (and all A.=op afterwards)

Z::: AI ) AQ cdy ﬁ; (’ -5 g )

W min Wt

4, [3 1
l, zA, 2 i L >[z.2e)
To get the average we express this in terms of the operator ps in
A‘
such a way that all e@* factors are to the left and then ignore

such factors. Such expression is

5" =
2 W . “a A F%
‘:I)' . (,' (7-“‘6N L\f l e P D i

D.-D. e -2
$ T T X, (3.29)
4l
By repeated application of the identity
A 2.:)‘1- ’\4
D‘;ﬂe ‘=e¢e (D + e “) r?:flﬁkl (3.30)
t he above expreSSIOn becomes (1gnore all @¢* occuring on the |eft)
2 LJ W Iy
! ,4 D +
VRRIR N 4 '(( Z“‘f)(b 21""2'5:14,) X

ln ;‘(N A
X(D 2'- 26,4, +§.:- S/,-JN>$.(,'“-D£~ (3.31)

We note that the di agrarmtlc ruI es stated in this chapter follow

frominterpreting the way the §s appear.The D§ can now be replaced by
s .
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