
CHAPTER 5 

"Edge" effects in parity detection using triple correlation 

5.1 Motivation 

In chapter 2 we considered the SNR for detection of parity 

of a binary using the triple correlation. An idealized model of a 

speckle pattern was used there to simplify calculations. In 

particular statistical assumptions were made about the focal 

plane intensity correlations: this reduced the order of 

correlations involved by a factor of two. One could do with 

intensity correlations upto the sixth order rather than field 

correlations upto the twelfth order. The resulting simplification 

allowed us to calculate SNR for general light levels. The 

idealization of the PSF, by virtue of its simplicity, neglects 

certain effects which deserve justification on the basis of more 

detailed field calculations. For example, in chapter 2 the 

speckles were (somewhat artificially) confined to a pixel and 

speckles in different pixels were treated as statistically 

independent. Also neglected were the "edge" effects due to the 

finite size of the seeing disk. 

In this chapter we estimate the effects neglected in 

chapter 2. The procedure followed is similar to that of 

chapter 4. We first obtain the focal plane triple correlation for 

a point source. This PSF triple correlation (PSFTC) contains 

features with different statistical origins and properties. Like 

the general PSF double correlation the PSF triple correlation is 

inversion symmetric about its center. The binary triple 

correlation is then written as a combination of PSF triple 



correlation units with different strengths and locations. The 

asymmetric distribution of their strengths results in asymmetry 

in the triple correlation for the binary. As in the previous 

chapter we ask which of the PSFTC features yeilds better SNR for 

parity detection. The answer involves calculation of the SNR for 

a particular choise of weight function which emphasizes a 

particular feature. As already mentioned in chapter 4 "low flux" 

may mean different magnitudes for different weight functions. To 

decide what one means by low flux one has to calculate the 

variance for a given weight function. For a triple correlation 

this necessitates calculation of field correlations upto the 

twelfth order. So we take a shortcut here. First of all we let 

the binary shrink to a point. This is.justified, for the noise 

considerations, for the following reason. For binaries with 

significant difference in the component brightness, the noise is 

basically due to the brighter star. In general letting the binary 

shrink to point neglects terms in the noise b/6 times smaller 

than that for a point source. A second simplifying factor is the 

use of the speckle model described in section 2.1. Note that both 

these simplifications apply only to the noise calculations and 

not to the signal calculation. The signal for any weight function 

is sixth order in the fields and is evaluated exactly for the 

weight functions considered. The reason for the difference in 

treatement for the signal and noise is that the PSF triple 

correlation is inversion symmetric about the flux center and 

therefore it is necessary to retain binary nature in computing 

the parity signal. 



The effects considered in this chapter are analogous to the 

"edge" effects discussed in the previous chapter. In contrast to 

the double correlation method of parity detection, where the 

"edge" effects were entirely responsible for parity detection, 

the triple correlation method does not so crucially depend on 

such "edge" effects. The basic difference is again traced to the 

fact that the triple correlation method respects stationarity in 

the focal plane while the double correlation method (for parity) 

does not. The main result of this chapter is to show that the 

"edge" effects in the case of triple correlation method too have 

a small parameter b/6 in the SNR associated with them which makes 

them negligible in comparison to the leading spatially stationary 

effect considered in chapter 2. In reality , the multiscale 

turbulence in the earth's atmosphere results in multiscale 

correlations in the pupil plane fields. In this chapter, however, 

we deal only with single scale Gaussian correlations for 

analytical simplicity. Though the results are expected to be 

somewhat different from that for a Kolmogorov spectrum for the 

turbulence this simpler single scale model does contain the 

essential edge effects. Below we give qualitative (order of 

magnitude) scaling estimates of various contributions; details 

are left to the Appendices. 

5.2 The triple correlation for a binary 

The triple correlation, as used in the speckle masking 

method, for a point source 

r,tr,  x)=Jd2x <R(x) R W )  R(x+z) )  (5.1 1 

is defined on the four dimensional space (Y , ,YZ 'Z, 'Z2 1 0  We 



emphas ise  t h a t  i n  t h i s  c h a p t e r  we a r e  d e a l i n g  w i t h  f o c a l  p l a n e  

t r i p l e  c o r r e l a t i o n  u n l i k e  i n  t h e  c h a p t e r  1 where w e  c o n s i d e r e d  

t h e  b i spec t rum.  A s  t h e  name s u g g e s t s  it c o r r e l a t e s  i n t e n s i t i e s  a t  

t h r e e  p o i n t s .  We have  shown t h i s  s c h e m a t i c a l l y  i n  F i g  5 . 1  

(page5-32) .  I n  t h e  (Y, , Z  ) p l a n e  ( ( Y  , Z  ) is  s imi l a r )  t h e r e  a r e  
1 2 2 

f i v e  f e a t u r e s  of  t h i s  t r i p l e  c o r r e l a t i o n .  The f e a t u r e  A is a 

p l a t e a u  r e g i o n  w i t h  e x t e n s i o n  o f  t h e  o r d e r  o f  t h e  s e e i n g  d i s k .  

Then t h e r e  are t h r e e  r i d g e s  B ,  C and D w i t h  w i d t h  o f  t h e  o r d e r  o f  

s p e c k l e  s i z e  and  e x t e n s i o n  of  t h e  o r d e r  o f  s e e i n g  d i s k .  I n  t h e  

f u l l  f o u r  d imens ions  t h e s e  a r e  a c t u a l l y  p l a n a r  l a y e r s :  f o r  

example t h e  f e a t u r e  B is  t h e  p l a n e  7-Z, and ;-Z2, t h e  l a y e r e d  

n a t u r e  comes because  t h e  e q u a l i t i e s  a r e  n o t  e x a c t  b u t  a l l o w  f o r  a 

t o l e r a n c e  of  t h e  o r d e r  of  t h e  s p e c k l e  s i z e .  The f e a t u r e  E is  

l o c a t e d  a t  t h e  c e n t e r  o f  t h e  fou r- space  and h a s  a s i z e  o f  t h e  

o r d e r  of t h e  s p e c k l e  s i z e .  I n  o u r  Gauss i an  model a l l  t h e s e  

f e a t u r e s  have Gauss i an  f a l l - o f f s  w i t h  above ment ioned  l e n g t h  

s c a l e s .  A t  t h e  o r i g i n  o f  t h e  f o u r  s p a c e  t h e  f e a t u r e  E is  t w i c e  as 

s t r o n g  as o t h e r  f e a t u r e s  (which  have e q u a l  s t r e n g t h s  a t  t h e  

o r i g i n ) .  The s t ' r e n g t h  a t  t h e  o r i g i n  can  be  r e a d i l y  e s t i m a t e d .  

Z 
With o u r  n o r m a l i z a t i o n  TT%R is t h e  t o t a l  pho ton  c o u n t  p e r  

exposu re  f o r  a z e r o t h  magnitude s t a r .  T h i s  f l u x  i s  s p r e a d  a l l  

o v e r  t h e  s e e i n g  d i s k  o f  s i z e  6 = f / & l  . Thus t h e  a v e r a g e  f o c a l  

p l a n e  i n t e n s i t y  d e n s i t y  is  <R)= NO b'?~: . FOP f a r  away p o i n t s  i n  
f 

t h e  s e e i n g  d i s k  t h e  t h r e e  i n t e n s i t i e s  e n t e r i n g  t h e  t r i p l e  

c o r r e l a t i o n  w i l l  be s t a t i s t i c a l l y  i ndependen t  s o  t h e  s c a l i n g  

e s t i m a t e  f o r  t h e  t r i p l e  c o r r e l a t i o n  d e n s i t y  f o r  a t y p i c a l  t r i p l e  

c o r r e l a t i o n  e l emen t  w i t h i n  a s e e i n g  s i z e  is  



This is precisely the term A arising from uncorrelated 

fluctuations in the three PSFs in the triple correlation. The 

ridges B, C and D appear because in this region of the triple 

correlation two (and only two) of the three points involved in 

the triple correlation are within a speckle size and thus have 

correlated intensity fluctuations. Thus in addition to the all 

pervading feature A there is enhancement of the triple 

correlation. Finally the .term E with weight two comes about 

because all the three points involved in triple correlation are 

within a speckle size. Note that the number of terms (counting E 

twice) is a reflection of the asymptotic Rayleigh distribution 

assumed in chapter 2. In those regions where some of these terms 

are equal (even though they might have fallen off considerably 

from their peak values at the center) we see that for general 

element only the A term, for ridges two terms, and near the 

center all six terms contr'ibute. This is indicative of the 

Rayleigh asymptotic <f.l)= (p) ; <ti2) = 2 < r t  ; (p3)= 6<pp  

where p is a Rayleigh variable with mean <p)  . 
This is the time to contemplate the Rayleigh approximation used 

in the second chapter. The deviations from the Rayleigh 

statistics show themselves in the following way: consider the 

ridges for example. At the center of the ridges the two terms 

(one is A and the other is either B,C, or D) are exactly equal 

giving the Rayleigh signature 2. But normal to the plane the 

features B, C, and D have much rapid fall off than the A feature. 

Similarly as one moves away from the center of the PSF triple 

correlation different features have different fall-off lengths. 



However, the extensions of the correlation ridges are equal to 

that of the feature A. Deviations from the Rayleigh distribution 

used in chapter 2 are seen here to arise from different fall-off 

lengths of various features. The deviations, for binary 

separations smaller than the seeing disk, are negligible and can 

be absorbed in redefined paramters like the number of speckles 

etc. or alternatively by a numerical factor in the expression for 

the SNR. Our calculations for the double (previous chapter) and 

triple correlation (present chapter) show explicitly the origin 

and the limitations of the Rayleigh statistics assumed in the PSF 

model of section 2.1. The field calculations reported in this 

chapter give the same scalings of the SNR with NS and as in 

the second chapter. 

Let us call all the features (A,B,C,D,BE) collectively a 

unit of triple correlation (short for triple correlation transfer 

function). For a binary the intensity I ( X )  is given by 

I t x )  = QC, R(x)+dZ. Ro(-b) ( 5.3 ) 

where b is the binary separation,oC, and 4 represent the relative 
Z 

strengths of the component stars. We align the focal plane axes 

such that the binary is along the first axis with subscript 1. 

The triple correlation TB for the binary can be written in terms 

of the same 7 for the point source: 
R 

T ~ ( Y ,  2 )  = (6:t (Cj I T ~ ( Y ,  t + d:41 ~ ~ ( y , t - ~ ) + ~ ~ ~ - b , ~ ~ + ~  (~+b .  ~ t b ) ]  

4 + d,d2 1% ( ~ , t t b ) +  $ ( ~ + b , r t )  + T R ( y - b , ~ - b ) ]  (5.4) 

It contains seven basic units with strengths and locations shown 

in Fig 5.2 (page 5.31). Note that this is just a convolution of 



the basic triple correlation unit (Fig 5.1) and the triple 

correlation for the binary in the absence of atmospheric noise 

(Fig 2.6). Since the strengths of different units are asymmetric 

the triple correlation is also asymmetric and one has to extract 

the asymmetry in the best possible way. This leads to the 

interesting question of finding those regions of the four space 

which give better S N R  for parity. Perhaps a more interesting 

question is to ask what is the relative importance of various 

features of the basic unit in determining parity. In chapter 2 

all the emphasis was on the feature E i.e. the central region in 

the triple correlation transfer function. Since various features 

have negligible overlap volumewise, a superposition approximation 

(see section 5.6) for the S N R  holds in that once we know what 

effect each kind of feature has one can figure out what weight 

function to use to get better S N R .  So we consider following three 

cases: a) S N R  due to the central E feature alone (this is the 

chapter 2 case), b) the S N R  due to the correlation ridges B, C 

and D, c) the SNR due to the plateau feature A (long exposure 

case ! ) . 

5.3 Parity detection due to the feature E 

In the triple correlation for the binary the feature E 

appears at seven places. The central one has a strength d:+ o~: 

which is symmetric in the fluxes of the component stars and thus 

does not contain any parity information. As discussed in 

chapter 2 only two of the remaining six locations have 

independent information, We choose the E-features of the first 



and the fourth PSFTC to obtain an antisymmetric parity statistic. 

So our weight function of the first kind is shown in Fig 5.3. It 

has two ports where it takes nonzero values and these ports have 

four volume equal to the E feature. Note that though the weight 

function is mainly desinged to pick up the contribution due to 

the E feature it also gets a contribution from others. Label the 

seven PSFTCs as shown in Fig 5.3. We can then denote the 

contribution of a specific feature due to a specific unit: for 

example D3 means the D feature of the third unit which passes 

through the port 2. The overlap of any of the features A-D with 

the weight function results in an equivalent E feature because 

the weight function has the four volume equal to the feature E. 

This is true as long as the binary separation is much smaller 

than the seeing. Otherwise the features A-D would have fallen off 

considerably at the location of the two ports and the overlap 

would be weaker than the E-features located at the ports. These 

equivalent E-features contributing to the ports 1 and 2 and their 

strengths are given in table 5.1. 

For the parity statistic which is of the form 

2 2 J d  ~d t W ( Y , Z ) T ~  (Y,z) (5.5~ ) 

the variance is given by (Low ~ ~ L L X )  

~ j d ' y  d'z w' (Y,z)  &(Y,z) (5. 5 6 )  

This result follows from the general results on Poisson 

fluctuations derived in chapter 3 and the special nature of the 

weight function. An application of the diagramatic rule for the 

variance yields a total of 33 terms for the averaged squared 

modulus of a general triple correlation: a sixth order term, nine 

fifth order terms, eighteen fourth order terms and six third 



order terms. Because of the symmetry of the weight function W and 

the triple correlation T(Y,Z) the six lowest order terms can be 
B 

paired. This explains the factor two in the above expression. For 

a general weight function there are two more terms in this lowest 

order in intensities. If we had made no use of the fact that only 

two of the peripheral six elements are independent and blindly 

used all the six asymmetric terms then these other two terms in 

the variance expression mentioned above would have made sure that 

the variance is nine times as large thus leaving SNR unaffected 

(see Appendix A5). To get the signal we weigh the port 1 by t1 

and the port 2 by -1 and add. We must also multiply by the four 

4 4 
volume of the order (f/kf?)((speckle size) ) .  Thus the parity 

signal due to the E-feature is 

P o r t  1 four volume corre (et'on 

minus ports density E95.2 
Port 2 - z J ( ; N ~ ( ~ - & K ~ ) N ~  (5.6 

oCN 1' where 3 C s - e  is the count per speckle as in chapter 2 and 

NS is the average number of speckles, The variance is 

I 
Eq 5.4 Port 1 + P o r t  2 fiur vof ume t r ip le  c o r r e ~ a ~ o n  

9 H t e p o r t s  densityEq5-2 

The approximation is in using order of scaling estimates for the 

four volume of the E-feature and the triple correlation density. 

Thus the SNR for parity detection using E feature alone is 



The scaling is same as that derived in chapter 2 (Eq 2.15). The 

numerical coefficient is provided by the appendix A5 which 

evaluates quantities of interest exactly. This derivation gives 

us an explanation of the numerical coefficients as arising from 

that many terms. Also as the binary separation increases we can 

see that the contribution to the noise from the E feature remains 

constant but that due to all other terms falls off. The fall-off 

scale is, however, comparable to the seeing. We, therefore, 

conclude that the SNR due to E feature is weakly dependent on 

the binary separation. 

5.4 SNR for parity detection due to correlation ridges 

Fig 5.2 shows regions of the (&,z,) plane where correlation 

ridges exist. For clarity the ridges are shown slightly 

displaced, in realty ridges like D and D for example, coincide 
1 6' 

in the region common to both. We see nine strips in this plane 

where correlation ridges from two or three triple correlation 

units bverlap. Because of the symmetry of the triple correlation 

only two (to be precise 1.5) of these nine strips contain 

independent information. To see this consider a strip with 

equation X = Y + C ,  . Then from the definition of the triple 

correlation the same strip appears at Z=C,and at Y=C,: 

(5.9) 

i.e. if the coordinates on the first strip is (Y,Z=YtS) then the 



same event is also written at (-Y,Z=Co). Fig 5 . 2  shows three 

strips S,, S and S and their two copies each (denoted with a a 3 

single and double primes). Note that the strips S S and Sj have 
1' 2 

the same orientation as the B feature. In fact, for the PSFTC 

shown in Fig 5.1 only one of the features B, C and D contains 

independent information. Further reduction in the number of 

ridges is due to the symmetry of the triple correlation under the 

interchange of Y and Z. Because of this symmetry the strips 1 and 

3  are identical for every realization. In the following we have 

used all the three strips instead of using any one of the strips 

1 and 3  and half of the second strip split lengthwise. A Similar 

situation arose in the case of the double correlation analysis 

(section 4 . 3 )  where it was shown that both these schemes give the 

same SNR. The reasonipg of section 4 . 3  is applicable here so 

we use all the three strips with equal relative weights. Although 

the weight function is designed to emphasise B type feature it 

will also pick up contribution from the feature A .  The weight 

function will also pick up contribution due to the feature E. For 

the reasons given later in section 5.6 we need not consider it 

here. In Fig 5.4a we show strips 1, 2 and 3 in greater detail. 

The centers and the strengths of these features are shown in the 

figure. We are interested in the leading contribution in powers 

of binary separation b. Consider the strip 1 for example. The 

unit 1 at (-b,-b) contributes to this strip via the feature 
Af * 

Now since the binary separation is assumed small one can think of 

the contribution due to feature A on the strip to have effective 

center 8' shown in the figure. In fact this is the center of the 
I 

overlap between the feature A and the strip. The overlap is 
1 



equivalent to a feature B .  In Fig 5.4a the centers of such 

effective B  features are shown by smaller dots and these are 

linked to the centers of the original A features by dotted lines. 

In Fig 5.4b we see the centers and the strengths of such 

'effective B' features. We are interested in the asymmetry in 

these three strips. Because of the Y e Z  symmetry of the triple 

correlation the lower half of the strip 1 is equivalent to the 

lower half of the strip 3 and so on. Thus asymmetry about the 

origin is equivalent to asymmetry of the individual strips about 
0 

the - 4 5  line passing through the center. For the central strip S2 

both these things mean the same. For the strips S and S2 the 
1 

diagonally opposite parts, with respect to the origin, of the two 

strips can be replaced by corresponding part of the same strip. 

Fig 5 . 4 ~  shows the effect of the special weight function which 

is situated at a distance x away from the center of the effective 

feature. Only contribution from the central region between L X  

survives. So for a weight function of this kind contribution 

depends linearly on the distance of the jump in the weight 

function from the center of the feature under consideration. It 

turns out that strips 1 and 3, which are identical have their 

0 
centers shifted from the -45 line in the sense opposite to that 

of the middle strip which has its center shifted twice as much. 

This motivates our weight function shown in Fig 5 . 4 d .  The 

asymmery in the triple correlation can be readily estimated when 

we note that the shift in the centers of the strips are of the 

order b. As described in appendix B5 we get the signal due to the 

strips 1,2 and 3: 



For this weight function the variance calculation needs to be 

done to all orders to decide the low and high flux regimes. This 

is done in appendix B5 using the PSF model of section 2.1. The 

result is 

We see that the transition to low flux goes through two, steps, 

m 
The first transition occurs for objects fainter than 13. The 

fourth order contribution takes over from the sixth order 

contribution which dominates at high light levels. The second 

vll 
transition occurs for objects fainter than 18. The third order 

contribution dominates for lower light levels. The first occurs 

when a speckle receives less than one photon in an 

exposure: 18q?JC1=~ and the second when all speckles together 

receive less than one phton per exposure:qNSX=3. The SNR for 

parity detection using these correlation ridges is 

4 6 -  SNR,  = - 2 d,JC2(3C,-SC,) 
lB h h  flux ( 5 . 1 2 ~ )  

37T-43 (4+3l;)= I lzm 

- 2 x-4) * 112 4 4 I medium flux (5-13b) _ -  
flfi 7 ( J q + ~ r , ) ~  \ 172 

We note that for the objects of present day interest (brighter 

than 18'th magnitude) and for close binaries the SNR due to the 

correlation ridges is never better than the SNR due to the main 

triple correlation feature E (the feature extensively discussed 



in chapter 2). More specifically the following table 5.2 gives 

the binary separation, as a function of the magnitude of the 

brighter star, beyond which parity is better determined using the 

correlation ridges. 

Table 5.2 Binary separation beyond which parity is better 
determined using the correlation ridges 

We also note that in the medium flux regime this S N R  (Eq 5.12b) 

has the same scaling as the S N R  Eq 4.12 for parity detection 

using feature B of double correlation. Although more realistic 

models for the speckle phenomena and fine tuning of the weight 

functions need to be considered before one can compare numerical 

factors in these two expressions with a degree of confidence it 

appears that of these two schemes the double correlation method 

may have a slightly better S N R  than the triple correlation method 

using correlation ridges. 

5.5 S N R  for parity detection using the feature A 

0 
For t45 strips (parallel to the B-feature) other than the 

correlation ridges the asymmetry starts in the cubic order in the 

separation. If we approximate the near center strength of the 

effective features by its peak value then for a general t45 strip 

contributions due to various triple correlation units cancel. One 

has to retain the quadratic near peak variation to get any 

asymmetry. Other reason for cubic asymmetry is that when the 

binary separation is large the features B and B' (overlap of 

0 
feature A and a 45 strip) differ in the second order in the 



separation. In Fig 5 . 5  we show a representative weight function 

of the third kind designed to emphasis the asymmetry due the 

feature A .  A straightforward but somewhat lengthy calculation 

gives the signal for this weight function 

3 3 3 3  6 
Y ( . o - l i a 1  k l /f (5 .13)  

The variance,in principle, needs to be evaluated upto all orders. 

However, contribution to the variance is positive in every order 

so even if we consider only the third order contribtution to the 

variance : 

one gets an upper bound 

on S N R .  We note that even this upper bound is no match to the S N R  

due to the feature E for small binary separations. For large 

separations parity is better determined by using long exposure 

image (appendix C5). Arguments, similar to those given in 

section 4.4, can be given to show the (noisy) equivalence of the 

feature A and long exposure image. We, therefore, conclude that 

although for large binary separations the parity may be better 

determined by the feature A it cannot be regarded as a genuine 

high resolution feature. 

- 
5.6 A discussion 

A superposition approximation: So far we considered S N R  for 

individual features like the central E-feature, the ridges and 

the feature A .  We mentioned that a kind of superposition 



approximation enables one to consider these features 

independently. The reason is the great difference in the four 

volumes of various features. To be specific, if we take the four 

4 volume of the E-feature (which is of the orderP ) as unity then 

2 
the four volumes of the ridges and the feature A are NS and Ns 

respectively. This is because the ridges have an extension of the 

order of the seeing disk (which is N> times the speckle size) 

in two dimensions while the feature A has the same extension in 

four dimensions. Now let us go back to SNR due to the feature E. 

The weight function used in this case had four volume equal to 

that of the E feature. The parity signal is purely due to the E 

feature and the noise comes from other features. For this reason 

one is justified in attributing the parity signal to the E 

feature. Next, consider the weight function of the second kind 

used to emphasise the feature B. In this case the signal not only 

comes from the feature B but also from the feature E. There are 

two reasons why we did not consider the contribution due to this 

feature in section 5.4. The first reason is that it's 

contribution to the signal and the noise separately is negligible 

when compared to that of the feature B. To see this consider the 

signal first. For concreteness we consider very low fluxes where 

signal and variance are proportional to the 4-volumes involved. 

The contribution to the signal due to the feature E is 

proportional to its four volume. The B feature has NS times 

larger volume and although it suffers from "edge" effects which, 

as described in the section 5.4, subdue its contribution by a 

factor ~2 its signal is still $ times larger than that due to 

the E feature. Unfortunately the variance does not suffer from 



any "edge" effects and is larger by a factor N 5 .  In this case of 
m 

very low fluxes (fainter than 18 ) the two feature will have 

comparable S N R  for close binaries. For flux levels of interest in 
m m 

speckle interferometry (between 13 and 18) the S N R  due to the E 

feature is larger. Even in this case one can arrive at the 

superposition approximation by redifining the weight function so 

that it excludes all E features. For example, we may leave holes 

in the weight function at the locations of the E features. This 

wont affect the previous estimates because the size of such holes 

is very much smaller than the volume of the entire weight 

function. For similar reasons one can omit features E and B while 

considering parity due to the feature A. 

Fine tuning the weight function: In this chapter (also in 

the previous one) we considered a rather simple weight function. 

The weight function was either 0 or +I.  It is certainly possible 

to improve the S N R  by a smoother variation of the weight 

function. Intuitively we would expect the optimum weight function 

to follow the signal. The weight function should be large where 

more signal comes from. However, we also know that within the 

fall off scales the signal is more or less uniform. Therefore, we 

do not expect the fine tuning of the weight function to change 

the scalings with NS and # although the numerical coefficient 

may change a bit. 

Effect of the Kolmogorov spectrum for the atmospheric 

inhomogeneities: The effect of the larger scales (comparable to 

or larger than the telescope pupil) in the turbulence is to tilt 

the entire wavefront. The speckle pattern will have its 



instantaneous centroid wandering. However, unlike the double 

correlation method discussd in the previous chapter, the triple 

correlation does not share this focal plane motion of the speckle 

pattern. This is because the triple correlation defined in Eq 5.4 

is invariant under shifts in the focal plane. 

APPENDIX A5 

Here we give the details of the SNR calculations described 

qualitatively in the text. We are not concerned with correlation 

effects due to secondary Airy rings in a real telescope so we use 

Gaussian apodization in the pupil plane. The focal plane field 

( )  is related to the pupil plane field YQ) by 

; R&l=  37440 

The PSF triple correlation is given by 

The terms in this expression are the five featrues A ,  B, C, D and 

(twice) E, in that order, and explicitly show their statistical 

origin. We have modeled the atmospheric distortions by a single 

scale Gaussian correlation function (the same as in the previous 

chapter) : 



for the pupil plane fields which are assumed to be Gaussian 
I 

random fields i.e. higher order correlations have been broken 

down in terms of second order correlations with the help of the 

well known pairing theorem for Gaussian random variables. Since 

the random pathlength deviation for individual rays is belived to 

be hudreds of wavelengths in the pairing theorem every pair must 

have one field and one conjugate field (one starred and one 

without). In principle, pairs like <V,q2) exists but are 

exponentially small: of the order of c'$' where (O) is of the 

a 
order of -10. Thus for the assumed statistics of the fields we 

get the average PSF triple correlation 

The parity statistics is of the form 

where the weight fuction ~AJ is chosen to emphasisevarious terms 

of the triple correlation. Note that the weight function does not 

depend on X and therefore on the orgin of the focal plane. 

Integration over X yields the PSFTC $(Y, ~ ) = J d : < ~ ( x )  R(X+YI R(x+z) )  



consider a binary 

10) = 4, R ( X )  + d, ~ I x - b )  (5-3 

Then the averaged triple correlation for the binary is 

We see that the triple correlation for the binary is made of 

seven PSFTCs whose strengths and locations are shown in Fig 5.2, 

The variance on the parity statistics E q 5 . 5  is given by the 

diagramatic rule of the third chapter. The exact evaluation of 

all the orders is a tedious task and also unnecessary in many 

cases. We have considered three weight functions which emphasize 

three kinds of features in the triple correlation. The weight 

function of the first kind emphasizes the feature E which is the 

true triple correlation feature. For this weight function we have 

already worked out the variance in detail upto all orders. This 

calculation of the chapter 2, although based on simple model of 

PSF, tells us that below 13'th magnitude the dominent variance is 

in third order in the intensities. As mentioned several times 

before the neglect of edge effects is justified for variance. 

Thus the result of the second chapter can be used to restrict 

ourselves to the third order intensity calculations for feature 

E. The weight function of the second kind, which emphasizes all 

the correlation ridges, needs variance calculations upto all 

orders and this we do using the simpler PSF model of section 2.1. 



The weight function of the third kind emphasize the plateau 

region A and is shown to be analogous to long exposure image 

considered in Appendix C5 which gives SNR for parity detection 

using long exposure images and compares it with double and triple 

correlation methods using the feature A alone. The result of 

these approximate calcultions for the weight functions of the 

second and the third kind result in SNR poorer than that due to 

the main feature E for binaries whose separation is near the 

diffraction limit of the telescope. For this reason it is not 

necessary to calculate the variance for these weight functions on 

the basis of detailed field calculations. In what follows we 

calculate the signal for all the weight functions on the basis of 

detailed field calculations which take into acount the edge 

effects. Also for the weight function of the first kind we 

calculate the variance as well but only in the lowest third order 

in the intensities which (from the results derived in chapter 2) 
m 

is applicable to objects fainter than 13 the regime where one is 

interested in comparing the Knox-Thompson and the triple 

correlation method. 

a) S N R  for parity detection due to the feature E 

' The feature E appears at seven places with strength and the 

locations shown in Fig 5.2. As mentioned in chapter 2 out of the 

six asymmetric elements it is enough to consider any two, as the 

others do not contain any independent information. This follows 

from the definition of the triple correlation Eq 5.1. If one had 

chosen all the six elements then the signal will be larger by a 

factor 3 while the variance will be larger by a factor 9 thus 



giving the same SNR. This is because the three third order terms 

in the variance 

Z ~ ~ $ ~ ~ T ~ ( Y ~ ~ ) W ( Y , X ) ~ C J ( Y , X ) + N [ - Y ~ Z - Y ) + ~ ~ ~ , Y - ~ ) ]  (5.24) 

contribute equally and each one of them contributes three times 

what they would if only two elements were used. In general if the 

weight function is so chosen that there is no replication of the 

elements in the statistical sense then only one of the three 

terms survives. This is because in those cases the overlap of 

N(y,z) with W[-Y ,~ - ) ' ) , k l ( - t , ~ - i ! )  is negligible. This will be the case 

for our choise of weight functions of the first and the second 

kind since we can beforehand figure out the independent elements 

and consider only them. We choose the weight function of the 

first kind shown in Fig 5.3 so that it emphasizes the feature E, 

in particular it has the same four-volume as the feature E but is 

unity within this volume. This weight function is chosen to be 

antisymmetric so that one get a antisymmetric parity statistics. 

Though this weight function is designed to emphasize the feature 

E it will get contributions from other features as well. For 

example the all pervading feature A due to all the PSF units will 

contribute. Calling the two elements of the weight function as 

port 1 and Port 2 we list the contributions to the two ports in 

the table 5.1 page 5-3% . we see that the signal is 

just the total contribution at the port A minus the total 

contribution at the port B; while the variance is the total 

contribution at both the ports (there is a factor 2). One must 

multiply by the volume of the weight function and the triple 

correlation density. This product of the four volume and the 



3 4 2  
triple correlation density is A . This gives us the signal 

9 z4 
and the noise for the weight function of the first kind given by 

~q 5 - 8 .  

b) SNR for parity detection due to the correlation ridges 

As described in the text, of the nine ridges containing 

correlation ridges, only three are independent. So our choise for 

the weight function of the second kind is shown in Fig 5.4. As 

the strips 1 and 3 are statistically equivalent in the average 

sense we can consider every strip individually. As mentioned in 

the text we are interested in the asymmetry in centers of these 

0 
strips with respect to the -45 line passing through the flux 

center. When a feature like A is multiplied by the weight 

function we get an equivalent of a correlation ridge feature 

whose central strength is same but the fall off scale is 

different. Consider an equivalent feature situated distance 

away from the jump in the weight function. A B-feature centered 

at the origin has the following triple correlation density 

It is convenient to transform to coordinates 3 and 7 = * ( Y  T 3)  

where a constant Jacobian of the transformation is not relevant 

as SNR cannot depend on a overall constant. The four volume of 

the B feature is 

One can integrate the B feature density in v2,32 plane and normal 



to strip ( {  ) to get the projected line density of a B feature: 
I 

For a B feature with center away from the jump in the weight 

function and strength ̂ / the contribution to parity is given by 

As shown in Fig only the region fqc  about the center of the 

feature contributes. For small separations this can be 

approximated by the product of the width q c a n d  the peak strength 

7 ~ ' ' ~ ~ , 5  & 1 ' ~4 . The contribution is tve or -ve depending on the 
6 f 

side to which the center lies from the jump. The effect of the 

weight function is a yield equal to the central part of the 

feature as the remaining two sides cancel each other. In Fig 5.4b 

we show the features contained i'n all the strips and their 

distances from the jump. We thus get the contribution to the 

signal 

Appendix B5 gives the variance for this weight function in all 

orders based on the approximate PSF model of section 2.1. The SNR 

estimate for this weight function are given by Eq . 

APPENDIX B5 

Variance for the weight function of the second kind upto all 

orders: In the notation of chapter 2 the discretised version of 

the weight function of the second kind shown in Fig5.4 for the 

central strip alone is 



- 
Wqk - Nii+(t- = fa Sac = fj-I % k  -fa= s ignal  ( 5. 30) 

where the vector subscript represents the position of the i'th 

pixel which is of the speckle size. First we consider the 

classical sixth order variance. As mentioned in the text we let 

the binary shrink to a point to get the variance 

in terms of the speckle intensity on the i'th pixel. Using 

the form Eq5.30 for the weight function we get for the classical 

variance 

('+xj6-x c~ k d  f j - i f L - k ~ ( ~ ~ ~ ~ ~ k ~ ~ ) - ( f i ~ J 2 ) < v k k ~ ) ~  (5.32) 

The following results are needed 

<pi p:pkp: = 4 <pi) <pj F(P~) (/+A? + 8 $4j T</J-~ ) </+f+ 4 4.k<~if%f<pJ 
+8&l</!.)3</-$$+k> +8$k ~~;)<~,)~</llf f ~ o ~ ~ ~ c u ; ) ~ ~ ) ? ~ ~ )  

+8sbf<r,)<pj)?<pkf + 1 6 6 ~  gk(<rif<pkf +2°&k8jt <(tf(pj? 

+16$ 3k</1;}3<pj)3 +24 Silk (p2)4<~1>z f Bo Sjk l  </%)(pj)5 
6 

+ 80&jl<pi)5</%) +24 gikP (fi)4<pj}2 +400&jkl<pi> 

( 5 . 3 3  1 

This gives us the variance in the sixth order 

"f4)6Z ij k a  fi-4 h-k ~ 4 < k ( C l i ) ' { F . > ' < p 1 f $ - 8 < ~ ; ) 3 < ~ j ~ ~ ~ k >  0 &2+89k~)e?&f 



Other terms vanish because of the factors like f, z o .  

For our weight function it can be seen from Fig 5.5 that 

Following the spirit of the chapter 2 we consider the statistics 

- .  
of the $5 to be uniform within the seeing disk, so + , l t 2 - - -  run 

N'fa '12 '/a 
from -2 to !!L so that i ,  takes Ns values. The total number of 

2 2 

pixels within the seeing disk i s Z = N s  . This range of variation 
i, 

of i, actually comes from factors like (p.F etc which are nonzero 

only within the seeing disk. Thus it follows that 

This gives us the sixth order variance for the weight function of 

the second kind 

From the chapter 3 the fifth order terms in the variance are 

which reduce to 

on using the fact that two W ;  appear or the symmetry 

W i j k  d i k j  
(5.41) 

of the weight function. These terms can be shown to be 



~ < A P ~ P ~ P ~ P ~ )  Mi jk  %lm = + N: (~+JF , )~+  .?o N?IJ(;+JP,)~ 

- 1 6  3 9 5 4 E < - ' ' /  Mijk l\llim= -%NS J , ( J ~ ; + & ] ~ - ~ z N ,  (J,+N2C,) 

4 Z<-''-) cjk W l j m  = 8~13 (4+&)5+2+~:(~f&)5 
(5.'t2 ) 

This gives the fifth order variance 

3 5 5 
+ ( N ~ + ~ N ~ ) ( ~ + X ~ ) ~ -  4~~ q ($+4) (5.43 ) 

The fourth order contribution to the variance is (chapter 3) 

t1+d)4x i j k L  < ~ i p ~ p k ~ L )  Wijk f d !  f N~~~ f %ij  +Wjil +Ujci + MIi; 

t W ~ k f  - t W k ~ ~ $ - k l ~ ~ k + H k l i + d d k i  f Wdik 

This follows from chapter 2. Again using the symmetry Eq5.41 

and the fact that two hj'S appear we can reduce this to 

2 ( r + d ) 4 ~ k , < ~ i ~ j ~ k ~ 1 ) W i j k ~ ~ ~ i i l + 4 ~ i j + ~ ~ i J J i l i  f W l j k 3  (5.45) 

The following averages are needed 

4 ~ < ~ . ~ j ~ k P l ' l )  uiBk Wij l  = ( 9 6 ~ : + 3 8 4 ~ ~ ) ( 4 + # ~ ) '  

8 - 7 - ) -  Wli j  = 0 

4 <-up) WGk %14 = ~ 1 6 ~ ~ - 8 0 ~ , ) ( ~ - f ~ r , ,  
4 

2 < - 7 ) - ) W - .  k Mljk = (3 N: + 4 ~ 2 )  (4+u~;)+ (5.46) 

This gives the fourth order variance 

The third order contribtuion contains six terms ( c h . a p k T  3 )  

(i+d3 z <pipi &} hl . 
i j k  Eui,b+h'i*j f w j i k +  uihi f ukij f h'/cji] (5.43) 

which on using the symmetry of W reduces to 

a c l ~ P r < ~ i ~ i ~ ~ )  ~ ~ l p  ~uidlp+Wdikf hlkij  3 (5-49) 
Since 

2x<pir j /4,  > = ( 5  - 50) 



we get the third order contribution to be 

Since N5 is much larger than unity one needs to retain only the 

leading terms in the every order in . We have considered only 

one strip so we must multiply by 3 to get variance due to all 

the strips. This gives us the variance upto all orders 

We see that there are two transitions. The first is when the 

fourth order variance takes over from the classical sixth order 

contribution. This happens when individual speckles recieve less 

than one photon in an exposure. The second transition occurs when 

the third order contribution dominates the fourth order. This 

happens when the entire photon count becomes less than unity. 

APPENDIX C5 

First order parity statistics: SNR 

In chapter 4 and 5 we encountered the feature A which 

originated in uncorrelated regions of double and triple 

correlations respectively. We argued in chapter 4 that this is 

equivalent to a long exposure image with a noisy weight function. 

It is therefore natural to consider parity determined from the 

long exposure image as well, although, everyone will admit 

without a moments paouse that this is not a genuine high 

resolution method. Anyway we consider a first order statistics of 

the form 



where we have used the discrete pixel model of section 2.1. We 

4 b  have centered the weight function on the flux center The 
d l  + Hz 

cubic nature of the weight function follows because one is 

interested in asymmetry in the image so the weight function 

should contain odd powers; the first power gives zero by the 

definition of the flux center. One can expand the cube and retain 

only the even powers of i. The odd powers vanish on account of 

symmetry of t4z about the origin which is the location of star 1 

whose PSI? is the Y:S . In Eq 5.53 b is the binary separation in 

units of speckle size (in the notation of section 2.1) which is 

the same as of chapters 4 and 5. 

For variance calculation we let the binary shrink to a point. The 

variance for the first order parity statistics considered here 

cosists of a classical second order and a first order photonic 

contribution 

A straightforward calculation gives 

The SNR is 



3 
Note the characteristic a dependence which we got in all SNRs 

(double or triple correlation) using the feature A. The scaling 

with N~ and N is, however, different and reflects the order of 

the statistics. For this weight function the transition to low 

flux occurs when the first order contribtuion dominates the 

classical second order contribution. This means 7x51 i.e i p m  . 
The table 5 . 3  below gives the limiting faintness of the fainter 

component for various binary separations. 

Table 5 . 3  Limiting faintness m2 for parity determination using 
long exposure images 

Binary separation in units of speckle size 
1 4  7  1 0  1 3  1 6  1 9  

7  X 1 2  1 3 . 5  1 5  1 5 . 5  
8  X 1 3  1 4 . 5  15 .7  1 6 . 5  
9  X 1 4  1 5 . 5  16 .7  1 7 . 5  

1 0  X 1 4 . 5  1 6 . 5  17.5 1 8 . 5  
11 X 1 5  1 7  18 .5  1 9  
1 2  X 1 6  1 7 . 7  1 9  2  0  
1 3  X 1 6 . 5  1 8 . 5  19 .5  2  0  
1 4  X 1 6 . 7  1 9  2  0  2  0  
1 5  X 16 .7  1 9 . 5  2  0  
1 6  X X 2 0  

upto 1 9  X X 2 0  

I' 
1 

4 

I 
m' magnitude of brighter component, m : fainter component 

In the above table we limit ourselves to magnitudes brighter than 
m 

20  keeping in mind the sky background. We note that except for 

close binaries the limiting faintness is indeed quite good. It is 

necessary to emphasise that this detection of parity by first 

order statistics has been discussed for the sake of completeness 

and comparison with higher order methods. It is not being 

suggested as a practical method for the following reason. A 

typical speckle image even of a single star has gross asymmetries 

produced by large scale tilts which are described by the 



Kolmogorov model of phase variations on the pupil. In the present 

model these asymmetries do not occur. They will adversely affect 

the first order statistics defined here. 

Table 5.1 hntributions h Pork 1 Mtd 2 .  

st fen 9th C h i  7 i b utinj {eaG res contribution 
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CONCLUSIONS 

In this thesis we have estimated the SNR for parity 

determination using the focal plane intensity correlations of the 

first (long exposure), second (Knox-Thompson) and third (Weigelt) 

order. The PSFs for these correlations have one, two and three 

kinds of features respectively. Different kinds of features yield 

SNR with different dependence on NS, # and b . The following 

table CI lists these scalings. 

Table CI SNR SCALINGS 

Method High flux medium flux Low flux 

(Statistics) brighter 1?18~ fainter than 
than 13" 1 8" 

TOTAL FLUX 
* 

w 
AUTOCORRELATION (Labeyrie) 

PAR1 TY 

1 )  Long exposure .B"/dS 

2) Double correlation (Knox-Thompson) 

1.1) Ridges I B  N B  N '  
1.2) Plateau ~ ~ 1 %  ~c 11 b 3 /d! 

3 14 flB / ~ s  

3) Triple correlation (Weigelt) 

2.1) Peak Alp ,,,? ,~3'2 ,,,? N3k 
2.2) Ridges .18 &B 

Observational parameters: 4m telescope, lOOA bandwidth, exposure 
time lOms, $ is binary separation in units of the diffraction 
limit of the telescope, x i s  photon count in an exposure per 
speckle, *:  results known in the literature. 
In evaluating the SNR for some of the features an implicit 

assumption was that the binary nature of source was known 



beforehand. Since the limiting faintness for parity 
b+ htcr 

determination turns out to be always f d b + r  than that for 

autocorrelation (table 2.8 ) this assumption is justified a 

posteriori. From table 5.3 which gives the limiting faintness for 

parity detection using the long exposure image (observation time 

equivalent to the above parameters) would appear to have as good 

a SNR as the feature E of triple correlation for binary 

separation five time the resolution limit (see however remarks at 

the end of Appendix C5 page 5-30). So for the specific case of 

wide binaries (still within the seeing disk) it it may well be 

better to use much simpler "monocorrelation". As mentioned 

earlier, we treat binaries as guinea-pigs on which to test 

various schemes of phase reconstruction. It is therefore 

necessary to supplement these calculations with a scrutiny of 

various features with high resolution applications in mind. For 

example, although the long exposure method is better than any 

other for separations significantly greater than the resolution 

limit it can not be considered as a high resolution feature 

because all it detects is asymmetry in the source. Every binary 

(unequal components) is asymmetric but not every asymmetric 

source is a binary. For complex sources only genuine high 

resolution methods are relevant. There are only three such 

feature: the feature B of double correlation and the features B 

and E of triple correlation. From the above table we see that the 

correlation ridges (features B) have the same scalings in the 

medium range light levels for both double and triple correlation. 

From Eq 4.12 and Eq 5.lJb we conclude that the Knox-Thompson 
3 



method is slightly better than the feature B of triple 

correlation. In the following table CII we give the limiting 

faintness for the remining two features. For comparison we have 

included the long exposure method. 

Table CII Limiting faintness M2 for parity detection 

Binary separation 
1 4 7 10 a1 1 

"/"l, LE KT-B LE KT-B LE KT-B LE KT-B TC-E 

m : magnitude of brighter star, m -: fainter star, X: none with 
1 2 S N R  > 3 

We conclude that for close binaries the triple correlation method 

is better while for wider separations the Knox-Thompson is 

better. 

In summary the new results are i) Systematic study of the N3 

and JS dependence of the SNR for parity in different schemes. 

ii) The binary separation dependence of the SNR for phase 

reconstruction. iii) Diagramatic rules for computing the Poisson 

fluctuations in general image intensity correlations. 
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