
CHAPTER 2 

Detection of parity of a binary.,.star in triple correlation 

speckle interferometry: limiting faintness 

2.0 Introduction 

In this chapter we present focal plane calculations of the 

SNR for detecting the parity of a binary star. Parity is defined 

as the side of the brighter component assuming that the line 

joining the stars has already been determined by two-point 

correlation analysis. As mentioned before the power spectrum is 

not enough to reconstruct the object uniquely. In the case of a 

binary, the autocorrelation tells us the fluxes of the two 

sources and their separation but not whether the brighter source 

is on the left or otherwise. In other words, the position angle 

of the vector joining the brighter to the fainter component is 
0 

ambiguous by 180. Our reason to consider a binary is as follows. 

, A  binary is perhaps the simplest object needing phase recovery 

schemes for unambiguous reconstruction. For such a simple object 

the natural correlations are in the focal plane. The object being 

simple in the focal plane, only few focal plane correlations are 

of interest. Fourier domain calculations of the SNR for determing 

individual phases of a general object involve two factors: 1) the 

SNR for the bispectrum, 2 )  a factor representing improvement due 

to the redundancy of phase information stored in the bispectrum. 

By restricting oneselves to binaries, as the following 

calculations show, it is possible to eliminate the intermediate 

step of calculating the bispectrum. Also in this case the phases 

themselves are of little importance as they do not individually 



refer to any specific feature in the source. Thus it is possible 

to combine information from all the NS phases to get information 

about the parity of the binary. Not only do we expect the focal 

plane calculations to be simpler but we also expect the focal 

plane statistics to have better SNR. We expect 

In this case of a binary, the situation is quite similar to the 

second order statistics where focal plane correlatiok3kas better 

E 43 S N R  than that for an individual power spectrum component: 

For a general object the symmetry in the Fourier transform and 

its inversion implies that S N R  will be similar for individual 

elements in the focal and the Fourier domain. For simpler objects 

like a binary only a few focal plane correlations are important. 

These correlations can be thought of as a result of combining tds 

frequency domain correlations. As a consequence these special 

'12 focal plane correlations have S N R  hlS times better than the SNR 

for a typical frequency domain correlation. 

Before we start on the SNR calculations for the parity we 

briefly review the physical motivation for the triple 

correlation method. The presentation is along the lines given in 

Weigelt's pioneering paper but deals with the simpler case of no 

atmospheric noise. In the absence of atmospheric noise the image 

of a binary contains just two spikes at the positions of the 

components Fig 2.1. In this case it is, of course, possible to 

measure the fluxes of the two stars and no ambiguity exists. 

However, we choose to discuss correlations because the results 



then carry over, as shown later, even in the presence of 

atmospheric noise. If we measure the first order statistics N,+N~ 

2 . 2  and the symmetric second order statistics  and N , N ~  then we are 

left with the ambiguity of the parity of the system. In Fig 2.2 

we show the autocorrelation for the binary in Fig 2.1. 

By definition the autocorrelation 

is focal plane mean of the product <I(X)I(X+Y)>. This palr 

correlation depends on the relative displacement Y of the two 

copies I(X) and I(X+Y) of the focal plane intensity. In the case 

of a binary such pair correlation, in the absence of the 

atmosphere, exists only for three values of the relative 

displacement Y. These cases are shown in Fig 2.3. To get the 

autocorrelation from these product functions <I(X)I(X+Y)> one has 

to integrate over the focal plane coordinate. The autocorrelation 

is a fuction of the fluxes N, and N of the components. In the 
2 

% 2 (N,,N2) plane the measured autocorrelation elements N,+N,=A and 

N, N;B say, represent a circle and a pair of hyperbolas 

respectively. From Fig 2.4 we see that these two curves meet in 
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four points. Two points lie in the unphysical negative flux 

quadrant. The remaining two are physically allowed solutions and 

represent the ambiguity of the parity (these solutions are 

symmetric about the N , = N z  line). The total flux which is a 

straight line N , + N  =C say, does not remove this ambiguity. All 
2 

these correlations are symmetric in N, and N2 so can not tell the 

parity. 

One may say that why make a big deal about parity, after all 

moon does not look strange when seen upside down through an 

astronomical telescope. Consider then a linear triple star shown 

in Fig 2.5 with the same inter star separation. In this case it . 

can be shown that there are eight solutions to the 

autocorrelation equations (Fig 2.5) of which four are in the 

unphysical octant of negative fluxes in the space of ( N ,  ,N N 1 .  
2' 3 

The remaining four can be grouped into two sets. The sets differ 

in the intensities of the three stars and within a set there is 

the ambiguity of parity. To be specific let 
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then 

In this example the additional ambiguity has its origin in 

redundant separations. If a source contains isolated point 

sources with nonredundant separations parity is the only 

ambiguity left over after measuring its autocorrelation (assuming 

that the later can be determined with good S N R ) .  The interesting 

question of multiple solutions of the autocorrelation is not 

addressed here. We consider the parity much a representative 

of the ambiguities in the reconstruction from the autocorrelation 

as astronomically important in itself. In astronomical 

situations where the environment is known at other wavelengths 

(radio for example) the knowledge about the parity of the binary 

(the central enigine and a one sided jet, for instance) may be 

crucial in interpretation. In gravitational lens pair delay, 

again, the identification is important. 

The triple correlation removes this ambiguity. The reason 

why triple correlation works becomes clear if we note that the 

intermediate two-product fuctions in Fig 2.3 are just delta 

functions for some values of the relative displacement of the two 

copies of the image. If we now make one more copy of the image 

and convolve it with a delta function due to previous two copies 

then we recover the source structure without any ambiguity. This 

was the intuitive step that lead Weigelt to propose the triple 



correlation method to solve the phase problem in speckle 

interferometry. The original focal plane triple correlation 

method has the name "speckle masking". The basic motivating 

principle was that for simple enough sources one could get an 

intermediate delta function by a suitable choice of relative 

displacement. In the presence of atmosph,eric noise the result of 

such intermediate step will be the point spread function with 

some noise due to random overlap of the two copies. The triple 

correlation method is, however, not limited to simple sources but 

should also work for complex objects. In Fig 2.6 we show the 

triple correlation for the binary shown in Fig 2.1. Note that the 

central element is symmetric in N, and N2while other six terms 

are asymmetric in N, and N z .  If we concentrate on the top 

horizontal segment we see that the binary is unambiguously 

restored. The overall N1N2is the sign of the delta function in 

the intermediate pair correlation. One can combine the six 

2 2 elements to get a single antisymmetric statistic AJ,%-N,N~ which 

removes the ambiguity of parity. 
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2.1 Model of the point spread function 

The triple correlation is a third order statistic in the 

intensities. The noise on the triple correlation contains terms 

of third, fourth, fifth and sixth order in the intensities. The 

square of the triple correlation is of the sixth order in 

intensities. The other lower order terms in the noise appear 

because of photonic nature of light (see Eq 2.19). The 

intensities themselves are second order quantities considering 

the fields as the basic quantities. So a rigorous calculation 

should involve sixth, eighth, tenth and twelfth order integrals 

in the fields. A simpler model is therefore welcome. Low flux 

results based on field-correlations are presented in chapter 5. 

In the following calculations we make reasonable approximations , 

about the point spread function (PSF). First of all, we take 

the seeing disk to be uniform and neglect all "edge" effects 

which we discuss in chapter 5. Secondly, we divide the focal 

plane into pixels with the diffraction limited size. Since 

the telescope aperture acts as a filter for spatial frequencies 

we expect the intensities over a pixel to be correlated. 

We, therefore, approximate the intensity correlations in the 

focal plane as follows. Intensity over any pixel is 

regarded as uniform and intensities over different pixels are 

uncorrelated. Thus in our model the point source response 

is completely specified by intensities ~ 2 s  at the i'th pixel. 

The fi'~ are statistically independent and have the same 

distribution for all i within the seeing disk. 

We further assume that the intensity at 



any pixel varies in time with a Rayleigh (exponential) 

distribution. We do consider other distributions in Section 2.5 

but as the following argument shows the Rayleigh distribution 

for the KS is perhaps the natural choice. Any point in the 

focal plane receives complex fields from roughly NS different 

correlation patches in the pupil plane. The resultant of such 

addition of large number of complex fields is a complex number 

whose real and imaginary parts have a Gaussian distribution 

because of the central limit theorem. The intensity which is 

the modulus of the resultant field is therefore distributed 

according to the Rayleigh statistics (Rayleigh, 1,491): 

~ ( p )  dp = (dpl<p)) exp(-pl+> 1 
m 

or < ~ m > z m ! ( ~ )  m: nonnegative integer (2.3) 

As one moves away from a point in the focal plane the intensity 

will start getting decorrelated with that at the first point. . 

So strictly speaking the intensity within a speckle-sized 'pixel 

will show variations and the statistics may deviate from the 

Rayleigh statistics which holds for intensity at one point. 

Since the focal plane intensity correlation length is of the 

order of the pixel size we expect the statistics to be close to 

Rayleigh. Deviations from this statistics can be checked by 

more detailed calculations dealing with field correlations 

(chapter 5 ) .  The present statistical model allows us to deal 

with the intensities themselves, thus reducing the order of 

correlations one has to deal with. We also assume that the 

fluctuation in the number of photons detected in a pixel are 

described by a Poisson distribution with the instantaneous 

intensity as the mean. Strictly speaking there are 



correlations of the Brown-Twiss type but as mentioned in the 

introduction (section 0.1 page41 these are negligible for 

speckle interferometric observations. So our averaging 

proceedure involves two steps. In the first step we do the 

Poisson average for a given focal plane intensity distribution. 

In the second step we do the classical averaging. We 

- 
denote the Poisson average by and the classical average 

by < >. Later, in Section 2.7 we show that above model for the 

system response correctly reproduces the known results for 

the autocorrelation of a binary. 

2.2 Parity statistics for a binary: expression 

In our model for the focal plane image of a point source 

intensities over different pixels are uncorrelated. However, 

another point source within the isoplanatic patch will give an 

exactly similar but shifted intensity pattern. In the high flus 

limit the speckle patterns due to the two stars have the sane 

relative intensity as the true binary. In this chapter we use 

the word 'speckle' for contribution to pixel intensity due to 

a single star. So all pixels, except near the edge of the 

seeing disk, receive two speckles: one each due to the two 

stars. We are mainly concerned with cases where the binary 

separation is smaller than the seeing disk and so neglect any 

edge effects. More specifically, we denote the speckle intensity 

due to star 1 (on the left) at the pixel i by . This pixel Pi 
also receives a speckle due to star 2. The intensity of 

this speckle is same (appropriately scaled) as the intensity of 



the speckle due to star 1 at the (i-bl'th pixel where b is the 

binary separation. The speckle at the i'th pixel due to star 2 

7 d2 has the intensity z);-~- - 4 Pi- b  
IN"z where - 4 is the 

true ratio of the intensity of star2 to that of star 1. If 

we denote the total intensity at the i'th pixel by n. then 
1 

- Since the pis are statistically independent two iii's say ni and 
- 
TI, are also statistically independent unless either i=j or j=ikb. 

J 

The correlation between mi andnikbis due to a pair of speckles 

common to these pixels. This pair of speckles has the same 

relative intensity as the binary. It can be easily checked 

that in our model (which neglects edge or gradient effects) 

the general focal plane triple correlation 

is symmetric in the average per speckle source strengths x, and 

3(; except for following six cases for which is asymmetric in 
k i 

It can be seen from the definition that the three triple 

correlations in Eq 2.6 are identical, and the same is true of the 

three triple correlations in Eq 2.7. Note that this is true 

without the average denoted by < > and therefore these three 

values are identical in all realizations. So there is no gain 

in SNR by a factor of f i  on combining these three values. Out 



of the two sets of triplets we choose only two statistically 

independent terms 

It is possible to combine these two terms so as to get a single 

parity statistic that is antisymmetric in 4 and ,p . Thus the 
2 

only third order correlation that contains the parity 

information is: 

where nL is number of photons in the i'th pixel, b is binary 

separation. Note that the expresion in Eq 2.8 is unbiased 

under Poisson fluctuations i.e. the unbiased estimator 

of the parity statistics is 

We can write this as 

where 6. can be looked at as contribution due to i'th pair of 

pixels consisting of the i'th and (i+b)'th pixel. The rest of 

this chapter deals with SNR for the parity statistics, Eq 2.9, 

derived above. 

2.3 SNR for the Parity detection at low light levels: 

Results on the SNR for this parity statistic for general light 

levels are presented in Section 2.6. The algebraic 

complexity makes the general case physically less transparent. 

Here we, therefore, treat the case of low light levels for 

which the algebra is simpler and the physical origin of 



various contributions to the SNR clearer. At low flux the 

number of pairs of pixels giving nonzero values of parity is 

small as compared to the total number of pairs possible. 

It will be shown later that their overlap contributes to the 

foukth and higher order terms in the variance and not to the 

lowest third order. Since we approximate the seeing disk by a 

uniform disk and since the overlap in the different pairs of 

pixels does not contribute in the third order it is enough 

to consider a representative pair of pixels with the binary 

separation. The second simplification is that such a 

representative pair of pixels must not receive all the three 

photons in one pixel. As the table 2.2 shows one of these.pixels 

must receive one photon and the other two. It is 

therefore enough to use the truncated Poisson distribution 

shown in table 2.1 which gives. the probability P(n) of 

detecting n photons when the mean is 7i.  

Table 2.1 Truncated Poisson distribution 

n 0 1 2 
2 2 2 

P(n) /-7i+&fl T i - i i  L 3  
2 

The SNR due to one such pair must then be multiplied by Ajg% to 

get the SNR for parity statistics. 

Consider, then, a pair of pixels with the binary 

separation, with intensity f l  and fi, for one atmospheric 

- 
realization. We suppress the subscridt i and denote fi by fi 

%+m b 

by Rmb. In all meaningful correlations b is the basic 

displacement. Later on we shall denote R by %for simplicity. 
mb 



The parity statistics for this representative pair of pixels 
2 

becomes ~=$n,-nTl, which takes values with the probabilities 

shown in the tables 2 . 2  and 2.3 respectively. 

Table 2 . 2  Parity as function Table 2 . 3  Probability 
o f and distribution for Parity 

Xi 0 1 2 Parity Probability 

2  0 2  0 0 remainder 

It is clear from table 2 . 3  that the Poisson average and 

variance (upto third order) of the parity statistics for one pair 

2 
One should have subtracted but this of sixth order in the 

flux per speckle and neglected here. However, the atmospheric 

average remains to be done. Now the pixel on the left contains 

a speckle due to star 1 with intensity fL and the pixel on the 

right contains corresponding speckle due to star 2 with 

. In addition to this correlated pair the pixel intensity as- J4F 
on the left will contain a speckle due to star 2 with intensity 

3- and the one on the right will contain a speckle due to the 

star 1 with intensity /A, . The quantities with different 

subscripts are uncorrelated to each other. On performing the 

atmospheric average we get for the per pair parity average 



Note that the Eq 2.12 does not make any assumptions about the 

distribution of /L and allows us to discuss other statistics as 

well. We now assume (see Section 2.1) the intensities of the 

speckles to be distributed according to the Rayleigh 

statistics. We discuss other interesting cases in Section 2.5). 

The average and the variance of the per pair parity is: 

q}= 2 4 4  (4-&1 (2- 13 )  

3 <?>= 4 ( 2 $  + i ~ , ~ ~ & f  F ~ A ~ + z & ~ )  (2 .I4 Lt) 

This gives our estimate for the low flux SNR for the parity 

where M frames of data are used, q is detector efficiency 

(optics+quantum). Note that for one realization this 1s 

consistent with our calculation in the frequency domaln 

Eq 1.17. and expectation Eq 2.1 relating SNR for parity to the 

SNR for phase (take 4 ,,V2, .Y;--V2 w ,V . Priliminary results on 
tl 

tho low flux SNR were presented at the NOAO-ESO conference on 

'High resolution imaging by interferometry' (Karbelkar 1988). 

2.4 Parity detection in the presence of sky background 

In this section we consider the effect of a uniform sky 

background of K photons on the average, per pixel per exposure. 

In the previous section it was seen that only events registering 

one photon in one pixel and two in the other contribute to the 

parity information. In the absence of sky background noise 

these photons come from the binary and so contain information 



about the parity of the binary. Sky background can mimic parity 

events: as an extreme example all the three photons may come 
I 

from the background. Assuming uniform background, such spurious 

events will have their negatives so on an average there is no 

signal due to the background. But, of course, there will be 

additidnal noise due to such spurious events. To calculate the 

fluctuations in parity due to photon noise one should convolve 

the Poisson fluctuations in the photons from the binary (as 

before) with the fluctuations in the photons from the 

background. Since sum of Poisson fluctuations is again a 

Poisson fluctuation with the sum of the means the calculation of 

probabilities in table 2 . 3  continues to hold with 

instead of Eq 2.4 which is true for no background. Assuming 

that the speckles have Rayleigh distribution as before we get for 
. 

one pair of pixels: 

+ I 2  k2(4+A'') + 4u3 (2.18) 

Stationarity for the statistics of the$s was used in getting 
4 

Eq 2 . 1 8 .  Strictly speaking one must subtract the square of the 

averaged parity but this is of the sixth order and will be taken 

care of in section 2 . 6  where all orders are considered. 

Combining Eq 2 . 1 7  and Eq 2 . 1 8  we get the SNR for the parity in 

the presence of sky background. 



2.5 Effect of various intensity distributions for pixels 

We now check that the general formula Eq 2.12 gives 

correct results in other limiting cases of the statistics for 

the pixel intensities. Consider a long exposure image. The 

intensities on the pixels are positive. However as result of a 

large number of speckles one may get, to the zeroth order, 

a constant intensity as in the case of long exposure images. 

To higher order one could approximate the intensities to be 

Gaussianly distributed around the mean because of the 

central limit theorem. The variance of this Gaussian component 

has to be much smaller than the mean so that the 

unphysical negative intensities predicted by the 

approximation have negligible probability. Such a distribution 

is represented by p = I f  X where x is a zero mean 

Gaussian with @';)(<I. For this distribution 

<p>=l  ; < f - 4 ' > = l + < x 2 )  ; $l3)= 1+3<x2)  
8 

and there is no parity signal as can be verified by direct 

substitution in Eq 2.12. The Gaussian distribution may arise in 

another way. Consider a more complex source than a binary. Now 

every pixel gets a speckle due to every component. The 

resultant of such large number of independent Rayleigh 

distributions is a Gaussian distribution. As is well known for 

Gaussian distribution the bispectrum is identically zero. Note 

that the expression in the curly brackets Eq 2.12 is just the 

third moment about the mean. Whatever be the statistics of the 

pixel intensities, this third moment must be nonvanishing for 

parity detection. 

2-1 6 



2.6 SNR for parity detection at general light levels 

The variance for the parity statistics contains terms in 

the fourth, fifth and the sixth order in addition to the third 

order considered already. We summarize the results here while 

the details are left to the appendix A .  Starting with the 

unbiased parity statistic 

where nl is the number of photons recorded in the i'th pixel in 

a realization of the atmospheric noise. We first perform the 

Poisson averge for the square of the parity to get 

Note that the sixth order term is just the classical variance 

and the Poisson contribution exists only in the lower orders. 

Also note that the lower order terms are third, fourth and fifth 

order in intensities and are due to photonic nature of light. 

Here we give an interpretation of the Poisson contribution 

to the variance. We note that the square of parity statistics 

(in the form Eq 2.10) is 

Now since n ! ~  are independent Poisson variables for a 
4 



realization of intensity distributionfii, in the first stage of 

(Poisson) averaging and 4 are independent unless j=i or 

j=i+b. The Poisson average of the above expresssion is 

The first term is the square of the classical parity 

statistics. The second term is a variance term of the kind 

discussed before while considering the low flux noise. The third 

term includes the effects of overlapping pairs. For example, 

consider events where three pixels with interpixel separation 

equal to the binary register one, two and one photons 

respectively. The first pair of pixels contributes -2 while the 

pair of middle and the extreme right pixels contributes - 2  to 

the parity. Such an event has a net parity zero. However, in 

the previous calculations the two pairs were taken to 

contribute independently to the parity so that the variance due 

to them summed up. The event under consideration has zero 

parity and should not have contributed to the variance. Such an 

excess counting must be corrected for. The probability of 

such an event is in the fourth order and contributes 
- 2  - 

- 4 A  n, TI, (table 2.46). Just as the third order Poisson events 

were tabulated in tables 2.2 and 2.3 the higher order Poisson 

contributions can be worked out. These higher order 

contributions and the events generating them are given in 

table 2.4. For general light levels it is necessary to retain . 

fifth order terms in the truncated Poisson distribution 

(table 2.4a). Events that contribute to the parity statistics are 

shown in table 2.4b. One has to consider two kinds of events. 



TABLE 2.4~ PRRTlfi L POISSON PROBRBlLITlES 

n Partial Probability P,, Exact 

0 3 4 I j75 -5 r-n+tfs'-tn +$ n -= e 

i %i-fi\'+tm3-~n 4 +;7if i5 me 
- 
-n 

5 
- 

2 L - 2 - - ~ - 3  ,n ,n ++n4-hfi I-a -n 
2 7 )  e 



Tfl8LE 2 . 4 ~  PO IS SO^ VCIRlflNCE: THIRD ORDER 

n n, P P3 

I 2 -2 fq i i :  Variance 2(fiz?i,+~fi:) 

n n, n2 P R 4 Variance 

I 2. 1 -2 2 ~ n n , n ,  -4fiCq , - -2- 
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7RBL.E 2.4e: FIFTH ORDER CONTRISUTION T O  T H E  VF3R14NCE 

FlFrn ORDER CON7RlBUrtON TO THE VARiANCE (POISSON) 
-4 - -2-2- -2- - 2 
n n, + f i $ - g n ~ B 5 ~  ++nn,n,-~nn,n, 



First, events due to a single pair of pixels (with binary 

separation). These events are like the ones considered before, 

however, now one is interested in higher order contributions to 

the variance. Consider, for example, an event when the pixel on 

the left records 2 photons and the one on the right records one 

photon. As shown in the table 2.3 this event 

-2- 
contributes 2 n n, in the third order to the variance. This 

three photon event also contributes in higher orders. To see this 

let us cosider only the pixel on the left. The exact probability 

2 -5 
of this pixel recording two photons is Ifi e . When we 

2 

consider this probability order by order,the third order "partial 

-3 probability" is -in . Note that though this is negative there 

is nothing to worry about because it is just a part of the 

probability i.e. "partial probability". The three photon event 

contributes to the fouth order in two ways: 1) Third order 

"partial" contribution from the pixel on the left and the first 

order "partial" contribution from the pixel on the right, 

2 )  second order "partial" contributions from both the pixels. 

These give us the two terms listed in the table 2.4d. Note that 

the order of partial probability cannot be less than the number 

of photons involved. The second kind of events include 

overlapping pairs. Their contribution to the variance is given by 

the last term in Eq 2.21. Such contributions are labled 

"covariance" in the table. This interpretation is helpful in 

understanding and checking the detailed derivation described in 

Appendix ~2 

The atmospheric noise needs to be averaged and when this is 



done (Appendix A) we get for the variance the explicitly 

positive definite form: 

We note that in this expression for the variance the contribution 

in all orders (in,)( has a weight Ns . This is a signature of 

the fact that in our model the information is contained in NS 

triplets of speckles. It follows that when fl is greater than 

unity the sixth order terms dominate while for N(1 the third 

order terms dominate. For reasonable observational parameters 

means 1 3 ~ .  So the transition from high flux to low flux estimates 

occurs at 1 3 ~  . In chapter 5 we consider edge effects where the 

information about the parity may come from uncorrelated triplets 

of speckles. It will be shown there that different orders have 

different weights in powers of N s .  The transition to low then 

goes through an intermediate step. 

2.7 SNR for autocorrelation 

The SNR for autocorrelation of a binary is well known in 

the literature. Here we show that the S N R  estimate for the 

autocorrelation based on our assumptions and simplifications 

does agree with the known result. As before, assuming a uniform 

seeing disk, we treat the NS terms in the general 
1 

autocorrelation 



f 7; ni+~ (2 .23 )  
equivalent at low flux levels and consider only one 

representative pair 

Q,= n, n;,, 

The pair of pixels register Ti andn. photons respectively with 
+tx 

average intensity 3 and mi in one realization of atmospheric 

noise. Note that for X#O the statistics is unbiased under 

Poisson statistics. The autocorrelation gets its leading 

contribution (low flux) in the second order in the flux per 

pixel so it is enough to truncate the Poisson distribution after 

first order: the values of the autocorrelation and their 

probabilities are given in tables 2.5 and 2.6 respectively. 

Table 2.5 Autocorrelation Table 2.6 Probability distribution 
as function of and for autocorrelation 

n\?i 0 1 Auto. Probability 

0 0 0 1 =i=l Ti, 

1 0 1 0 l-fi5, 

It is then clear that the Poisson average and variance are: 
- zx = mi, ; a: = R fi, (2.25) 

Consider the case where X equals the binary separation. Then 

from Eq 2 .16  which gives intensities in the presence of sky 

background 

( z b ) =  ~ s , ~ + 3 d q s ~ , f 4 ~ + 2 ~ 1 - $ + & )  f K~ Q.26) 
- 

However, one should actually be able to measure the slight bump 

in ax) at X =  b relative to its neighbours where (iii) takes the 

value say a). For x # o , x # ~  we have 
dc 



(~~)=4'+24&+4~ +z / ( (N ,+JC, )+K 2 @ . z t >  
One should strictly speaking calculate the variance in ab- 

adc * 

however, one can determine adc from many separarions x which 

give independent U and thus consider it almost noise free when 
dc 

compared to ab . Thus the SNR for focal plane two point 

The scaling with M, q,N and Np agrees with previous 

results due to Dainty (1974) who considers a binary with 

LN; )"1I; w ~ V .  

2.8 Conclusion 

For concreteness we consider a specific case of a 4 m 

telescope, optical bandwidth 1 0 0  A, exposure time of 10 ms. In 

this case Ns =I600 and per speckle photon count of unity means 
M 

1 2 . 2 5  star. 'In the high flux limit the sixth order terms 

dominate and the SNR is function of the relative strength r of 

the two components: 
-0-4 (m, -m,) r = X2/& = 10 3C,)Nz)1 ( 2 . ~ 9 )  

- 9'/2 r;lZ ,Vp P(,-7) - 
S N R p a ~ l ~ r  L- 2- yr +a 7' + a s  r3+a r+-4r5+~rC)yz (2.3 0) 

where yr) and are the magnitudes of the two stars and we have 
I 

taken detector efficiency (optics+quantum) q=0.2. This high 

flux SNR is given in table 2.7 as a function of the magnitude 

difference Am=m2-m, . 



Table 2 . 7  High flux SNR for parity 

Am SNR m SNR 

Calculations based on all orders (exact in our model) show that 

this gives SNR accurate to few &rcent if the brighter. component 
T11 

is brighter than 7 and the fainter component is brighter than 

about 13? We note from the table that for bright binaries 

parity cannot be detected with SNR>3 if the magnitude difference 

is greater than 6 though it may be possible to see the binary 

nature in the autocorrelation. Table 2 . 8  gives the limiting 

magnitude of the fainter component, for a given magnitude 

of the brighter component, for which parity and 

autocorrelation can be detected with SNR>3. 

Table 2 . 8  Limiting faintness 

Brighter component Limiting fainter component 
Parity Autocorrelation 

....... ........ 1 3 . 0  1 7 . 2  2 0 . 5  ....... ........ 1 4 . 0  1 7 . 0  2 0 . 5  ....... ........ 1 5 . 0  1 6 . 0  2 0 . 5  ....... upto 2 8 . 8  ........ None 2 0 . 5  

For the chosen observation parameters sky background noise is 

unimportant and makes no difference in the limiting magnitudes. 



The limiting magnitude given in table 2.8 for the 

autocorrelation are based on our calculations outlined in 

m 
Section 2.7. In this case, keeping the 21 per pixel sky 

background in mind, the SNR calculations were terminated 

at 20.5. We conclude from the table 2.8 that parity detection 

has a significantly poorer SNR than the autocoYrelation. 

One may raise the following legitimate question. From 

autocorrelation, which has muchbetter SNR, one knows 

2 2 4 and ga and therefore the magnitude 144 -4 Jf2 1 of the 

parity quite well. It is the sign of parity which is unknown. 

So the relevant statistical question is to assign probability 

distribution to the signs when the observed parity value is 

given. This question can be answered only if one knows how the 

parity is distributed around its mean (which has to be 

consistent with the modulus of parity obtained from 

autocorrelation). Knowing a distribution means knowing all the 

moments of the variable (the parity). The complexity involved 

in evaluating the second moment of the parity statistics 

(despite a simple model) indicates the near impossibility of 

carring out such a task by analytical methods. Two extreme 

cases are, however, trivial. For large values of SNR the sign 

of parity is well defined. On the other hand for poor SNR the 

observed value might, equally well, have come from any one of 

the two signs. We take SNR=3 as the case where one sign has 

significantly greater probability than the other. We also note 

that we have considered an ideal situation, in reality there 

could be other sources of noise and present day speckle work 



does not attain these theoretical lihits. The limits 

themselves are still of interest. 

A P P E N D I X  A 2 S N R  for parity detection at general light levels 

Here we give the details of the SNR calculations for the 

parity statistics introduced before. 

The average of this is given by EqA.13. The square of the parity 

statistics is 

a) Poisson flucuations 

As the Poisson fluctuations in different pixels are 

uncorrelated for a given intensity distribution, correlations 

come only when any two of the subscripts are equal. Since we 

restrict to b$0 no three subscripts in any of the three terms 

in Eq 2.32 can be equal. So whlle taking the Poisson average of 

terms in Eq 2.32 one can partition the sunmation into four 
i, j 

sums: 1) j distinct from i,i+b and i-b; 2 )  j=i; 3) j=i+b; 4 )  

j=i-b. These partitions are mutually exclusive ( b S 0 )  and cover 

all the terms implied by the original summation without any 

restriction over i and j. When i is distinct from j,jk b the 

Poisson average of a terns takes simpler form: for example 

One can relax the restriction on j and pretend that the Poisson 

average can always be split like this though this is not true for 

partitions other than 1). For other partitions one must first 



write the correct result implied by the partition and then 

subtract from it the above (pretend) uncorrelated average. For 

example 

Using the well-known results 

- for the Poisson distribution for n. with given mean 
i '"4 

we can 

write the averages in terms of the given intensities. A compact 

notation is useful. Since except for the first way of 

partitioning other partitions involve only one summation over i 

we.drop the explicit L in such terms. Also we suppress the 
i 

subscript i and denote nt by n .n by Ill . n. by nm etc. Also 
i t b  c+mb 

since i is a dummy index we have 

-' -z- -L 

n n, n, = fl- Vi n, a/nd 50 an.  

With this compact notation we have 



2- Z 
- r a ~ f f l ~ - 6 n n , - 6 f i i j ,  -4nfituz (2.37) 

This gives us the Poisson average of the square of the parity 

statistics as used in Eq 2.19 of the text 

b)Rayleigh average upto the fifth order: Note 

that the third, the fourth and the fifth order terms in 

Eq 2.38 involve only one summation and are easier to average 

over the assumed Rayleigh distribution for individual speckles. 

We assume, as before, the seeing disk to have a uniform profile. 

The average of these sums can then be replaced by NS times the 

average for one term. The sixth ordered terms involve double 

summations and need different handling, similar to the Poisson 

double summation. So consider three pixels within the seeing 

disk separated by the binary separation with contributing 

speckles 3 , fi, and fi2 (compact notation) given by Eq 2.4. 

The quantities with different subscripts , are uncorrelated. 

The results for Rayleigh averages of correlated variables 

can be summarized as follow: 



where < > denotes the Rayleigh average. The following Rayleigh 

averages are needed '(2. bd) 

< ~ n : ) ~ < ~ ~ 1 : ) , < f l $ )  and <~7i:7j : )  are obtained from 
I I 

4 1.2.- <fi3n,)  I (R fit ) and (?I n,) lespecLvely by interchanging 4 -d - 

c)Rayleigh average of the classical sixth order terms 

The sixth order terms are the classical terms in the sense 

that even in the absence of photon noise these terms would 

survive. This is the reason why there are no terms in the 'sixth 

order with single summation: the photon noise,merges into the 

wave noise. The double summation in the sixth order terms needs 

similar handling to the double summation in the Poisson 
4, j 

case. In the Poisson case the Poisson fluctuations in different 

pixels were independent so the subscripts on the n's had tobe 

equal for correlations to arise. This meant that j=i or j=i+- b. 

In the Rayleigh case under consideration the correlations in the 



intensities also arise if two pixels are separated by the binary 

separation. This is because such pixels have one pair of 

speckles with the true intensity ratio for the binary. Thus the 

subscripts on the TI'S have to be either equal or differ by b the 

binary separation. This means j=i;j=ikb or j=i*2b give 

correlation. Barring these five possibilities the Rayleigh 

average can be split. This of course include the above five 

cases for which such spliting is not possible. So when we write 

these five cases as they should be we subtract from them the 

terms with split averages: much as we did before for the 

Poisson statistics. The sixth order terms can be expanded as 

As before we consider only a representative term whe3never a 

single summation occurs. However, since pixel-intensities are 

correlated if the pixel separation equals the binary separation, 

we need to consider four consecutive pixels (instead of the 

three in the Poisson case) with the binary separations. 

The following averages are needed: 
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Using these averages and noting the remaining double sum is just 

the square of the averaged (both Poisson and Rayleigh) parity we 

get the variance for the parity (which can be put in the 

explicitely positive form, the Eq 2.22 


