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SNR for the Bispectrum: scaling laws 

1.1 Introduction 

In this chapter we present the scaling dependence of SNR for 

the bispectrum and phase reconstruction based on it on the 

average number of speckles and the average numher of photons per 

speckle. We deal only with a typical bispectrum element and not 

the special near axis elements. We shall discuss these special 

near axis/origin regions later in chapter 5. Let I(X) be the 

focal plane intensity distribution which is convolution of t.he 

source structure S(X) and the system (telescope+atmosphere) 

response (PSF) R(X). Equivalently, in Fouri~r representation 
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where we use u , v . . .  etc for spatial frequencies. A s  mentioned 

before, due to atmospheric turbulence R is random in u and in 

time. If one exposes images longer than about ten milliseconds 

then the average response <R> is significantly different from 
- I  

zero only for spatial frequencies less than about one arcsecond . 
The power spectrum method described in the introductory chapter 

does not contain any phase information. To reco~lstruct the phases 

of the object Fourier transform is important and Weigelt (1977) 

has proposed the use of the so called bispectru6 

a.$,,- 1 - u - v >  (1.2) 
a third order statistics in the intensities, which is nonzero 

right upto the diffraction limit of the telescope. This method 

discussed in detail by Bartlet et.al. (19841, has been applied to 
t 

astronomical imaging (Lohman et.al. 1983). The triple product in 



Eq 1.2 is a double Fourier transform of the focal plane triple 

correlation 

T o p )  = j d %  I (x )  I (x+Y) I ( x + t )  . (1 -  3) 

In practice, one measures the triple correlation of the image of 

the object and that for a neighbouring point source to get the 

object triple correlation 

s s s  - 
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from which the object phases are recursively solved for. One has 

to assume values'for two of the phases at the begining of the 

recursive algorithm. This corresponds to an overall shift in the 

position of the source. Apart from this, given enough SNR, the 

object structure can be determined uniquely. 

In Fig 1.1 we show the bispectrum for a point source. The 

full bispectrum is four dimensional: only a planar cross section 

is shown. We note three features. The central feature corresponds 
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to the case when all the three spatial frequencies entering the 

triple correlation are near zero. In terms of the focal plane 

intensity this would mean that we are dealing with (almost) the 

cube of the total flux. This is highly correlated object and is 

rather peaky. Then there are three correlation ridges. Note that 

for these ridges the spatial frequency of one of the three 

Fourier components is near zero while the other two are 

conjugates. This is-basically a power spectrum and shows as an 

enhancement in the triple correlation. The parallel with the 

power spectrum, however, is not exact. Because of the third 

Fourier component this feature is quite capable of yielding phase 

information. And finally there is the plateau region which comes 

about -because intensities at two points within a speckle are 

correlated. The strength of this feature is related to the per 

speckle photon count and is therefore much weaker than the 

central feature which is related to the entire flux. However, 

there are a large number of spekles and one may expect the 

contribution due to. this plateau region to dominate as far' as 

phase information is concerned. In this chapter, a prelude to the 

chapter 5, we are mainly concerned with the S N R  at one 

statistically independent region in the bispectrum and the S N R  

for phase determination by combining information from all such 

regions. In chapter 5 we deal with phase information from the 

near axes/origin regions of the bispectrum (to be precise, with 

focal plane analogues of these features). 

We emphasize that in this chapter we are dealing with 

Fourier representation of the focal plane. In the chapters that 

follow we work mainly with focal plane correlations. These two 



domains have reciprocal relationship. For example, the central 

peak in one domain corresponds to the plateau region in the other 

domain. The ridges in one domain correspond to ridges in the 

other domain. 

Wirnitzer (1985) has calculated the S N R  for the bispectrum 

as well as for phase reconstruction for general light levels. His 

results, like our results in this chapter, deal only with the 

plateau region. For bright sources and for one frame of data his 

results can be summarized as follows 

where & is the average number of spekles per frame. Note that 

the above S N R  for the bispectrum is of the same order as that for 

the power spectrum: 3 

SNR,,,~ 1 IUJIL /LZ OH 0.31 
nix loo f . y  8 4 . 1  0,g.l 

Paradoxically it appears that in so random a phenomenon as 

speckles the phase of a Fourief component is better determined 

than the amplitude. This paradox is removed below. 

1 . 2  S N R  for bispectrum at high light levels 

In this section we use an extremely simplified picture of 

the speckle phenomenon to estimate the S N R  for the bispectrum in 

the wave limit. The wave limit holds when the sources are so 

bright that wave theory is entirely adequate to describe the 

intensity fluctuations. In particular, the noise due to the 

fluctuations in the number of detected photons is negligible when 



compared to the noise given by the wave picture. The system 

response R(X) can be considered to contain NS speckles, each with 

roughly the diffraction limited size, spread over an area about 

1" wide (the seeing disk). The number of speckles is about 1 0 0 ~ ~  

where D is the telescope diameter in meter. The intensity of each 

speckle is random but in the following we shall regard it as a 

constant say I,, . The positions X ~ S  of the speckles can be 

considered random and statistically independent of each other. 

Thus for the system response we use\ 

We see that the system response function in the Fourier domain is 

just a sum of NSuncorrelated complex numbers. Because of the 

assumption of sufficient randomness of the speckle positions the 

average of all these numbers is zero. Consider the power spectrun 

in this picture 

R, Re,= R: E $ + L exp  €4 u(x; -xj 13 
#j  
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The power spectrum is seen to be made of N deterministic terns 
S 

1 
a n d ~ y  random terms with zero average. It is then clear that for 

the average only the NSdeterministic terms contribute while for 

the average of the square of the power spectrum the contribution 

from random terms dominates. Thls gives us the high flux SXR for 

one power spectrum point 

This result is well-known in the literature. Now consider the 

bispectrum which in our picture is given by 



Note that the triple product RU 4p f?-u-w contains NS 
3 &-t$ random terms with zero mean. It deterministic terms and bJ 

follows that the average of the bispectrum is 

3 3 <Ru Rv R-,.v) = Ro Ns = N, -u' [L 12) 

Now consider the modulus of the bispectrum 
-6 * q IR, R ,  R-,-, I+= { N' + [ ( N : - N ~ )  random kyd'j { N ~  +[(EI:-&)  ando om *ml] 

= AJ: + N:-N~ + C ~ S S  t e ~ m s  ~ i i h  nonjero phares. 

The cross terms vanish on averaging because they have nonzero 

phase factors. Thus 

This gives us the SNR for a general bispectrum element 

The physical reason for this dependance on N is that the signal S 

comes from those events for which the points at which intensities 

are correlated lie within a speckle size of each other. In the 

present picture of the PSF information is carried by coincident 

speckles. In the case of double correlation there are N pairs of s 
coincident speckles while the total number of pairs is N' In the s ' 
case of triple correlation the number of coincident triplet of 

speckles is still N but the total number of triplets possible 
S 

3 has gone up to 4 . This explains the poorer SNR for one 

bispectrum element. In general as one goes for larger and larger 



ordered correlations the SNR for one element in the frequency 

domain will go down. However, the bispectrum is just an 

intermediate step. The relevant quantity is the phase and it is 

well-known that the bispectrum elements store phase information 

redundantly. The number of statistically independent regions (the 

speckles) in the image plane, and therfore in the spatial 
2 

frequency domain, is NS.  The number of such regions is NS for the 

bispectrum because it is a function of two spatial frequencies. 

This redundancy in bispectrum is expected to lead to an 

improvement by a factor h;" for reconstructiong individual phase s 
values from the bispectrum (Wirnitzer 1 9 8 5 ) .  With our estimate 

for the SNR for the bispectrum but Wirnitzer's improvement factor 

(with which we agree) we get the SNR for phase reconstruction as 

Note that this is of the same order as that for the amplitude. 

1.3 SNR for bispectrum at low light levels 

At low light levels (fainter thatabout 13'th magnitude) a speckle , 
receives less than a photon per exposure (10 ms, 100 A bandwidth) 

and one must also consider the noise due to the photonic nature 

of light. This involves two steps: 1) Since photon noise 

introduces bias terms dominant at low light levels one starts 

with unbiased estimators for the bispectrum which when averaged 

over the Poisson statistics obeyed by the photons gives the 

classical bispectrum for that realization of the atmosphere. Note 

that by this construction the average, even for low light levels, 

is going to be the same as in the wave limit. 2 )  Calculate the 



variance for such an unbiased estimator considering both the 

atmospheric and photonic noise. ~irnitzer starting with the 

3 correct unbiased estimator gets the right N, leading noise term 

for low light levels. Here, nl, is the total number of photon 

counts in an exposure Absfd,.M. The error in the previous 

calculations is traced to erroneous estimation of the bispectrum 

average itself. Thus the previous overestimate continues to be so 

even in the low flux limit. Our results for the low flux SNR for 

the bispectrum and the phase reconstruction are obtained by using 

our average Eq 1.12 and the low flux variance 

Note that so long as the photon count per speckle is less than 

unity we get the SNR for phase determination less than the SNR 

for power spectrum. 

'12 The previous overestimate is by a factor of NS . For a 

5 m telescope and 1" seeing the average number of speckles is 

about 2500 .  The previous over estimate is by a factor of 50. A 

factor of 50 in flux means a magnitude difference of about 4 .5 .  

Idealizations of the PSF similar to ones used in this chapter 

have been used before and are known to give the correct scalings 

with N a n d  NS . 
The high flux SNR was presented in the ll'th meeting of 

the Astronomical Society of India. The low flux SNR was presented 

Iff3 
at the NOAO-ESO conference where it became clear that similar 

conclusio was reached (independently) by other groups: Ayers et 

a1 ; Hofmann; Nakajima. 


