CHAPTER 2
Detection of parity of a binary'star in triple correlation

speckle interferonmetry: limting faintness

2.0 Introduction

In this chapter we present focal plane calculations of the
SNR for detecting the parity of a binary star. Parity is defined
as the side of the brighter component assuming that the line
joining the stars has already been determned by two-point
correlation anal ysis. As mentioned before the power spectrum is
not enough to reconstruct the object uniquely. In the case of a
bi nary, the autocorrelation tells us the fluxes of the two
sources and their separation but not whether the brighter source
is onthe left or otherwise. In other words, the position angle
of the vector joining the brighter to the fainter conponent is
ambi guous by 1807 Qur reason to consider a binary is as follows.
,A binary is perhaps the sinplest object needing phase recovery
schenes for unanbi guous reconstruction. For such a sinple object
the natural correlations are in the focal plane. The object being
sinple in the focal plane, only few focal plane correlations are
of interest. Fourier domain cal culations of the SNR for determ ng
i ndi vi dual phases of a general object involve two factors: 1) the
SNR for the bispectrum 2) a factor representing i nprovenment due
to the redundancy of phase information stored in the bispectrum
By restricting oneselves to binaries, as the followng
calculations show, it is possibleto elimnate the internediate
step of calculating the bispectrum Also in this case the phases

themsel ves are of little inportance as they do not individually



refer to any specific feature in the source. Thus it is possible
to conbine information fromall the N, phases to get information
about the parity of the binary. Not only do we expect the foca
pl ane calculations to be sinpler but we al so expect the foca

pl ane statistics to have better SNR W expect
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In this case of a binary, the situationis quite simlar to the
second order statistics where focal plane correlatio%;%as better

SNR than that for an individual power spectruﬁ#éonponent:
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For a general object the symretry in the Fourier transform and
its inversion inplies that SNR will be simlar for individua
elements in the focal and the Fourier domain. For sinpler objects
like a binary only a few focal plane correlations are inportant.
These correlations can be thought of as a result of conbining N
frequency domain correlations. As a consequence these specia
focal plane correlations have SNR i?tines better than the SNR
for a typical frequency domain correlation

Before we start on the SNR cal cul ations for the parity we
briefly review the physical notivation for the triple
correlation nethod. The presentation is along the lines given in
Weigelt’s pioneering paper but deals with the sinpler case of no
at nospheri c noise. In the absence of atnospheric noise the inage
of a binary contains just two spikes at the positions of the
conmponents Fig 2.1. Inthis case it is, of course, possible to
nmeasure the fluxes of the two stars and no anbiguity exists.

However, we choose to discuss correl ations because the results
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then carry over, as shown later, even in the presence of
at nospheric noise. If we measure the first order statistics nN+n,
and the symetric second order statistics Nﬁ-Nf and NN, then we are
left with the anbiguity of the parity of the system In Fig 2.2

we show the autocorrelation for the binary in Fig 21
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By definition the autocorrel ation
A (v)= [d% I(x)I(x+Y)

is focal plane nmean of the product <I(x)I(x+y)>. This pair
correlation depends on the relative displacenment Y of the two
copies I(x) and 1(x+Y) of the focal plane intensity. In the case
of a binary such pair correlation, in the absence of the
at nrosphere, exists only for three values of the relative
di spl acenent Y. These cases are shown in Fig 23. To get the
autocorrel ati on fromthese product functions <1(x)I(X+Y)> one has
to integrate over the focal plane coordinate. The autocorrel ation
is a fuction of the fluxes N, and hﬁ of the components. In the
(N, ,N_) pl ane t he nmeasured autocorrel ation el enents Af#@?A and

N N=B say, represent a circle and a pair of hyper bol as

respectively. FromFig 24 we see that these two curves neet in
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four points. Two points lie in the unphysical negative flux
gquadrant. The remaining two are physically allowed solutions and
represent the anbiguity of the parity (these solutions are
symretric about the N, =N, line). The total flux which is a
straight line N, +N =C say, does not renove this anbiguity. Al
these correlations are symetric in §, and N, so can not tell the

parity.

One may say that why nake a big deal about parity, after al
nmoon does not |ook strange when seen upside down through an
astronomni cal tel escope. Consider then a linear triple star shown

in Fig 2.5 with the sanme inter star separation. In this case it

A
I(X) N2 Fig 2.5
N, ié a triple siar
0 b 2b > X
4 and s
Aly) N +N;_'t' N;' autocorrelation
-2b -b ) b _ 2b Y.

can be shown that there are eight solutions to the
autocorrel ation equations (Fig 2.5 of which four are in the
unphysi cal octant of negative fluxes in the space of (N1,$2,N3).
The remaining four can be grouped into two sets. The sets differ
in the intensities of the three stars and within a set there is

the anmbiguity of parity. To be specific |et



le+ "/I:*’N;:A 7 Na(N#N3)=8  and W, Ny=C

t hen
No= £[4A+20) 24 macras 17
2 I
Ny = 5%2— F [—%—-%]’2
In this exanple the additional anbiguity has its origin in
redundant separations. If a source contains isolated point
sources W th nonredundant separations then parity is the only
anmbiguity left over after measuring its autocorrelation (assum ng
that the later can be determ ned with good snRr)., The interesting
guestion of nultiple solutions of the autocorrelation is not
addressed here. W consider the parity as much a representative
of the anmbiguities in the reconstruction fromthe autocorrel ation
as astronomcally inportant in itself. |In astrononica

situations where the environment is known at other wavel engths
(radio for exanple) the know edge about the parity of the binary
(the central enigine and a one sided jet, for instance) may be
crucial in interpretation. In gravitational Ilens pair delay,
again, the identificationis inportant.

The triple correlation renoves this anmbiguity. The reason
why triple correlation works becomes clear if we note that the
internedi ate two-product fuctions in Fig 223 are just delta
functions for sone val ues of the relative di splacenent of the two
copies of the image. If we now nake one nore copy of the inage
and convolve it with a delta function due to previous two copies
then we recover the source structure without any anbiguity. This

was the intuitive step that lead Wigelt to propose the triple
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correlation nethod to solve the phase problem in speckle
interferonetry. The original focal plane triple correlation
nmethod has the nane "speckl e masking". The basic notivating
principle was that for sinple enough sources one could get an
intermediate delta function by a suitable choice of relative
di spl acenent. In the presence of atmospheric noise the result of
such intermediate step will be the point spread function wth
sone noi se due to randomoverlap of the two copies. The triple
correlation nethod is, however, not limted to sinple sources but
should also work for conplex objects. In Fig 26 we show the
triple correlation for the binary shown in Fig 21. Note that the
central elenent is symmetric in N, and N, while other six terns
are asymetric in N, and Ny If we concentrate on the top
hori zontal segment we see that the binary is unanbiguously
restored. The overall N N,is the sign of the delta function in
the internediate pair correlation. One can conbine the six
elenents to get a single antisymetric statistic Ale—hﬁNf whi ch

renoves the anbiguity of parity.

%
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2.1 Model of the point spread function

The triple correlationis athird order statistic in the
intensities. The noise on the triple correlation contains terns
of third, fourth, fifth and sixth order in the intensities. The
square of the triple correlationis of the sixth order in
intensities. The other |ower order terms in the noise appear
because of photonic nature of light (see Eq 2.19). The
intensities themselves are second order quantities considering
the fields as the basic quantities. So a rigorous calculation
should involve sixth, eighth, tenth and twelfth order integrals
in the fields. A sinpler nodel is therefore welcone. Low flux
results based on field-correlations are presented in chapter 5.

In the follow ng cal cul ati ons we nake reasonabl e approximations .

about the point spread function (PSF). First of all, we take
the seeing disk to be uniformand neglect all "edge" effects
whi ch we discuss in chapter 5. Secondly, we divide the foca
pl ane into pixels with the diffractionlinmted size. Si nce

the telescope aperture acts as a filter for spatial frequencies
we expect the intensities over a pixel to be correlated.
We, therefore, approximate the intensity correlations in the
f ocal plane as follows. Intensity over any pixel is
regarded as wuniformand intensities over different pixels are
uncorrel at ed. Thus in our nodel the point source response
is conpletely specified by intensities }Qk at the i’th pixel
The ]A{s are statistically independent and have the same
distribution for all i within the seeing di sk.

e further assunme t hat t he intensity at



any pixel varies in time with a Rayleigh (exponential)
distribution. W do consider other distributions in Section 2.5
but as the follow ng argument shows the Rayl eigh distribution
for thefgs is perhaps the natural choice. Any point in the
f ocal pl ane receives conplex fields fromroughly ng different
correlation patches in the pupil plane. The resultant of such
addition of [large nunber of conplex fields is a conplex nunber
whose real and imaginary parts have a GGaussian di stribution
because of the central limt theorem The intensity which is
the nmodulus of the resultant field is therefore distributed
according to the Rayl eigh statistics (Rayleigh, 1,491):
P(p) dp = (dp/<pd) exp (-pfiuy)

or <,ﬂ">.—_-m.l<,1)m m nonnegative integer (2.3)
As one noves away froma point in the focal plane the intensity
will start getting decorrelated with that at the first point.

So strictly speaking the intensity within a speckl e-sized ' pixel

will show variations and the statistics may deviate from the
Rayl ei gh statistics which holds for intensity at one poi nt .
Since the focal plane intensity correlation length is of the
order of the pixel size we expect the statistics to be close to
Rayl ei gh. Deviations from this statistics can be checked by
nore detailed calculations dealing with field ~correlations
(chapter 5). The present statistical nodel allows us to dea

with the intensities thenselves, thus reducing the order of
correlations one has to deal with. W also assume that the
fluctuation in the nunmber of photons detected in a pixel are
described by a Poisson distribution wth the instantaneous

intensity as the rmean. Strictly speaking there are
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correlations of the Brown-Twi ss type but as mnmentioned in the
introduction (section 0.1 page4) these are negligible for
speckle interferometric observations. So our aver agi ng
proceedure involves two steps. In the first step we do the

Poi sson average for a given focal plane intensity distribution.

In the second step we do the classical aver agi ng. Ve
denote the Poisson average by = and the classical aver age
by < >, Later, in Section 2.7 we show t hat above nodel for the

system response correctly reproduces the known results for

the autocorrel ation of a binary.
2.2 Parity statistics for a binary: expression

In our nodel for the focal plane image of a point source

intensities over different pixels are uncorrelated. However ,
anot her point source within the isoplanatic patch will give an
exactly simlar but shifted intensity pattern. In the high flus

limt the speckle patterns due to the two stars have the sane

relative intensity as the true binary. In this chapter we use
the word 'speckle' for contributionto pixel intensity due to
a single star. So all pixels, except near the edge of the

seeing disk, receive two speckles: one each due to the two
stars. W are mainly concerned with cases where the binary
separation is smaller than the seeing disk and so negl ect any
edge effects. Mre specifically, we denote the speckle intensity
due to star 1 (on the left) at the pixel i by K- This pixe

also receives a speckle due to star 22 The intensity of

this speckle is sanme (appropriately scaled) as the intensity of

29



the speckle due to star 1 at the (i-b)'th pixel where bis the

bi nary separation. The speckle at the i'th pixel due to star 2

has the intensity 2&-b“ﬁﬁ'Pi—b wher e XN s t he
true ratio of the intensity of star2 to that of star 1. | f
we denote the total intensity at the i'th pixel by ?E t hen
M=+ =p, + 2
TR S e o= @)

Since the fgs are statistically independent two 7;'s say n; and

7% are al so statistically independent unless either i =] or j=izb.

The correl ation between . and i, is due to a pair of speckl es
< itb

conmon to these pixels. This pair of speckles has the sane

relative intensity as the binary. It can be easily checked

that in our nodel (which neglects edge or gradient effects)

the general focal plane triple correlation
(T )= l; RO Nisi (2-5)
is symmetric in the average per speckle source strengths X, and

M; except for follow ng six cases for which 'E is asymmetric in

;
J{; andﬂ:z:

1) k=b,7=0 2) k=0 ,7=b 3) k=-b,j=-b (2.6)
4) k=b,j=0 5) k=-b,j=0 6) R=0,7=-b (2.7)

It can be seen from the definition that the three triple
correlations in Eq 26 are identical, and the sane is true of the
three triple correlations in Eq 2.7. Note that this is true
Wi t hout the average denoted by < > and therefore these three
values are identical in all realizations. So thereis no gain

in SNR by a factor of /3 on conbining these three val ues. Qut
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of the two sets of triplets we choose only two statistically

i ndependent termns

"b—zn Mty 5Tbb:%::ﬁiﬁj+b
It is possibleto corrblnethesetvvoterrrs so as to get a single
parity statistic that is antisymetric iny and\)g. Thus the
only third order correlation that contains the  parity

information is:

_2_ _ 2
(Py=5<(M; My =M., ) (3-8)
1
where M. is nunber of photons in the i'th pixel, b is bi nary
separati on. Note that the expresion in Eq 28 is unbiased
under Poi sson fluctuations 1i.e. the unbiased estimator

of the parity statisticsis

VE{P} = P= ;Z (”jnwb’niﬂi;b) (2-9)

W can wite this as
P:;-ZPi iobk= ﬂ}ﬂ&b M Nivn (2-10)
wher e R can be | ooked at as contribution due to i'th pair of
pi xel s consisting of the i'th and (i+b)'th pixel. The rest of
this chapter deals with SNR for the parity statistics, E 2.9,

derived above.
2.3 SNR for the Parity detection at low |ight |evels:

Results on the SNR for this parity statistic for general |ight
l evel s are pr esent ed in Section 2.6. The al gebraic
conpl exity makes the general case physically less transparent.
Her e we, therefore, treat the case of low light Ilevels for

which the algebrais sinpler and the physical origin of

2-11



various contributions to the SNR clearer. At low flux the
nunber of pairs of pixels giving nonzero values of parity is
smal | as conpared to the total nunber of pairs possible.
It will be shown later that their overlap contributes to the
fourth and higher order terms in the variance and not to the
lowest third order. Since we approximte the seeing disk by a
uniform disk and since the overlap in the different pairs of
pi xel s does not contribute in the third order it is enough
to consider a representative pair of pixels with the binary
separati on. The second sinplification is that such a
representative pair of pixels nust not receive all the three
photons in one pixel. As the table 2.2 shows one of these pixels
nust receive one photon and the other t wo. It i's
therefore enough to wuse the truncated Poisson di stribution
shown in table 2.1 which gives. the probability p(n) of

detecting n photons when the nean is 7.

Table 2.1 Truncated Poi sson distribution
n 0 1 2

2 =2 2
2| n é.ﬁ

P(n) |I-N+
. — I
The SNR due to one such pair nust then be nultiplied by Ag& to
get the SNR for parity statistics.

Consi der, then, a pair of pixels wth t he bi nary
separation, wth intensity ¥ and 71 for one at nospheri c
. . . } . - — —
realization. W suppress the subscript i and denote n. by n N mb

by iﬁmb' In all neaningful correlations b is the basi c

di spl acenent. Later on we shall denote ﬁmb by ﬁ"1for sinplicity.
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The parity statistics for this representative pair of pixels
becones P=Y'17'n,~nn7,‘ which takes values with the probabi‘lities

shown in the tables 2.2 and 23 respectively.

Table 2.2 Parity as function Table 2.3 Probability
of and distribution for Parity
N 1 2 Parity Probabi ity
=2
0 0 0 0 2 470,
1@ 8 -2 -2 LA
2 0 2 0 0 remai nder

It is clear from table 2.3 that the Poisson average and

vari ance (upto third order) of the parity statistics for one pair

is B 2 __2 .
p=TN-7NnN, 2.11)
P-F ~P=a(an+nin,)

one should have subtracted sz but this of sixth order in the

flux per speckle and neglected here. However, the atnospheric
average remains to be done. Now the pixel on the left cont ai ns
a speckle due to star 1 with intensityf/L and the pixel on the
ri ght contains corresponding speckle due to star 2 Wi th
intensity 2):%’}4. In addition to this correlated pair the pixel
on the left will contain a speckle due to star 2 with intensity
J_  and the one on the right will contain a speckle due to the
star 1 withintensity/,LI . The quantities with different
subscripts are uncorrelated to each other. On performng the
at mospheric average we get for the per pair parity average

Fr= {<p2y =30 ) Ll a12)
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Note that the Eq 2.12 does not nmake any assunptions about the
di stribution of{L and al lows us to discuss other statistics as
well. We now assune (see Section 2.1) the intensities of the
speckles to be distributed according to the Rayl ei gh
statistics. We discuss other interesting cases in Section 2.5).

The average and the variance of the per pair parity is:
(pP= 2NNy (N-N3) (#-13)

- 3
Fo= 420 e rterr g +205%) )

This gives our estimate for the low flux SNR for the parity

| 3z i [/
92 M N OGN (H-N)

NR = . !
PRRITY f»’l.M,z +F NN -f'?‘)(/‘\N}z‘f'/?uM}s]& N, N1 (R.15)

where M frames of data are used, q is detector efficiency
{optics+quantum). Note that for one realization this 1s
consistent with our calculation in the frequency domain
Eqg 1.17. and expectation Eq 2.1 relating SNR for parity to the
SNR for phase (take JQ)AG,UW—JG ~N . Priliminary results on
the low flux SNR were presented at the NOAO ESO conferencé’ on

"Hgh resolution imaging by interferonmetry' (Karbelkar 1988).
2.4 Parity detection in the presence of sky background

In this section we consider the effect of a wuniform sky
background of K photons on the average, per pixel per exposure.
In the previous section it was seen that only events registering
one photon in one pixel and two in the other contribute to the
parity information. |In the absence of sky background noise

these photons cone fromthe binary and so contain information
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about the parity of the binary. Sky background can mimc parity
events: as an extrene exanple all the three photons may cone
fromthe backéround. Assum ng uni f orm background, such spurious
events will have their negatives so on an average there is no
signal due to the background. But, of course, there wll be
additional noise due to such spurious events. To calculate the
fluctuations in parity due to photon noise one should convolve
the Poisson fluctuations in the photons fromthe binary (as
before) with the fluctuations in the photons from t he
backgr ound. Since sum of Poisson fluctuations is again a
Poi sson fluctuation with the sumof the nmeans the cal cul ati on of

probabilities in table 2.3 continues to hold with

Ny =W+, +K @-16)
instead of Eq 24 which is true for no background. Assum ng
that the speckl es have Rayl eigh distribution as before we get for
one pair of pixels:

<BY= AN Ny (N-N3) (2.17)

CBY= BN, FIAN N+ 140G W +BNG 8K (W H3X; Ny # A2 )

F12 KA(MN+NG) + 4 K2 (z.18)
Stationarity for the statistics of the;{_s was used in getting
BEg 2.18. Strictly speaking one nmust subtract the square of the
averaged parity but this is of the sixth order and will be taken
care of in section 2.6 where all orders are considered.

Conmbining Eg 2.17 and Eq 2.18 we get the SNR for the parity in

t he presence of sky background.
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25 Effect of various intensity distributions for pixels

W now check that the general forrmula Eq 2.12 gives

correct results in other limting cases of the statistics for

the pixel ntensities. Consider a |ong exposure inage. The
intensities on the pixels are positive. However as result of a
| arge nunmber of speckles one may get, to the zeroth order,
a constant intensity as in the case of |ong exposure images.
To higher order one could approximate the intensities to be

Gaussianly distributed around the nean because  of t he

central limt theorem The variance of this Gaussian conponent
has to be much snaller than the nmean so that t he
unphysi cal negative intensities predi ct ed by t he

approxi mati on have negligible probability. Such a distribution
is represented by p=1tx where  x is a zero nean

Gaussian witha& g1, For this distribution

' =1 3 U =1+<3%) (Iu3>::1+3<x7')

and there is no parity signal as can be verified by direct

substitution in By 2.12. The Gaussian distribution nay arise in

anot her way. Consider a nore conpl ex source than a binary. Now
every pixel gets a speckle due to every component . The
resul t ant of such | arge nunber of independent Rayleigh

distributions is a Gaussian distribution. As is well known for
Gaussian distribution the bispectrumis identically zero. Not e
that the expressionin the curly brackets Eq 2.12 is just the
third nmonent about the nean. \WWhatever be the statistics of the
pixel intensities, this third nmoment nust be nonvanishing for

parity detection
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26 SNR for parity detection at general |ight |evels

The variance for the parity statistics contains terns in
the fourth, fifth and the sixth order in addition to the third
order considered already. W summarize the results here while

the details are left to the appendix A. Starting with the

unbi ased parity statistic

— 2 P
P= ;Z (n{. ”4-+b~”¢ﬂ4-+b)

where 7n. is the nunber of photons recorded in the i"th pixel in
a realization of the atnospheric noise. W first perform the

Poi sson averge for the square of the parity to get

—CZ(n 7.9, )]

1 4+b < 4-+b

< < 1+b 1 <+b

3 __ - —3 _2_2 _2
+4n7%%+4njh%—4ﬂﬂb_—4ﬂ an "

_Jr-— =4 —~2_2 _2
+ N, n.n . m 7

Mg, TNy +4n7bbnﬂb+4n Nery Teran

_ — R

271 7/)1+b “+2b 871 ¢+b 1.,.25} (2-/9)

Note that the sixth order termis just the classical vari ance

and the Poisson contribution exists only in the |ower orders.
Al'so note that the |ower order terns are third, fourth and fifth

order in intensities and are due to photonic nature of |ight.

Here we give an interpretation of the Poisson contribution
to the variance. We note that the square of parity statistics

(inthe formEq 2.10) is

ZEp (2-20)
1,7
Now since n'¢ are independent Poisson variables for a
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realization of intensity distributionTE, inthe first stage of
(Poi sson) averagi ng and @, are independent wunless =i or
j=izb. The Poi sson average of the above expresssion is
[ 2 - 2 — e P

%h/;. =(£P) +§:(pj-g.) +2§(ﬁ.p4.+b—/a_}3.+b) (2-21)
The first term is the square of the classical parity
statistics. The second termis a variance term of the kind
di scussed before while considering the low flux noise. The third
term includes the effects of overlapping pairs. For exanple,
consi der events where three pixels wth interpixel separation
equal to the binary register one, tw and one photons
respectively. The first pair of pixels contributes -2 while the
pair of mddle and the extreme right pixels contributes +2 to
the parity. Such an event has a net parity zero. However, in
the previous calculations the two pairs were taken to
contribute independently to the parity so that the variance due
to them sumred up. The event under consideration has zero
parity and shoul d not have contributed to the variance. Such an
excess counting nmust be corrected for. The probability  of
such an event is in the fourth order and contributes
- 4A7\,2 7\2 (table 2.4d4). Just as the third order Poisson events
were tabulated in tables 22 and 2.3 the higher order Poisson
contributions can be worked out. These higher or der
contributions and the events generating them are given in
table 2 4. For general light levels it is necessary to retain
fifth order terns in the truncated Poisson distribution
(table 2.4a). Events that contribute to the parity statistics are

shown in table 2.4b. One has to consider two kinds of events.
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TABLE 2.4a  PARTIAL POISSON PROBABILITIES

n Partial Probability P, Exact

0 EETS RS P L MU, &P

1 Afepmop et g fieT

2 TR FRHEN -5 Lre
3 L A=At LA’ L "
L LS T Late
5 7:7&37'5 %4 e

TABLE 2.4b PARITY M*n-nm? AS A FUNCTION

OF n AND 1,
Q.
n 0 1 3
O 0] 0 0 o) o

&
3 0 6 6 o0 &
«‘?‘?eqf’&
4 0 1 6B o o N
Q‘\G‘
5 O 20
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TABLE 2.4¢ POISSON VARIANCE: THIRD ORDER

n n, P F

2 1 2 4i%n Average T T,—TT,

| 2 -2 an Variance a(fn+fin)

TABLE 2.44d POISSON VARIANCE : FOURTH ORDER

n n n, P Pl P‘r

_— k3 a
B=n"n,-nn;

Fourth order contribution to

Averaye o

Veriance  4TN, +4TIT; —4 TN, N, — 4 g

2-18b

Variance
2 2  _3_
—AN1 N,-2Nn N,
2 2 _3
-Zﬂ ﬁ, —Zﬁ nl
3 _

67>,

6N

=3
m
~4T, 7,

(CovARIANCE)



TABLE 2.4e: FIFTH ORDER CONTRIBUTION TO THE VARIANCE

(n.m)  (pp,) P VARIANCE

(4,1,0) (2,00  FHAH, 67,

(1,4,0)  (12,0) -ﬁ,ﬁﬁ? 6 ﬁﬁf’

(3,2,0)  (6,0) A=A 3R

(2,3,0)  (60) HAT, 3T,

(1,3,1) (-6,6) é‘ 7 ﬁ?ﬁz -12 7 ﬁ?ﬁz (covARIANCE)
(2,1,2)  (2,-2) FAA7, -2 7R, Tis

(3,1,0)  (g0) -ERR-LWTW, 6NN -67T,
(1,3,0) (-6,0) —;—ﬁzﬁ?—{;ﬁ ﬁ," ~6T T, -6,

2% _3. ,_.2_2
(1,2,1) (32) -4RAA-S AR - LR

L. 3 _ 22
47 1, Ny +40N, N, +4NN N,
S 23 a3 . 3 =32 _2_
(27’)0) (2,0) '}Tn ,+f,-n3n,+14nﬂ, ‘n4n,+2n n, +Tl1ﬂ?
Lol 223, 3.2 ook 23 3.2
(1,2,0) (-2,0)  F0AN +57 A, +£70, AN 207, +0H,

FIFTH ORDER CONTRIBUTION To THE VARIANCE (POISSON)
-4 - - _ 3 _ 2.2 _2_ =2
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First, events due to a single pair of pixels (with binary
separation). These events are |like the ones considered before,
however, nowone is interested i n higher order contributions to
the variance. Consider, for exanple, an event when the pixel on
the left records 2 photons and the one on the right records one
phot on. As shown in t he table 2.3 this event
contri butes ;2ﬁ%1 in the third order to the variance. This
t hree photon event al so contributes in higher orders. To see this
| et us cosider only the pixel on the left. The exact probability
of this pixel recording two photons is,zLﬁZe'ﬁ . \Wen we
consider this probability order by order, the third order "partia

probability" is —5?5 . Note that though this is negative there
is nothing to worry about because it is just a part of the
probability i.e. "partial probability". The three photon event
contributes to the fouth order intwo ways: 1) Third order
"partial" contribution fromthe pixel on the left and the first
order "partial" contribution from the pixel on the right,
2) second order "partial" contributions fromboth the pixels.
These give us the two terns listed in the table 2.4d. Note that
the order of partial probability cannot be | ess than the nunber
of photons involved. The second kind of events include
overl apping pairs. Their contribution to the variance is given by
t he last term in BEg 2 2L Such contributions are labled
"“covariance" in the table. This interpretation is helpful in
under st andi ng and checking the detailed derivation described in
Appendi x a2

The at nospheric noi se needs to be averaged and when this is
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done (Appendix &) we get for the variance the explicitly

positive definite form

(P> —ABY = hNg [ 200>+ 70N + PN N2 NG ]

+ANG L6 (N2 V4 200N (N F N+ 20N )

F 8N [3U5+5 000+ 200N, +2 5K+ 5 X0 +3067 )

F Ny [8(H, =N ) 124 J N0, P 323600, (0N g0c? ]

(2-22)

We note that in this expression for the variance the contribution
in all orders (inX' ) has a weight N . This is a signature of
the fact that in our nodel the information is contained in Ns
triplets of speckles. It follows that when 0 is greater than
unity the sixth order terns dominate while for N¢1 the third
order ternms dominate. For reasonabl e observational paranmeters xN=|
means 13m. So the transition fromhigh flux to low flux estinmates
occurs at (37 . In chapter 5 we consider edge effects where the
i nformati on about the parity nay come fromuncorrelated triplets
of speckles. It will be shown there that different orders have

different weights in powers of Ne - The transition to low then

goes through an internediate step.
2.7 SNR for autocorrelation

The SNR for autocorrelation of a binary is well known in
the literature. Here we show that the SNR estimate for the
autocorrel ati on based on our assunptions and sinplifications
does agree with the known result. As before, assumng a uniform

seeing disk, we treat the Ns terms in the gener al

L
aut ocorrel ati on
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Z M Nigx (2.23)
equivalent at low flux levels and consider only one

representative pair

= .2
Q=1 M x -24)

The pair of pixels register N, and nﬁxphotons respectively with
average intensity T and M, in one realization of atmospheric
noise. Note that for X#¢ the statistics is unbiased under
Poi sson  statistics. The autocorrelation gets its | eadi ng
contribution (lowflux) in the second order in the flux per
pi xel so it is enough to truncate the Poisson distribution after
first order: the values of the autocorrelation and their

probabilities are given in tables 2.5 and 2.6 respectively.

Tabl e 2.5 Autocorrelation Table 2.6 Probability distribution
as function of and for autocorrel ation
ﬁ@l 0 1 Aut o. Probability
O 0 o 1 nm,
1 0 1 0 -Nn,

It is then clear that the Poisson average and variance are:

T, =7n, ; @& =nn (2-25)
Consi der the case where X equals the binary separation. Then
from By 2.16 which gives intensities in the presence of sky

backgr ound

(Ap>= K FINNF N, +AR(NHN) + K (2.26)

However, one should actually be able to neasure the slight bump
in d&) at x=,b relative to its neighbours where Q@» takes the

val ue say d@@. For X#o0,X#b we have
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ST =N+ 2NN+ NG + 2K (NN )+ KR @-2%)

one should strictly speaking cal cul ate the variance in A=Ay,

however, one can determ ne a,, frommany separarions x which

gi ve i ndependent %C and thus consider it al nost noise free when

conpared to a, - Thus the SNR for focal plane two point
correlation is

gM2N N, Ne
—_ 1v¥a2 Vs
SNRHUTO. —_ _L‘N;z__f_BMw-z_'__w-zz_f_Qk(vv;_hX\z) +‘K1_]l/1‘ (2-28 )

The scaling wth Mg, N and Ne agr ees with previous

results due to Dainty (1574) who considers a binary wth
IN;JVV;ZNuV.

2.8 Concl usi on

For concreteness we consider a specific case of a 4 m
tel escope, optical bandw dth 100 A, exposure tinme of 10 ns. In
this case N;=16¢6 and per speckle photon count of unity means
12'.\%5 star. 'In the high flux limt the sixth order terns
dominate and the SNR is function of the relative strength r of
the two conponents:

-0-4 (mz —777,)

= M/N, = 10 N DN (2-29)

e g N gy
PARITY ™ [ 2 =47 +61 7% +116 Y3461 74 -4 75427 J'2 (23 0)
wher e m, and ™m, are t he magni tudes of the two stars and we have

SNR

taken detector efficiency (optics+quantum) g=9.2, This high
flux SNRis givenin table 2.7 as a function of the magnitude

di fference Am=m, -m,
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Table 2.7 Hgh flux SNR for parity

Am SNR m SNR
8.0 2 3.5 31
p.2 112 4.8 20
0.5 130 4.5 13
1.9 1349 5.0 8
1.5 118 5.5 5
2.0 96 6.8 3
2.5 78 6.5 2
3.9 48 7.2 1

Cal cul ati ons based on all orders (exact in our nodel) show that
this gives SNR accurate to few percent if the brighter. conponent
is brighter than 7"and the fainter conponent is brighter than
about 13, W note fromthe table that for bright binaries
parity cannot be detected with sNrR>3 if the nagnitude difference
is greater than 6 though it nay be possible to see the binary
nature in the autocorrelation. Table 2.8 gives the limting
magni tude of the fainter conponent, for a given magnitude
of t he bri ghter conponent, for whi ch parity and

autocorrel ati on can be detected with SNR>3.

Table 2.8 Limting faintness

Bri ght er conponent Limting fainter conmponent
Parity Aut ocorrel ati on
13.0 casannna 17.2 e 20.5
14.0 s an s 17.0 TR 20.5
15.0 taaaaaas 16.0 saanaas 20.5
upto 20.8 cereenas None . 20.5

For the chosen observation paraneters sky background noise is

uni mportant and makes no difference in the limting magni t udes.
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The limting magnitude given in table 28 for t he
autocorrelation are based on our <calculations outlined in

Section 27 In this case, keeping the 21" per pi xel sky

background in mnd, the SNR calculations were termnated
at 20.5. We conclude fromthe table 2.8 that parity detection
has a significantly poorer SNR than t he autocorrelation,
One  nmay raise the following legitimate question. From

aut ocorrel ati on, whi ch has muchbet t er SNR, one  knows

vy and Ny and therefore the rmagnitude jx,fjr_? —J(‘,wi! of the
parity quite well. It is the sign of parity which is unknown.
So the relevant statistical question is to assign probability
distribution to the signs when the observed parity value is
gi ven. Thi s question can be answered only if one knows how the
parity is distributed around its nmean (which has to be
consi stent wth the nodulus of parity obtained from
autocorrelation). Know ng a distribution neans knowi ng all t he
noments of the variable (the parity). The conplexity involved
in evaluating the second nonent of the parity statistics
(despite a sinple nodel) indicates the near inpossibility of
carring out such a task by analytical nethods. Two  extrene
cases are, however, trivial. For large values of SNR the sign
of parity is well defined. On the other hand for poor SNR the
observed value mght, equally well, have cone fromany one of
the two signs. W take SNR=3 as the case where one sign has
significantly greater probability than the other. W also note
that we have considered an ideal situation, in reality there

could be other sources of noise and present day speckle work
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does not attain these theoretical limits. The l[imts

t henmsel ves are still of interest.
APPENDIX A2SNR for parity detection at general light |evels

Here we give the details of the SNR calculations for the
parity statistics introduced before
pA
p:%ﬁh&n —n'n b) ,b=0 (2.31)
The average of this is given by EqAa.u3, The square of the parity

statistics is

2
Zﬂﬂﬁbﬂ 77+b+2:77n Ry —227177 n*n+

4, 1+6 4_7 < jtb

(2-32)

a) Poi sson flucuations

As the Poisson fluctuations in different pixels are
uncorrelated for a given intensity distribution, correlations
cone only when any two of the subscripts are equal. Since we
restrict to bfo no three subscripts in any of the three terns

in Eq 2.32 can be equal. So while taking the Poi sson average of

terms in Eg 2.32 one can partition the sunmation > into four
-c,)
Sumns: 1) j distinct fromi,i+b and i-b; 2) j=i; 3) J=i+b; 4)

j=i-b. These partitions are mutually exclusive (bz8@) and cover
all the terns inplied by the original summation wthout any
restriction over i and j. Wien i is distinct from j,j+ b the

Poi sson average of a terns takes sinpler form for exanple

2 2 T = Tz = .
n_( ni-f—b ﬂj nj+b - TL. -nt'+b nj nj+b 4 distinct from 9 amd 32,
One can relax the restriction on j and pretend that the Poi sson

average can al ways be split like this though this is not true for

partitions other than 1). For other partitions one nust first
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wite the correct result inplied by the partition and then

subtract fromit the above (pretend) uncorrel ated average. For

exanpl e

Iy 43 J © e <tb
— 2 — 7
+23‘ T -n*'+»’lb (rf% nj'_-rbﬂab (233
Using the well-known results

n=m

ﬁ.’:: ﬁ;"'?’;

T3 = A 43, 4+,

n = n"+6n +?n +7, (2.3%)
for the Poisson distribution for n{. with given nmean 71: we can
wite the averages in terms of the given intensities. A conpact
notation 1s wuseful. Since except for the first way of

partitioning oOther partitions involve only one summation over i

we drop the explicit 3 in such terms. Also we suppress the
<

subscript i and denote n4. by n ,n‘}b by nl .numby nhetc. Al so
since i is a dumy index we have
_—Z.— ks
nnM,=n_9"N and so an.

Wth this conpact notation we have

T 2
snn, nwn. = N+AI. (7477 S 3.
G5 % e T 5( T ATy + 77 +4 TR +4 AT T,

2 3 _ 2 2 2 _ 2
PR MM, 6T M, +6N 7, +40A 1, +37 7 + 17,

=

tannn, +nn
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:$|

— ,
Al = =b . 22

% {nﬁbnjn,fb_ %"4(“% ) T (T, 47, )+ TR + 477 + 47T
2. - 2

+AN AT +6M A +6R N +4AT T +77 7 + 77

+2In N7, +77, (2.36)
_ — - s = =32 =+_3 2
2% in,, s, = =-2L(T; T T (M 4T )4 AR 4 T, 27 7,
_ T 2 3 3 2 [ I
—gAn N —16\0“,~2nn,*2n3n,—2n A, -2 N7,
—127 7, A, -6RN~6AN —47 n, 7, (2.37)

This gives us the Poi sson average of the square of the  parity

statistics as used in B 2.19 of the text

[z[n T n%)]
4 - I Y S A 2 _ 2 3 __
+AN +NN +4N T, 0, +40N 7, —27 N, —8nn N,
3_ — =3 ST o2
+ 407, +400, —4 —4nn, N,
= 2
20 A +2nn
' (2.38)
b)Rayleigh average upto the fifth order: Not e

that the third, the fourth and the fifth or der terms in
Bg 2.38 involve only one summation and are easier to average
over the assunmed Rayl ei gh distribution for individual speckl es.
We assune, as before, the seeing disk to have a uniform profile.
The average of these suns can then be replaced by N, tinmes the
average for one term The sixth ordered terns involve double
sunmat i ons and need different handling, simlar to the Poi sson
doubl e summati on. So consider three pixels within the seeing
disk separated by the binary separation with contributing
speckles nn n, and 7, (conpact notation) given by Eq 2.4
The quantities with different subscripts .are uncorrelated.
The results for Rayleigh averages of correlated variables

can be summarized as foll ow

2-27



G ™Y = Gy K I (2:39)
where < > denotes the Rayl eigh average. The following Rayleigh
averages are needed (2.40)

ST Y = AN 4060 + 3NN+ N )

(TP = 6N +3003N, +304-JNE HE NNy + 605"
SATDZ b N e a2 +36N7N +HIEN, N +4 Vi
FTTY= 20 12 X530+ 2200+ 1200057 + 2067
AN = 24005+ 1 G, HIROMG IS +96 NI+ 20605 +24 N
NAY= 4M° +28 K00, + 22407 + 68PN + 24 M W+ 405

S

n
<ﬁ1ﬁn ﬁ;>: 4-‘N;5+-?£/'\A[I‘Z':/V’2 "'44;}(;3.)/‘17_‘)"44- ‘szvf""‘?‘/"/v;uv'f‘f' ‘NV}S
nn'n 5
AN, = 60° 42000+ 84 MM +84 NN FhAN N+ 6Ny

AN D<K AN'Y and (AT 7Y are obtained from (AN,
3 -
<N n:))<77477,> and (ﬁlﬂ,lﬁﬁ mspecﬁvef\f. by infc‘rchanging N and UV'L

c)Rayleigh average of the classical sixth order terns

The sixth order terns are the classical terms in the sense
that even in the absence of photon noise these terns would
survive. This is the reason why there are no terns in the 'sixth
order with single summation: the photon noise merges into the
wave noi se. The double summation in the sixth order terns needs
simlar handling to the double summation ) in the Poisson
case. In the Poisson case the Poisson quctua?fons in different
pi xel s were independent so the subscripts on the n's had tobe
equal for correlations to arise. This neant that j=i or j=i £ b.

I n the Rayl ei gh case under consideration the correlations in the
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intensities also arise if two pixels are separated by the binary
separ ati on. This is because such pixels have one pair of
speckles with the true intensity ratio for the binary. Thus the
subscripts on the ni's have to be either equal or differ by b the
bi nary separation. This neans 3j=i;j=itb or j=ix2b gi ve
correl ation. Barring these five possibilities the Rayleigh
average can be split. This of course include the above five
cases for which such spliting is not possible. So when we wite
these five cases as they should be we subtract from them the
terms with split averages: much as we did before for the

Poi sson statistics. The sixth order terns can be expanded as

2 - _ _2 — 2 2z
LM, - s, )T = LKL (7, -7, )))

oS —3_ _2
FCAPES HLANEY + 2 TAA, Y+ AN,y Y +2<A 0,00

F AR AN = 5<HA,Y—5<MA, Y+ 10< AN (AN

2 2

— RAPY - ACA M A, Y=2KAA, AL Y —2<4A ATh,)

AN AT
- 4] nn

P (2.41)

As before we consider only a representative term wheZnever a
single summation occurs. However, since pixel-intensities are
correlated if the pixel separation equals the binary separation
we need to consider four consecutive pixels (instead of the

three in the Poisson case) with the binary separations.

The foll owi ng averages are needed:
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<n[' a) 48\)( +2ssx,x2 +960 \rﬁ‘xz +632N, xz +432 N, Nf +192.X VJ +¢,w4

AT = 48WE+1920N, +432XHNE + 6730302 + 960 W20t +288 3 "L 48N
SR A,y = 12065 +96 MMy +264 J0HNE + 4320305 +288 X UV24+34,V,4&‘5 F1206
AR Yy = 1305 4 94000+ 388 W AN #4323 JNS + 26400 NS+ 9640 N H-’?qu
<ﬂzﬁ.ﬂ§7‘3>= 4X° £ 365507 +10g SIS +/3QVV‘VVZ F92N°0N 33 M0 —f-/quQ
<7 'ﬁ2 ﬁ1ﬁ32>:4 \(6-/-3,2 V‘gﬂl‘f'-‘i'zvl["ﬁ,&(; Fr3900 ‘(.2 FI08W, .N:—,[r‘/'BGVVIuV.z +4 \f;,
(At 1y n; 3)= 4Jf€+32~‘f Ny +84 Mt iz 0 W 54 N T+ 320000 Ll NP

NDEPS G2 +36 007N, + /28 N 2000630, F12803 W +36 4,065 +4NE

M) = 24854192000 +403570F +437 803 F40502 1920000 R4
P = 3600 FIS0NSN, + 504 WtAR £ ouh WOV +504 T £180 M NS FI6NE
n

N
=
o
=)
-~ h
p SIPN)
N~
]

g =

FN #5657 193475 +256 U3 Frga it s F 3o
Using these averages and noting the remaining double sumis just
the square of the averaged (both Poisson and Rayleigh) parity we
get the variance for the parity (which can be put in the

explicitely positive form the Eq 2.22

FD 4By = 4y [N +FN NG +7N N 4207 ] (.43)
+ 45 [ 6(NENT)? 20K, Mo (NHNT) +24 N
+ g Ng £ 307 + 5NNy + 200G 20,4, + 5N, N tr3N7 ]
+ Ng L 80X4,0° +124- 0N (0 -N, - +32 N, Mo (WK Y H 84N ]
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