CHAPTER 1

SNR for the Bispectrum: scaling |aws

1.1 Introduction
In this chapter we present the scaling dependence of SNR for
the bispectrum and phase reconstruction based on it on the
average nunmber of speckles and the average numher of photons per
speckle. W deal only with a typical bispectrumelenment and not
the special near axis elements. We shall discuss these special
near axis/origin regions later in chapter 5 Let 1I(Xx) be the
focal plane intensity distribution which is convolution of the
source structure s(X) and the system (telescope+atmosphere)
response (PSF) R(X). Equivalently, in Fourier representation
I, =R, S, | = (d% ™ I0x) (1.1)
where we wuse u,v... etc for spatial frequencies. as nmentioned
before, due to atnospheric turbulence R is randomin u and in
time. |f one exposes inmages |onger than about ten mlliseconds
then the average response <R> is significantly different from
zero only for spatial frequencies less than about one arcsecondﬂt
The power spectrum nmet hod described in the introductory chapter
does not contain any phase information. To reconstruct the phases
of the object Fourier transformis inportant and Weigelt (1977)
has proposed the use of the so called bispectrufi
CIyIy Luow (1.2)
a third order statistics in the intensities, which 1is nonzero
right wupto the diffraction limt of the telescope. This nethod

di scussed in detail by Bartlet et.al. (1984), has been applied to

astronom cal inmaging (Lohman et.al. 1983). The triple product in



Eq 1.2 is a double Fourier transformof the focal plane triple
correl ation
T(y,2) = fdx TOO| (X+Y) T(x+2). (1-3)
In practice, one neasures the triple correlation of the inmage of
the object and that for a nei ghbouring point source to get the
object triple correlation
gusvsﬁbv-zlsu’wb'liuqﬂ exP{£(9u+9vf’9u+v)} (1-4)
from which the obj ect phases are recursively solved for. One has
to assume values'for two of the phases at the begining of the
recursive algorithm This corresponds to an overall shift in the
position of the source. Apart fromthis, given enough SNR, the
obj ect structure can be deternined uniquely.
In Fig 1.1 we show the bispectrumfor a point source. The
full bispectrumis four dinensional: only a planar cross section

is shown. We note three features. The central feature corresponds
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to the case when all the three spatial frequencies entering the
triple correlation are near zero. In terns of the focal plane
intensity this would nean that we are dealing with (almost) the
cube of the total flux. This is highly correlated object and is
rather peaky. Then there are three correlation ridges. Note that
for these ridges the spatial frequency of one of the three
Fourier conponents is near zero while the other two are
conjugates. This is basically a power spectrumand shows as an
enhancenent in the triple correlation. The parallel wth the
power spectrum however, is not exact. Because of the third
Fourier conponent this feature is quite capable of yielding phase
information. And finally there is the plateau region which cones
about -because intensities at two points wwthin a speckle are
correlated. The strength of this feature is related to the per
speckle photon count and is therefore nuch weaker than the
central feature which is related to the entire flux. However
there are a large nunber of spekles and one may expect the
contribution due tothis plateau region to dom nate as far' as
phase i nformation is concerned. In this chapter, a prelude to the
chapter 5, we are mainly concerned with the SNR at one
statistically independent region in the bispectrumand the SNR
for phase determ nation by conbining information from all such
regions. |In chapter 5 we deal with phase information from the
near axes/origin regions of the bispectrum(to be precise, wth
focal plane anal ogues of these features).

We enphasize that in this chapter we are dealing wth
Fourier representation of the focal plane. In the chapters that

follow we work mainly with focal plane correlations. These two
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domai ns have reciprocal relationship. For exanple, the centra
peak in one domain corresponds to the plateau region in the other
domain. The ridges in one domain correspond to ridges in the
ot her donai n.

Wirnitzer (1985) has cal cul ated the SNR for the bispectrum
as well as for phase reconstruction for general light levels. Hs
results, like our results inthis chapter, deal only wth the
pl at eau regi on. For bright sources and for one frame of data his
results can be summarized as follows

SNR g specTrum 1 (1-5)

NNI/‘2
SNR pupse s (1-6)
where Ng is the average nunber of spekles per frame. Note that

t he above SNR for the bispectrumis of the sane order as that for
3

SNR ppigr ~ 1 high flux K1 @-?)
~N 100 flux H< “1-8)

t he power spectrum

Paradoxically it appears that in so random a phenonmenon as
speckl es the phase of a Fourier conmponent is better determ ned

than the anplitude. This paradox is renmoved bel ow.
1.2 SNR for bispectrumat high light |evels

In this section we use an extremely sinplified picture of
t he speckl e phenonenon to estimate the SNR for the bispectrum in
the wave Ilimt. The wave limt holds when the sources are so
bright that wave theory is entirely adequate to describe the
intensity fluctuations. 1In particular, the noise due to the

fluctuations in the nunber of detected photons is negligible when
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conpared to the noise given by the wave picture. The system
response R(X) can be considered to contain N, speckles, each with
roughly the diffraction limted size, spread over an area about
1" wide (the seeing disk). The nunber of speckles is about 1800%
where D is the tel escope dianmeter in neter. The intensity of each
speckle is randombut in the following we shall regard it as a
constant say I, . The positions X)s of the speckles can be
consi dered randomand statistically independent of each other
Thus for the systemresponse we use
ROO= L 8(x-X) 5 R,= R, L &% (1-9)

W see that the systemresponse function in the Fourier domain is
just a sumof N uncorrelated conplex nunbers. Because of the
assunption of sufficient randomess of the speckle positions the
average of all these nunbers is zero. Consider the power spectrun
in this picture

RuR.=R; ¢ N + - exp LAulx %)} (1-10)
The power spectrumis seen to be made of N, determnistic terns
andnwgrandon1terns\Mth zero average. It is then clear that for
the average only the N, deterministic terns contribute while for
the average of the square of the power spectrumthe contribution
fromrandomterns dom nates. This gives us the high flux sxr for

one power spectrum point

SNRPowen ~1 (1.11)

This result is well-known in the literature. Now consider the

bi spectrum which in our picture is given by
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Note that the triple product RuRv-R—u-v- contains Ng

(1.12)

determ nistic terns and Aﬁ-ﬂk randomternms with zero nmean. It
follows that the average of the bispectrumis
3 3 .

Ry Ry R_yrr? = RoNg = Ny ¥ (1-12)
Now consi der the nodul us of the bispectrum
-6 *
R, [Ry Ry R_u-v—fz-’: { Ng+ L(N;-Ng) random termi} N +[(N3-Ng) Yandom +ermg}

= N;' + N;’-Ns + Cross terms wWith nomzero phases.
The cross terns vanish on averagi ng because they have nonzero

phase factors. Thus

2 6 3
IRy Ry Ryl ™D ~ Ry N as NsM1 (1.13)
This gives us the SNR for a general bispectrum el ement

=i2,
SNRg specrom ™ Ns (1.14)

The physical reason for this dependance on Ng is that the signal
cones fromthose events for which the points at which intensities
are correlated lie within a speckle size of each other. In the
present picture of the PSF information is carried by coincident
speckles. In the case of double correlation there are N pai rs of
coi nci dent speckles while the total nunber of pairs is N;‘ In the
case of triple correlation the nunber of coincident triplet of
speckles is still Ng but the total nunmber of triplets possible
has gone up to N§ .« This explains the poorer SNR for one

bi spectrumel enent. In general as one goes for larger and |arger
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ordered correlations the SNR for one elenent in the frequency
domain wll go down. However, the bispectrum is just an
internedi ate step. The relevant quantity is the phase and it is
wel | -known that the bispectrumel enents store phase information
redundantly. The nunmber of statistically independent regions (the
speckles) in the imge plane, and therfore in the spatial
frequency domain, is N, . The nunber of such regions is N? for the
bi spectrum because it is a function of two spatial frequencies.
This redundancy in bispectrum is expected to lead to an
i nprovenment by a factor A? for reconstructiong individual phase
values fromthe bispectrum (Wirnitzer 1985). Wth our estimate
for the SNR for the bispectrumbut wirnitzer's inprovenent factor
(with which we agree) we get the SNR for phase reconstruction as
SNR ~v1 (1.15)

PHASE
Note that this is of the sane order as that for the anplitude.

1.3 SNR for bispectrumat low light |evels

At low light levels (fainter thatabout 13'th nmagnitude) a speckle
recei ves |l ess than a photon per exposure (18 ns, 100 A bandw dt h)
and one nust al so consider the noise due to the photonic nature
of light. This involves two steps: 1) Since photon noise
introduces bias terms dominant at low light levels one starts
with unbiased estimators for the bi spectrumwhich when averaged
over the Poisson statistics obeyed by the photons gives the
cl assical bispectrumfor that realization of the atnosphere. Note
that by this construction the average, even for low light |evels,

is going to be the same as in the wave limt. 2) Calculate the



variance for such an unbiased estimtor considering both the
at nospheric and photonic noise. Wirnitzer starting with the
correct unbiased estimator gets the right N?Ieading noi se term
for low light levels. Here, N, is the total number of photon
counts in an exposureNy=N,N. The error in the previous
calculations is traced to erroneous estinmati on of the bispectrum
average itself. Thus the previous overestinate continues to be so
even inthe low flux limt. Qur results for the low flux SNR for
t he bi spectrum and the phase reconstruction are obtai ned by using

our average Eq 1.12 and the | ow flux variance

. 3.
low flux SNR g coccrrum ™V Ng TR (1:16)

Note that so long as the photon count per speckle is Iless than
unity we get the SNR for phase determination | ess than the SNR
for power spectrum

The previous overestimate is by a factor of N;/l. For a
5 m telescope and 1" seeing the average nunber of speckles s
about 2500. The previous over estimate is by a factor of 50. A
factor of 50 in flux nmeans a nagnitude difference of about 4.5.
| deal i zations of the PSF simlar to ones used in this chapter
have been used before and are known to give the correct scalings
with N and NS .

The high flux SNR was presented in the [1"th neeting of
the Astronomical Society of India. The | ow flux SNR was presented
at the NOAO ESO conf erenc[(a’f{/\here it became clear that simlar
concl usi o was reached (i ndependently) by other groups: Ayers et

al ; Hof mann; Nakajima.



