CHAPTER 5

"Edge" effects in parity detection using triple correlation

5.1 Motivation

In chapter 2 we considered the SNR for detection of parity
of a binary using the triple correlation. An idealized nodel of a
speckle pattern was wused there to sinplify calculations. 1In
particular statistical assunptions were made about the foca
plane intensity correlations: this reduced the order of
correlations involved by a factor of two. One could do wth
intensity correlations upto the sixth order rather than field
correlations upto the twelfth order. The resulting sinplification
allowed us to calculate SNR for general 1light Ilevels. The
i deal i zation of the PSF, by virtue of its sinplicity, neglects
certain effects which deserve justification on the basis of nore
detailed field calculations. For exanple, in chapter 2 the
speckles were (sonewhat artificially) confined to a pixel and
speckles in different pixels were treated as statistically
i ndependent. Also neglected were the "edge" effects due to the
finite size of the seeing disk

In this chapter we estinmate the effects neglected in
chapter 2. The procedure followed is simlar to that of
chapter 4. W first obtain the focal plane triple correlation for
a point source. This PSF triple correlation (PSFTC) contains
features with different statistical origins and properties. Like
the general PSF double correlation the PSF triple correlation is
i nversion symmetric about its center. The binary triple

correlation is then witten as a conbination of PSF triple
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correlation units wth different strengths and |ocations. The
asymmetric distribution of their strengths results in asymetry
in the triple correlationfor the binary. As in the previous
chapter we ask which of the PSFTC features yeilds better SNR for
parity detection. The answer involves cal culation of the SNR for
a particular choise of weight function which enphasizes a
particul ar feature. As already nentioned in chapter 4 "low fl ux"
may nean different magnitudes for different weight functions. To
decide what one neans by low flux one has to calculate the
variance for a given weight function. For a triple correlation
this necessitates calculationof field correlations upto the
twelfth order. So we take a shortcut here. First of all we let
the binary shrink to a point. This is .justified, for the noise
considerations, for the following reason. For binaries wth
significant difference in the conmponent brightness, the noise is
basically due to the brighter star. In general letting the binary
shrink to point neglects terns in the noise b/g tines smaller
than that for a point source. A second sinplifying factor is the
use of the speckl e nodel described in section 2.1. Note that both
these sinplifications apply only to the noise calculations and
not to the signal calculation. The signal for any weight function
is sixth order inthe fields and is evaluated exactly for the
wei ght functions considered. The reason for the difference in
treatenent for the signal and noise is that the PSF triple
correlation is inversion symretric about the flux center and
therefore it is necessary to retain binary nature in conputing

the parity signal



The effects considered in this chapter are anal ogous to the
"edge" effects discussed in the previous chapter. In contrast to
the double correlation nethod of parity detection, where the
"edge" effects were entirely responsible for parity detection,
the triple correlation nethod does not so crucially depend on
such "edge" effects. The basic difference is again traced to the
fact that the triple correlation method respects stationarity in
the focal plane while the double correlation nethod (for parity)
does not. The main result of this chapter is to show that the
"edge" effects in the case of triple correlation nethod too have
a smal | paraneter bl in the SNR associated with them which nmakes
themnegligible in conparison to the |l eading spatially stationary
effect considered in chapter 2. Inreality , the nultiscale
turbulence in the earth's atnosphere results in nultiscale
correlations in the pupil plane fields. In this chapter, however,
we deal only with single scale Gaussian correlations for
anal ytical sinplicity. Though the results are expected to be
somewhat different fromthat for a Kol nogorov spectrum for the
turbulence this sinpler single scale nodel does contain the
essential edge effects. Below we give qualitative (order of
magni tude) scaling estimates of various contributions; details
are left to the Appendi ces.

5.2 The triple correlation for a binary

The triple correlation, as used in the speckle masking

met hod, for a point source
TR(Y,Z)=fd2x {RIX) ROHYIRIX+Z)) (5-1)

yZ2_ ). We

1

is defined on the four dinensional space (Yy,Y, »Z 2
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emphasise that in this chapter we are dealing with focal plane
triple correlation unlike in the chapter 1 where we considered
the bispectrum. As the name suggests it correlates intensities at
three points. W have shown this schematically in Fig 5.1
(page 5-32). In the (Y1 'Zi) plane ((Yz’zz) is similar) there are
five features of this triple correlation. The feature A is a
plateau region with extension of the order of the seeing disk.
Then there are three ridges B, C and D with width of the order of
speckle size and extension of the order of seeing disk. In the
full four dimensions these are actually planar layers: for
example the feature B is the plane Y{»Z1 and g~z2, the layered
nature comes because the equalities are not exact but allow for a
tolerance of the order of the speckle size. The feature E is
located at the center of the four-space and has a size of the
order of the speckle size. |In our Gaussian model all these
features have Gaussian fall-offs with above mentioned Ilength
scales. At the origin of the four space the feature E is twice as
strong as other features (which have equal strengths at the
origin). The st'rength at the origin can be readily estimated.
With our normalization -rrNaR1 is the total photon count per
exposure for a zeroth magnitude star. This flux is spread all
over the seeing disk of size 6:f/h1 . Thus the average focal
plane intensity density is(R):N_OB:?_Ri. For far away points jn
the seeing disk the three intensities entering the triple
correlation will be statistically independent so the scaling
estimate for the triple correlation density for a typical triple

correlation element within a seeing size is



2 3 3
[dX<RY ~ (F/RL) (N KL RY$) = N; K2R/ £* (5-2)
Thi s is precisely the term A arising from uncorrelated

fluctuations in the three PSFs in the triple correlation. The
ridges B, C and D appear because in this region of the triple
correlation two (and only two) of the three points involved in
the triple correlation are within a speckle size and thus have
correlated intensity fluctuations. Thus in addition to the all
pervading feature A there is enhancenment of the triple
correlation. Finally the .termEwth weight two cones about
because all the three points involved in triple correlation are
within a speckle size. Note that the nunber of terms (counting E
twice) is areflection of the asynptotic Rayleigh distribution
assunmed in chapter 2. In those regions where sone of these terns
are equal (even though they m ght have fallen off considerably
from their peak values at the center) we see that for general
elenent only the A term for ridges two terns, and near the
center all six terns contribute. This is indicative of the
Rayl ei gh asynptotic uY=<U) <:“'2>: 2<F‘>l ; </13): 6<ILL)3
wher e M is a Rayleigh variable wth nmean (ub .
This is the tinme to contenpl ate the Rayl ei gh approxi mati on used
in the second chapter. The deviations from the Rayleigh
statistics showthenselves in the following way: consider the
ridges for exanple. At the center of the ridges the two terns
(one is A and the other is either B,C, or D) are exactly equal
giving the Rayleigh signature 2. But nornmal to the plane the
features B, C, and D have nuch rapid fall off than the A feature.
Simlarly as one noves away fromthe center of the PSF triple

correlation different features have different fall-off [Iengths.
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However, the extensions of the correlation ridges are equal to
that of the feature A Deviations fromthe Rayleigh distribution
used in chapter 2 are seen here to arise fromdifferent fall-off
lengths of various features. The devi ati ons, for binary
separations snaller than the seeing disk, are negligible and can
be absorbed in redefined paranters |like the nunmber of speckles
etc. or alternatively by a nunerical factor in the expression for
the SNR  CQur calculations for the double (previous chapter) and
triple correlation(present chapter) show explicitly the origin
and the limtations of the Rayleigh statistics assumed in the PSF
nodel of section 2.1. The field calculations reported in this
chapter give the same scalings of the SNRwith AN, and ) as in
t he second chapter.

Let wus call all the features (A,B,C,D,2E) collectively a
unit of triple correlation(short for triple correlation transfer

function). For a binary the intensity I(X) is given by
I(X)= o€, R(X)+ L4 R(X-b) (53)

where b is the binary separation, o, and o, I epr esent the relative
strengths of the conponent stars. W align the focal plane axes
such that the binary is along the first axis with subscript 1

The triple correlationTs for the binary can be witten in terns

of the same TR for the point source:
3
To(%2) = (o ) | To(¥,2) F ot o, [T(y, 2-b)+ T (¥-b, %)+ T (y+b, Z+b) ]
2
+ 0, [T (Y,2+b)+ To(y#b,% )+ To(y-b,%2-b)] (5.4)
It contains seven basic units with strengths and | ocati ons shown

in Fig 5.2 (page 5.31.). Note that this is just a convolution of
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the basic triple correlationunit (Fig 5.1) and the triple
correlation for the binary in the absence of atnospheric noise
(Fig 2.6). Since the strengths of different units are asymetric
the triple correlation is al so asymretric and one has to extract
the asymmetry in the best possible way. This leads to the
interesting question of finding those regions of the four space
which give better SNR for parity. Perhaps a nore interesting
guestion is to ask what is the relative inportance of various
features of the basic unit in determning parity. |In chapter 2
all the enphasis was on the feature E i.e. the central region in
the triple correlation transfer function. Since various features
have negligible overlap vol unewi se, a superposition approxi mati on
(see section 5.6) for the SNR holds in that once we know what
effect each kind of feature has one can figure out what weight
function to use to get better SNR. So we consider follow ng three
cases: a) SNR due to the central E feature alone (this is the
chapter 2 case), b) the SNR due to the correlation ridges B, C

and D, <c) the SNR due to the plateau feature A (long exposure

case!).
5.3 Parity detection due to the feature E

In the triple correlation for the binary the feature E
appears at seven places. The central one has a strength-&f#—xf
which is symetric in the fluxes of the conponent stars and thus
does not contain any parity information. As discussed in
chapter 2 only two of the remaining six | ocati ons have

i ndependent i nformation, We choose the E-features of the first



and the fourth PSFTC to obtain an antisynmetric parity statistic.
So our weight function of the first kind is shown in Fig 5.3. It
has two ports where it takes nonzero values and these ports have
four volume equal to the E feature. Note that though the weight
function is mainly desinged to pick up the contribution due to
the E feature it also gets a contribution fromothers. Label the
seven PSFTCs as shown in Fig 5.3. W can then denote the
contribution of a specific feature due to a specific wunit: for
exanpl e D, neans the D feature of the third unit which passes
through the port 2. The overlap of any of the features A-D with
the weight functionresults in an equivalent E feature because
the weight function has the four volunme equal to the feature E
This is true as long as the binary separation is nmuch snaller
than the seeing. Otherwi se the features A-D woul d have fallen off
considerably at the location of the two ports and the overlap
woul d be weaker than the E-features |located at the ports. These
equi val ent E-features contributing to the ports 1 and 2 and their

strengths are given in table 5. 1.

For the parity statistic which is of the form

J&y a2 W(v,2) T3 (7,%) (5.5a)
the variance is given by ({ow flux)
2 (& d% W(r,7) Ty(¥,%2) (5.5b)

Thi s result follows from the general results on Poisson
fluctuations derived in chapter 3 and the special nature of the
wei ght function. An application of the diagramatic rule for the
variance yields a total of 33 ternms for the averaged squared
nodul us of a general triple correlation: a sixth order term nine

fifth order ternms, eighteen fourth order terms and six third
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order terns. Because of the symmetry of the weight functi on Wand
the triple correlation T}Y,z) the six | owest order terns can be
pai red. This explains the factor two in the above expression. For
a general weight function there are two nore ternms in this | owest
order inintensities. If we had made no use of the fact that only
two of the peripheral six elements are i ndependent and blindly
used all the six asymretric terns then these other two ternms in
the variance expression nentioned above woul d have made sure that
the variance is nine tines as large thus | eaving SNR wunaffected
(see Appendix A5). To get the signal we weigh the port 1 by +1
and the port 2 by -1 and add. W nust also multiply by the four
volune of the order Gykkfa(speckle size)4). Thus the parity

signal due to the E-feature is

4
Sp v ALy (K, —K3) (f/kR) (&w ’_:2“(:“(2(06,—0(:)N344R2

\/W\_/,
Port 1 fOLiL Wlu:"e t-n'ple corvelation
m nus of the ports density Eq 5.2
Port2
NZLX;J(:?(&M;—X_Q)NS (5-6)

2
wher e J(==5%?£-i s the count per speckle as in chapter 2 and

Ng is the average number of speckles, The variance is

6
Ve~ 2 (4a(l3+14ac,‘o(2+14=c,acf+4ccf) (f/kR)l* (NS K4 RC[£%)
F — e
|

Eq5.4 Port1 + Port 2 four volume  tripde corvelation

of the Ibor'tS dens[fy Eq 5.2

2
= 4 (PP At PG+ ALC, ) Ny L2RE

The approximationis in using order of scaling estimates for the
four volunme of the E-feature and the triple correlation density.

Thus the SNR for parity detection using E feature alone is
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2 Nz (96-3G)

. . = 5= (5-8)
[26% + 787N +FN NG 2N ]

_ 4 32 Vo 'R
SNRTC(E)— 34’7?7 M™ Ng

The scaling is sane as that derived in chapter 2 (Eq 2.15). The
numerical coefficient is provided by the appendix A5 which
eval uates quantities of interest exactly. This derivation gives
us an explanation of the nunerical coefficients as arising from
that many terns. Al so as the binary separation increases we can
see that the contribution to the noise fromthe E feature remnains
constant but that due to all other terns falls off. The fall-off
scale is, however, conparable to the seeing. We, therefore,
conclude that the SNR due to & feature is weakly dependent on

the binary separation.

5.4 SNR for parity detection due to correlation ridges

Fig 5.2 shows regions of the (y,%) plane where correlation
ridges exist. For <clarity the ridges are shown slightly
di splaced, in realty ridges like q and %, for exanple, coincide
in the region conmon to both. W see nine strips in this plane
where correlation ridges fromtwo or three triple correlation
units overlap. Because of the symretry of the triple correlation
only two (to be precise 1.5) of these nine strips contain
i ndependent information. To see this consider a strip wth
equation Z=Y+C, . Then from the definition of the triple
correlation the sane strip appears at 2z=Cjand at Y=C;

[d% TOOZO#V)IxH+Y#C) = fdX T6x-) TOX) 11X+ G) (5-9)

i.e. if the coordinates on the first stripis (Y,Z2=Y+C) then the
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same event is also witten at (-Y,2=C). Fig 5,2 shows three
strips %, %a and Séand their two copies each (denoted wth a
single and double primes). Note that the strips %, %zand Sy have
the sanme orientation as the B feature. I n fact, for the PSFTC
shown in Fig 5.1 only one of the features B, ¢ and D contains
i ndependent information. Further reduction in the nunber of
ridges is due to the symmetry of the triple correlation under the
i nterchange of Y and Z Because of this symmetry the strips 1 and
3 are identical for every realization. In the followi ng we have
used all the three strips instead of using any one of the strips
1 and 3 and half of the second strip split lengthwise. A Simlar
situation arose in the case of the double correlation analysis
(section 4.3) where it was shown that both these schenmes give the
samre SNR The reasoning of section 4.3 is applicable here so
we use all the three strips with equal relative weights. Although
the weight function is designed to enphasise B type feature it
will also pick up contribution fromthe feature A. The weight
function will also pick up contribution due to the feature E For
the reasons given later in section 5.6 we need not consider it
here. In Fig 5.4a we show strips 1, 2 and 3 in greater detail

The centers and the strengths of these features are shown in the
figure. W are interested in the leading contribution in powers
of binary separation b. Consider the strip 1 for exanple. The
unit 1 at (-b,-b) contributes to this strip via the feature A1

Now since the binary separation is assuned snmall one can think of
the contribution due to feature Aon the strip to have effective
center 57 shown in the figure. In fact this is the center of the

overlap between the feature A,and the strip. The overlap is
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equivalent to a feature B. In Fig 5.4a the centers of such
effective B features are shown by smaller dots and these are
l'inked to the centers of the original A features by dotted |ines.
In Fig 5.4b we see the centers and the strengths of such
"effective B’ features. W are interested in the asymetry in
these three strips. Because of the YeZ synmetry of the triple
correlation the lower half of the strip 1 is equivalent to the
lower half of the strip 3 and so on. Thus asynmetry about the
origin is equivalent to asymetry of the individual strips about

the -451ine passing through the center. For the central strip g
2

both these things nean the same. For the strips S and s, the
di agonal |y opposite parts, with respect to the origin, of the two
strips can be replaced by correspondi ng part of the same strip.
Fig 5.4c shows the effect of the special weight function which
is situated at a distance x away fromthe center of the effective
feature. Only contribution fromthe central region between =z x
survives. So for a weight function of this kind contribution
depends Ilinearly on the distance of the junmp in the weight
function fromthe center of the feature under consideration. It
turns out that strips 1 and 3, which are identical have their
centers shifted fromthe -45° line in the sense opposite to that
of the mddle strip which has its center shifted twice as much
This nmotivates our weight function shown in Fig 5.4d. The
asymmery in the triple correlation can be readily estinmated when
we note that the shift in the centers of the strips are of the
order b. As described in appendi x B5 we get the signal due to the

strips 1,2 and 3:
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51= 85 =75,

S, = -/’72_77—5— N:/2 C/Z’J(;\N‘Q (W -N) B (5.10)
For this weight function the variance cal culation needs to be
done to all orders to decide the low and high flux regimes. This
is done in appendix B5 using the PSF nodel of section 2.1. The
result is

Vy = 24 95N (0 +6)+ 497 NE a0+ LotNG G+ g N 6 )

(5-11)

W see that the transition to low flux goes through two, steps,
The first transition occurs for objects fainter than 13" The
fourth order contribution takes over from the sixth order
contribution which domnates at high light levels. The second
transition occurs for objects fainter than 18" The third order
contribution domi nates for lower light levels. The first occurs
when a speckle receives less than one phot on in an
exposure: 137%V§:1 and the second when all speckles together
receive |less than one phton per exposure: dNgXN'=3. The SNR for

parity detection using these correlation ridges is

- 4z Yz N N (N -N7)
SNR = _%A _ ! ]
Vs g n+ag> B high flwin (5.12a)
| 12
Y
= 2 q Yz G N (Ni-H) B med<um flux (5-12b)
i 175
- _2 312 a2 MR (Ni-Na) g y )
T BT gn Ns (‘X;,,,‘)G)I-S Aow  fLux (5-1a¢)

W note that for the objects of present day interest (brighter
than 18’th magnitude) and for close binaries the SNR due to the
correlation ridges is never better than the SNR due to the nmain

triple correlation feature E(the feature extensively discussed
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in chapter 2. Mre specifically the following table 5.2 gives
the binary separation, as a function of the magnitude of the
brighter star, beyond which parity is better determ ned using the
correl ation ridges.
Table 5.2 Binary separation beyond which parity is better

determ ned using the correl ation ridges

m 13 14 15 16 17

B 217 12 7 5 3
W also note that in the nmediumflux regime this SNR(Eq 5.12b)
has the sanme scaling as the SNR Eq 4.12 for parity detection
using feature B of double correlation. Although nore realistic
nodel s for the speckl e phenonena and fine tuning of the weight
functions need to be considered before one can conpare nuneri cal
factors in these two expressions with a degree of confidence it
appears that of these two schenmes the double correlation method
may have a slightly better SNR than the triple correlation nethod

using correlation ridges.
5.5 SNR for parity detection using the feature A

For +4sostrips (parallel to the B-feature) other than the
correlation ridges the asymretry starts in the cubic order in the
separation. If we approximate the near center strength of the
effective features by its peak value then for a general +45 strip
contributions due to various triple correlation units cancel. One
has to retain the quadratic near peak variation to get any
asymmetry. Other reason for cubic asymmetry is that when the
binary separation is large the features B and B (overlap of

feature A and a 45°strip) differ inthe second order in the
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separation. In Fig 5.5 we show a representative weight function
of the third kind designed to enphasis the asymetry due the
feature A. A straightforward but somewhat |engthy calculation

gives the signal for this weight function
2-5
T 3 3336
% T Fs 25 Ny o€, (€,—3) kK £ & R /f (5.13)
The variance,in principle, needs to be eval uated upto all orders.
However, contribution to the variance is positive in every order
so even if we consider only the third order contribtution to the

vari ance:

2
3
Vo ) HE g ra) RS (5.14)

one gets an upper bound
16 G712 M2 0, NG (W)= N2)
9 (0+d5 )7

SNR, (5-15)

on SNR. Wé note that even this upper bound is no match to the SNR
due to the feature E for small binary separations. For [arge
separations parity is better determned by using |ong exposure
i mage (appendix ¢5), Arguments, simlar to those given in
section 4.4, can be given to show the (noi sy) equival ence of the
feature A and long exposure inmage. We, therefore, conclude that
although for large binary separations the parity nmay be better
determined by the feature A it cannot be regarded as a genuine

hi gh resol ution feature.

56 A di scussi on
A superposition approxi mation: So far we consi dered SNR for
individual features |like the central E-feature, the ridges and

the feature A. W nentioned that a kind of superposition
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approxi mati on enabl es one to _ consider t hese features
i ndependently. The reason is the great difference in the four
vol unes of various features. To be specific, if we take the four
volurme of the E-feature (which is of the order404) as unity then
the four volumes of the ridges and the feature A are A, and mf
respectively. This is because the ridges have an extension of the
order of the seeing disk (which is Aéh ti mes the speckle size)
in two dinmensions while the feature A has the same extension in
four dinmensions. Now et us go back to SNR due to the feature E
The weight function used in this case had four volune equal to
that of the E feature. The parity signal is purely due to the E
feature and the noise comes fromother features. For this reason
one is justified in attributing the parity signal to the E
feature. Next, consider the weight function of the second kind
used to enphasise the feature B, In this case the signal not only
comes fromthe feature B but also fromthe feature E There are
two reasons why we did not consider the contribution due to this
feature in section 5.4, The first reason is that it's
contribution to the signal and the noise separately is negligible
when conpared to that of the feature B. To see this consider the
signal first. For concreteness we consider very |ow fluxes where
signal and variance are proportional to the 4-volunmes involved.
The contribution to the signal due to the feature E is
proportional to its four volune. The B feature has Ng times
| arger volunme and although it suffers from"edge" effects which,
as described in the section 5.4, subdue its contribution by a
factor h¢Q its signal is still N? tinmes larger than that due to

the E feature. Unfortunately the variance does not suffer from
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any "edge" effects and is larger by a factor Ns. I'n this case of
very low fluxes (fainter than 18n5 the two feature wll have
conpar abl e SNR for close binaries. For flux | evels of interest in
speckle interferometry (between 13"and 1é? the SNR due to the E
feature is larger. Even in this case one can arrive at the
super posi tion approxi mation by redifining the weight function so
that it excludes all E features. For exanple, we may | eave holes
in the weight function at the |ocations of the E features. This
wont affect the previous estimtes because the size of such holes
is very nmuch smaller than the volume of the entire weight
function. For simlar reasons one can omt features E and B while
considering parity due to the feature A

Fine tuning the weight function: In this chapter (also in
the previous one) we considered a rather sinple weight function.
The wei ght function was either 0 or +1. It is certainly possible
to inprove the SNR by a smoother variation of the weight
function. Intuitively we woul d expect the opti mumwei ght function
to followthe signal. The wei ght function should be | arge where
nore signal comes from However, we also know that wthin the
fall off scales the signal is nore or less uniform Therefore, we
do not expect the fine tuning of the weight function to change
the scalings wth Ng and y al though the nunerical coefficient
may change a bit.

Effect of the Kolnobgorov spectrum for the atnospheric
i nhonogeneities: The effect of the larger scales (conparable to
or larger than the tel escope pupil) in the turbulence is to tilt

the entire wavefront. The speckle pattern wll have its
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i nst ant aneous centroid wandering. However, wunlike the double
correlation method discussd in the previous chapter, the triple
correl ation does not share this focal plane notion of the speckle
pattern. This is because the triple correlation defined in Eg 5.4

is invariant under shifts in the focal plane.
APPENDI X A5

Here we give the details of the SNR cal cul ati ons described
qualitatively in the text. W are not concerned with correl ation
effects due to secondary Airy rings in a real telescope so we use
Gaussian apodi zation in the pupil plane. The focal plane field
Yx) is relatedtothe pupi | plane field (%) by

/2 ke 2f ~¥¥2r*

LRXE
Wx) i Jdk e T e 5 ROO= VYY) (5.16)

The PSF triple correlation is given by
* 2
<SR ROXHY) RIXFZ)) = <R(X)YL R(xg) YSRX+2)) + (R (Wxg)wxﬂvz))I

+ <RIX+FY DIV (X) v’?x+2)>12 + (ROXFZD | Y0 X+ | z
© @

l *
+2VX) WO <Y (et) V2D YOk 2) W (60) (5-17)
2®
The ternms in this expression are the five featrues A, B, C, D and

(twice) E, in that order, and explicitly show their statistical
origin. W have nodel ed the atnospheric distortions by a single

scal e Gaussi an correlation function (the same as in the previous

chapter): <Cp(o)(p*(§)>= 8xp{-lf§’2/lz}

2,3
2 z R L
* 2 2 2 - zy 64{2 [2X+7)
VoY (x+))y= 3"’—%—%& e € gL (5-18)
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for the pupil plane fields which are assuned to be Gaussian
random fields i.e. higher order correlations have been broken
down in terns of second order correlations with the help of the
wel | known pairing theoremfor Gaussian randomvariables. Since
t he random pat hl ength deviation for individual rays is belived to
be hudreds of wavel engths in the pairing theoremevery pair nmnust
have one field and one conjugate field (one starred and one
Wi t hout ) . In principle, pairs like <y,,) exists but are
exponentially small: of the order of e—“w where ¢>is of the
order of f\,;on. Thus for the assuned statistics of the fields we

get the average PSF tri pI e correlation

SRIX)ROFY) R(X+2)) = ’L’;_’S_{)_C_R_ { 8- 1;6?7. [ X3+ x#9)2+(x+%)* ]

2,2 2,3 2 2 2
_”zfz x3 --%?%—(y-z) fffz(ax+)‘+2) - g%’zf—g—(ﬁy)z-rfzz-f-,‘lg(zﬁzﬁ
+ € [ e + e
r 3
iy P L 2+ RYy 2+ & (ax#9)]
+e %
2 2,3 2
- —,’%ﬁ-[ yi(y-2)+2%] - i;z‘#f—z [(XFY Hax+y+2)+ (ax+2)' ]
+
R € € (5-19)
The parity statistics is of the form
2 2
P= [dyds Wiv,2) [d¥ <160 TOHY)IOHE)) (5-20)
where the weight fuction is chosen to enphasi sevarious terns

of the triple correlation. Note that the weight function does not

depend on X and therefore on the orgin of the focal plane.

| nt egration over X yiel ds the PSFTC To(Y,2)= [d¥<¢R(x) RU+YIR(X+2)D

5 4 o6 2 K22
= No kK2R (y*+ 2™ yz) —ﬁ— - - y+2
TR(Y,?) ___3__2.5_’-‘-2—-{8141;1 e 2fZ (y 2) e 56{2( )
202

___& - 2z E#YE)
- 4+ R-4LYZ 4E+Y
+ 0 “af2 * e 96f2(4y = ) + @ 22y 8 96{1(

5-19



2,3 2,2
- kKR 2,2 kL 2,52
(Y42%vz) 2L (y%4r-YR)
+2 ¢ o Sf° } (5.21)
Consider a binary
I(x)= o, R(x) T ot R(x—b) (5-3)

Then the averaged triple correlation for the binary is
Telh,2)= (cP+ 2Ty (y,2) + <, LTo(y,2-b) +To(Y=b,2 )+ T, (y+b,2+b)]

+o6o0s [ T,(Y,24b) + To(Y+b,2)+ T (¥-b,2=b)] (5.22)

W see that the triple correlation for the binary is nade of
seven PSFTCs whose strengths and | ocations are shown in Fig 5.2,
The variance on the parity statistics 8955 is given by the
diagramatic rule of the third chapter. The exact evaluation of
all the orders is a tedious task and al so unnecessary in many
cases. W have considered three wei ght functions which enphasize
three kinds of features inthe triple correlation. The weight
function of the first kind enphasizes the feature E which is the
true triple correlation feature. For this weight function we have
al ready worked out the variance in detail upto all orders. This
cal cul ation of the chapter 2, although based on sinple nodel of
PSF, tells us that below 13’th nagnitude the dom nent variance is
in third order in the intensities. As nmentioned several tines
before the neglect of edge effects is justified for variance.
Thus the result of the second chapter can be used to restrict
ourselves to the third order intensity calculations for feature
E. The weight function of the second kind, which enphasizes all
the correlation ridges, needs variance calculations upto al

orders and this we do using the sinpler PSF nodel of section 2.1
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The weight function of the third kind enphasize the plateau
region A and is shown to be anal ogous to |ong exposure inmage
considered in Appendix C5 which gives SNR for parity detection
usi ng | ong exposure i mages and conpares it with double and triple
correlation nethods wusing the feature A alone. The result of
these approximate calcultions for the weight functions of the
second and the third kind result in SNR poorer than that due to
the main feature E for binaries whose separation is near the
diffraction limt of the telescope. For this reason it is not
necessary to cal cul ate the variance for these wei ght functions on
the basig of detailed field calculations. In what follows we
calculate the signal for all the weight functions on the basis of
detailed field -calculations which take into acount the edge
effects. Also for the weight function of the first kind we
cal cul ate the variance as well but only in the |owest third order
in the intensities which (fromthe results derived in chapter 2)
is applicable to objects fainter than 1§n the regi ne where one is
interested in conparing the Knox-Thonpson and the triple
correl ation method.

a) SNR for parity detection due to the feature E

" The feature E appears at seven places with strength and the
| ocations shown in Fig 5.2. As nmentioned in chapter 2 out of the
six asynmetric elenents it is enough to consider any two, as the
others do not contain any independent information. This follows
fromthe definition of the triple correlation Eq 5.1. If one had
chosen all the six elenents then the signal will be larger by a

factor 3 while the variance will be larger by a factor 9 thus
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giving the same SNR This is because the three third order terns

in the variance
2fdYd’% T (%,2) WL WY, 7)FR Y, Z-Y)HREZY-2)F (5.24)

contribute equally and each one of themcontributes three tines
what they would if only two el enents were used. I n general if the
wei ght function is so chosen that there is no replication of the
elements in the statistical sense then only one of the three
terms survives. This is because in those cases the overlap of
W(y,z) Wth W-Yz-Y),W(-zy-2) is negligible. This will be the case
for our choise of weight functions of the first and the second
ki nd since we can beforehand figure out the independent elenents
and consider only them W choose the weight function of the
first kind shown in Fig 5.3 so that it enphasizes the feature E,
in particular it has the same four-volume as the feature E but is
unity wthin this volune. This weight function is chosen to be
antisymmetric so that one get a antisymetric parity statistics.
Though this weight function is designed to enphasize the feature
E it wll get contributions fromother features as well. For
exanpl e the all pervading feature A due to all the PSF units wll
contribute. Calling the two elenments of the weight function as
port 1 and Port 2 we |list the contributions to the two ports in
the tabledl page 5-34. We see that the signal is
just the total <contribution at the port A mnus the total
contribution at the port B; while the variance is the total
contribution at both the ports(there is a factor 2). One nust
multiply by the volunme of the weight function and the triple

correlation density. This product of the four volune and the
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LA
g9 2%
and the noise for the weight function of the first kind given by

Eq 5.3 .

triple correlationdensity is . This gives us the signa

b) SNR for parity detection due to the correl ation ridges

As described in the text, of the nine ridges containing
correlationridges, only three are independent. So our choise for
the weight function of the second kind is shown in Fig 5.4, As
the strips 1 and 3 are statistically equivalent in the average
sense we can consider every strip individually. As mentioned in
the text we are interested in the asymretry in centers of these
strips with respect to the -45’ | i ne passing through the flux
center. Wwen a feature like Ais mltiplied by the weight
function we get an equivalent of a correlation ridge feature
whose central strength is sanme but the fall off scale is
different. Consider an equivalent feature situated di st ance
away fromthe junp in the weight function. A B-feature centered

at the origin has the following triple correlation density

B(y,2) = (N K24 RE/325) £ ) expi- ‘E—Rff—ﬁ} exp{- valtat)y (5.25)

af? 964
It is convenient to transformto coordi nates ¥ andv; =;1’—(y;z)

3 4,4 6 -25% k3
No RLTR e § egtf.fz-')

3 g8 4

B(Y,2)- 8(y,5)= (5-26)

where a constant Jacobian of the transformation is not relevant
as SNR cannot depend on a overall constant. The four volume of
the B feature is

jd"‘>7 d¥ B),5)= 2-67T2N03.£2R1" (5-2%)

One can integrate the B feature density in 2154 pl ane and nor nal
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to strip () to get the projected line density of a B feature:
| : 3.5 2,32 2y

fn) = Jds dny B =(n" NZR PR /13 27°F) exp T-RUD Y 248} (5.28)
For a B feature with center M, away fromthe junmp in the weight
function and strength 7 the contribution to parity is given by

. 7.5

Jdn, W)Y fm-70) = 72, W) (T NGREORHGB 2TF)  (5.29)
As shown in Fig only the region #7, about the center of the
feature contributes. For smal| separations this can be

appr oxi mated by the product of the wdth 2, and t he peak strength
11"5N,,5k 23R4
G
side to which the center lies fromthe junp. The effect of the

The contributionis +ve or -ve depending on the

weight function is ayield equal to the central part of the
feature as the remaining two sides cancel each other. In Fig 5.4b
we show the features contained in all the strips and their
di stances from the junp. W thus get the contribution to the
si gnal

_ -5 3 23 e
Sl—53=~_‘f.s:2 $, = v ,.f_Vc k-l. RTb
V3 20 f

. i 3/2 A
T J3 s N ™ N N (N -X5) B

Appendi x B5 gives the variance for this weight function in all
orders based on the approxi mate PSF nodel of section 2.1. The SNR

estimate for this weight function are given by Eq

APPENDI X B%

Variance for the weight function of the second ki nd upto al
orders: In the notation of chapter 2 the discretised version of
the weight function of the second kind shown in Fig 5,4 for the

central strip alone is
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Wik = Wiirasre = fa Sac = Fj-c i fa=sgnay (5-30)
where the vector subscript represents the positionof the i'th

pi xel which is of the speckle size. First we consider the
classical sixth order variance. As nentioned in the text we |et

the binary shrink to a point to get the variance

(407 2 Wi Wy SR P e Ponfon = SHfhy P4 <t o ]

{yRLAmn (5.31)
in terms of the speckle intensity Mo ON the i'th pixel. Using

the form E5.30 for the weight function we get for the classical

vari ance

()% Sat oo Fomte LM f 5=ty Qua 2] (5.32)

The followi ng results are needed

<p, ;1]:",uk Hed=4 </1¢-></15>2(;1k></&>z +86:5<W YRR S+ 4 5l'h</&>2</§->2(f15
+88, </"£)3<f”j>2</‘k> *8 Sy Yy’ +20 854 <f‘¢></‘,'%“k>
850K HEY +168:7 Bt KoYk +208e 870 G35
1168, 5}5/1‘;)3(/15)3 +24 8;7k G < +80 Sy Y
808,50 UY<IhRD + 24 80 o ¥H ;Y +400 8ot Y

(5.33)
CPAE DGt e > = 4 <H 33 SRy ot + 8 8 SR V<D

+86 < VR 34‘758{:'5 <;3< 3
ke SHISH Y ey 16005 Ot SHaF < Mie (5.3¢)

This gives us the variance in the sixth order

() sTne F.i Tk T48 4 a5 S # 8N (g > Brg #88; SIS

+20 59-l<fg><,l§,-)l’(,u,,> +208; 4,554 (f(;>z</z;.>‘*+/e St ik (A.f{ﬂﬂ. 33

24 Tk Y 80 8y S S F R4 Bt VKLY 8 Sy G>US
+400 G g <> 3 (5-35)
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Qt her terns vani sh because of the factors like £ =o.

For our weight function it can be seen fromFi g 5.5 that
% fi-¢ = ~34 (5-36)

Foll owi ng the spirit of the chapter 2 we consider the statistics

of the,u's to be uniformw thin the seeing disk, so ¢

T2 run

l[z

Va i V2
from —’_‘ii to _’%s_ so that {, takes Ny values. The total nunber of

pixel s within the seeing disk is ¥ =N, . This range of variation
<y

of {, actually cones fromfactors like (fQ')q etc which are nonzero

only within the seeing disk. Thus it follows that

312 e R 3
,Z.—_— fj—é fr-i = Ng 2: fj,—i fr-¢, = 4Ng 24 = "‘Ns (5.3%)
1Jk 'l‘ljlkl 1 I | < 3

This gives us the sixth order variance for the wei ght function of

t he second ki nd
g .3 6 2 ¢
3 Ns (HHME) +4 Ny (NG ~ B N2qbanin ) (5.39)
Fromthe chapter 3 the fifth order terns in the variance are
5
(Hx)_.z‘ </‘4Fjlukﬂlfi"’>w¢}'k {thm tHeim +Hegmy +Wigm +Weim
<7RImM J
FWgm; FHWrtm + Wpem+ Wemk 3 (5.39)
whi ch reduce to
u+a<),5%’_1 SHeH i e om ) Wisk Wi gm + 4Hgim +4 Wejm 3 (5.40)
47 m
on using the fact that two ws appear or the symetry

<

(5-41)
of the weight function. These terms can be shown to be
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2P P P tmy Wij e Wy g = 4 N2 (HH0)+20 N2

42X 7 D Wik Nu-m:'—izﬁ Ns"(ar,mg)s—Bz N2 (X 0p)®
.- _ 3 5 2 >
4 2< ” > Wesk Wezm = 8 NG (W +00)°+ 24 Ns (M+MZ5.+2)

This gives the fifth order variance

4 NG +IND) WA NG) ~ 4N 4 C+0G P (5.43)

The fourth order contribution to the variance is (chapter 3)

L'
(1+X)(§1<Iu4'#j}1klul) Nijk {Nijl +N[1(j +Nlij +N7’4,'.L+Nj-lé + N_(jo'
THit tRpcg FW k+ Wogi + Wepi + ok
+Njkl +Nkj-l +le/2 +N/¢1j + N_[jk-/‘wlkj}
(5-4%)
This follows fromchapter 2. Again using the symretry Eq 5.41

and the fact that two W' appear we can reduce this to

4
20+a)’ o R Heba) Wiji §2 054 4 by S PR T (545)
The foll owi ng averages are needed

4 Z <K MMy Wiik Wije = (96 NG +384Ns) (W+4) T

8 {(—»
4 5 (—n ) N.c'jk N)’li :(’16N:—30N5)(‘X;+‘)Q)4
21 ——n——) W,k Weje = (% NS+ 4Ns) (W) (5.46)

This gives the fourth order variance

>w£j Nlij =0

3 2 3 _
(-‘3*- Ny +84 Ng 1304 N )(\X}w&)‘rw %‘-Ns 7"(w;+tx;)1' (G-4+%)
The third order contribtuion contains six terms (chapler3)

3
« L .. )
(+«) ‘%;k</‘(u"(a f*‘k> Nc;k Ewt'jk+w-£kj+th;k+t‘{jh-€+wk‘ﬁj +Nk;'{2 (5-9'8)
which on using the symmetry of Wreduces to

3
A Upa)” 2L H Mg Ng(,-k 3Nk + Wikt Wed; 3 (5-49)
Si nce

RTH G e Wiy = 4N+ (N3 (5-50)
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ECHE G o> Wej e W= ZSHebly o> Moy e Wizj = ©

we get the third order contributionto be
2 3 3 2,3 3
4Ng+2Ng) 9™ (N+Na )~ 4Ns G OO4N, ) (5.51)
Since N, is nuch larger than unity one needs to retain only the
leading terns in the every order in X . W have considered only

one strip so we nust nultiply by 3 to get variance due to al

the strips. This gives us the variance upto all orders

3 23 3
7ANS G000 C+ 125 107 i NG GR 120070075 o= o
. (5-52)

W see that there are two transitions. The first is when the
fourth order variance takes over fromthe classical sixth order
contribution. This happens when individual speckles recieve |ess
than one photon in an exposure. The second transition occurs when
the third order contribution domnates the fourth order. This

happens when the entire photon count becones | ess than unity.

APPENDI X C5

First order parity statistics: SNR

In chapter 4 and 5 we encountered the feature A which
origi nat ed in uncorrelated regions of double and triple
correlations respectively. W argued in chapter 4 that this is
equivalent to a long exposure inmage with a noi sy wei ght function.
It is therefore natural to consider parity determned from the
long exposure image as well, although, everyone wll admt
wi thout a nonents paouse that this is not a genuine high

resol uti on nmet hod. Anyway we consider a first order statistics of

the form
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s (= B2 ) (b)) v Rmpr <ty )

where we have used the discrete pixel nodel of section 2.1. W

have centered the weight function on the flux center :&ﬁ:ﬁ The
cubic nature of the weight function follows because one is
interested in asymetry in the inage so the weight function
should contain odd powers; the first power gives zero by the
definition of the flux center. One can expand the cube and retain
only the even powers of i. The odd powers vani sh on account of
symmetry of p. about the origin whichis the location of star 1
whose PSF is the r&% . In Eq 5.53 bis the binary separation in
units of speckle size (in the notation of section 2.1) which is
t he sane as of chapters 4 and 5.
s= [eSh - by siluy + [ (ZEV-(2E VT2 1)«

= Ny B W (A 20 ) () (5-54)
For variance calculation we let the binary shrink to a point. The
variance for the first order parity statistics considered here
cosists of a classical second order and a first order photonic

contribution

.3.3 ' .6
(1+«)XZ 4 It [</{.;1(3.>—(/{4.><,L1,-)]+ T4, M (1+) (5-55)
A straightforward cal cul ati on gives
v= E_Aﬁiﬂﬁzﬁl jﬁéﬁﬂﬁ%ﬂil (5-56)
7 ¥ a

The SNR is

_ ’/Q B W(X}l(‘)(’ ‘}C'l

SNR,, = 8z M A, (oI ) (5.57a’)
e B RN
= 8JF 97 M~ N (N +N)* (5-5+b)

5-29



Note the characteristic 183 dependence which we got in all SNRs
(double or triple correlation) using the feature A The scaling
with N and W is, however, different and refl ects the order of
the statistics. For this weight function the transition to | ow
flux occurs when the first order contribtuion domnates the
cl assi cal second order contribution. This neans qu=1 i.e 12™M.
The table 5.3 below gives the limting faintness of the fainter
component for various binary separations.

Table 5.3 Limting faintness m, for parity determ nation using
| ong exposure inmages

m, Bi nary separation in units of speckle size
1 4 7 10 13 16 19
7 X 12 13.5 15 15.5 16.5 117
8 X 13 14.5 15.7 16.5 17.5 18
9 X 14 15.5 16.7 17.5 18.2 19
10 X 14.5 16.5 17.5 18.5 19 19.5
11 X 15 17 18.5 19 20 20
12 X 16 17.7 19 20 20 20
13 X 16.5 18.5 19.5 20 20 20
14 X 16.7 19 20 20
15 X 16.7 19.5 20
16 X X 20 l
upto 19 X X 20 l

mg magni t ude of brighter component, nk: fainter conponent

In the above table we limt ourselves to magnitudes brighter than
26“ keeping in mnd the sky background. W note that except for
close binaries the imting faintness is indeed quite good. It is
necessary to enphasise that this detection of parity by first
order statistics has been discussed for the sake of conpl et eness
and conparison wth higher order nmethods. It is not being
suggested as a practical method for the following reason. A

typi cal speckle inmage even of a single star has gross asymetries

produced by large scale tilts which are described by the
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Fi_q 5.1

Fig5.2

- o

Fig5.2. Triple covrelalion for a b/nary-’ ridges "1".‘7'“6’
displaced for clarity.Inset: seven PSF wnits
comprising the binary TC.
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Fig 53 Port 2

3 0«?%1 -(,-r:' Fig5.3. Weight function vsed
fo cm/>ha5f.se the
E-feature

% 3 .3
Q" ‘(2_ ‘l +‘1 «,'%“7_
. —& 3
2 ¥ 5 b/

fig54 a)

Weight function
used #v emphasise
the correlation

vidges.
. 2
Flg 54 b) 5_7‘.(,, 3%y, 434-.(? 2-(,73(0 2
-bjrz 0 55 strips { &3
24,4 24, > 3 3 2 2
T %2 (1«3 :z(«','+afz) A%y, 4oy,

-b/Z 0 bz Strip 2

Fig 5.4b) Centers amd strengths of 'effectdt/e' 8-featuves on SNIpPS.
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Fig5.4¢) An ¢ﬁ!ec'a.'ve 8- feature 8(y) with center a distance x away
from fhe jump in the welght function wi(y)

Fig 5.5 T3ty usC Fig 5.5. Neight function
- . used to emphasise +he
feature A

The wegght fu.m:ﬁ'on
I5+1 1o the Left of
the —45° Lne amd
=l 1o the Tight of
his Line.
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CONCLUSI ONS

In this thesis we have estimated the SNR for parity
determ nation using the focal plane intensity correlations of the
first (long exposure), second (Knox-Thonpson) and third (Weigelt)
order. The PsFs for these correl ations have one, two and three
ki nds of features respectively. Different kinds of features yield
SNR with different dependence on NS’ N and p. The followng
table Cl lists these scalings.

Table CI  SNR SCALI NGS

Met hod H gh fl ux medi um f | ux Low f I ux
(Statistics) bri ghter 13218 fainter than
than 13™ 18™
TOTAL FLUX* N2 B N
AUTOCORRELATI 0\?(( Labeyri e)
N NN wRxe

PARITY
1) Long exposure BB//\{S WI&EB/NS 'N'I/'.?ﬁz//‘/s
2) Doubl e correl ati on (Knox- Thonpson)

1.1) R dges 118 NF NB

1.2) Pl ateau B3N, NEBINs WEB/N;/:
3) Triple correlation(Wigelt)

2.1) Peak N2 Ns’/z A2 Ns”z N

2.2) Ridges 18 N B M”"_ZBN%

Observational parameters: 4mtel escope, 100A bandw dt h, exposure
time 10ms, J8 is binary separation in units of the diffraction
limt of ahe tel escope, X is photon count in an exposure per
speckle, ". results known in the literature.

In evaluating the SNR for some of the features an inplicit

assunption was that the binary nature of source was known



bef or ehand. Since the l[imting faintness for parity
determ nation turns out to be always £g222ﬁ; than that for
autocorrelation (table 2.8 ) this assunption is justified a
posteriori. Fromtable 5.3 which gives the limting faintness for
parity detection using the | ong exposure image (observation tine
equi val ent to the above paraneters) woul d appear to have as good
a SNR as the feature E of triple correlation for Dbinary
separation five tine the resolutionlinmt (see however renmarks at
the end of Appendix C5 page 5-30). So for the specific case of
wide binaries(still within the seeing disk) it it may well be
better to wuse nuch sinpler "nonocorrelation". As nentioned
earlier, we treat binaries as guinea-pigs on which to test
various schemes of phase reconstruction. It is therefore
necessary to supplenent these calculations with a scrutiny of
various features with high resolution applications in mnd. For
exanpl e, although the 1ong exposure nethod is better than any
other for separations significantly greater than the resolution
limt it can not be considered as a high resolution feature
because all it detects is asymmetry in the source. Every binary
(unequal conponents) is asymetric but not every asymetric
source is a binary. For conplex sources only genuine high
resolution nethods are relevant. There are only three such
feature: the feature B of double correlation and the features B
and E of triple correlation. Fromthe above table we see that the
correlation ridges (features B) have the sane scalings in the
nmedi um range light |levels for both double and triple correlation.
From Eq 4.12 and Eq 5.12b we concl ude that the Knox-Thonpson

R}

C-2



nmet hod is slightly better than the feature B of triple
correlation. In the following table CIl we give the Ilimting
faintness for the remining two features. For conparison we have
i ncl uded the [ ong exposure et hod.

Table CI Limting faintness m, for parity detection

Bi nary separation

1 4 7 10 all
m, LE KT-B LE KT-B LE KT-B LE KT-B TCE
i3 X 16.2 16.5 17.7 18.5 18.2 19.5 18.7 17.2
14 X 15.7 16.5 17.7 19 18.2 20 18.7 17
15 X X 16.5 17.7 19.5 18 20 18.7 16
16 X X X X 19.7 18 20 18.7 X
17 X X X X 20 X 20 X X
18 X X X X 20 X 20 X X

m : magni tude of brighter star, m:: fainter star, X none with
I 2 SNR > 3

W concl ude that for close binaries the triple correlation method
is better while for wder separations the Knox-Thonpson is
better.

In summary the new results are i) Systematic study of the N;
and X' dependence of the SNR for parity in different schenes.
ii) The binary separation dependence of the SNR for phase
reconstruction. iii) Diagramatic rules for conputing the Poisson

fluctuations in general image intensity correlations.
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