CHAPTER 2

INTRODUCTION

2.1 Brief account of the structure of typical galaxies

The extragalactic objects that can be seen in any wide
angle photograph of the sky are all galaxies. In regions of

high galaxy density upto half the number of all galaxies are

lenticular galaxies (S0s), about 40% are elliptical galaxies
and only about 10% are spiral galaxies. The other 10% are
classified as irregular galaxies. In Tow density regions

nearly 80% of all galaxies are spirals and about 10% are
ellipticals and less than 10% are SOs. Below we briefly
describe these different types of galaxies. For a detailed
review of the structure of galaxies see Kormendy (1982).
Spiral galaxies have a prominent stellar disc which
includes young stars, gas and dust arranged in the form of
spiral arms. The spiral arms are sites of star formation and
they vary in size and structure from galaxy to galaxy.
Matter in the disc seems to move in circles about the centre
of the galaxy. A remarkable feature is that the <circular
speed is nearly independent of distance from the centre
(except near the centre where the speed drops to zero).
Typical rotation speeds are between 200 km/sec and 300 km/sec
and the rotation speed remains constant even at distances far
beyond the edge of the (optically) visible parts of the
galaxy. This fact is conventionally interpreted to imply the
presence of Jlarge amounts of matter (dark matter) whose

presence is felt through its gravitational interaction with



visible matter. Spirals also have old stars which are
usually found in a halo surrounding the disc. The bulges of
spirals are dominated by these old stars. Our Galaxy and our
famous neighbour M31 are typical spirals. VW give below a

few properties of our Galaxy.

10
Disc Mass ~ 6 x 10 Mg
Gas Mass ~ 1x10° Mo

Mass in dark matter ~ L;--S'xlO” Mo

Disc scale length (characterising —~ s

exponentially decaying surface density) 35 k,bc
Radius of Sun's orbit about ~

the Galactic centre g5 h;bc
Circular speed ~~ 220 km/sec

33 21
where IMg = l"NXIOS and |Rpc = 3086 x 10 cm.
Elliptical galaxies are apparently smooth and

featureless containing old stars but very little gas or dust.
Since we see only the projected surface brightness, it is not
possible to determine directly whether they are axisymmetric
or triaxial. Their rotation speeds are low and even highly
flattened ellipticals balance self gravity by anisotropic
pressure (Binney 1976,I11lingworth 1977). These systems are
"hot" and the dispersion of peculiar velocities is of the
order of a few hundreds of km/sec. The relative simplicity
of structure makes ellipticals ideal laboratories for
studying the dynamics of a large number of stars divorced
from the complications introduced by gas dynamics (this does

not imply that gas dynamics was unimportant in the formation



process for which both dissipational and dissipative
scenarios have been explored). The surface brightness
profile of an elliptical galaxy falls off smoothly with
increasing distance from the centre and it is often
impossible to detect the "edge" of the galaxy. Most
ellipticals have surface brightness profiles that are well

Y.
fit by the de Vaucouleurs (or R4) law

)
I(R) = 1(0) exp(~kR¥)

where | = surface brightness
R = radius
k = constant

Lenticular galaxies (S08) have smooth, featureless
discs that contain no gas, young stars or spiral arms.

Irregular galaxies are low Iluminosity, gas rich
systems. Many near neighbours of our Galaxy are irregulars,
the most famous of them being the Large and Small Megallanic

Clouds.

2.2 Dynamics of isolated galaxies
The structure and dynamics of a galaxy is determined
mainly by gravitational interactions between its

constituents. Gas and dust contribute to only about 10% of a

galaxy's visible mass. So we expect that they will have only
a small effect on the dynamics of "hot" systems Ilike
elliptical ga1ax1‘és. The stellar content of galaxies is

dominated by low mass stars whose lifetimes are about as long

as the age of the galaxies. Ellipticals contain old (low



mass) stars, so stellar evolution has practically no effect
on the dynamics and stars may be treated as idealized point
masses interacting with each other and with the other
constituents through an inverse square attractive force.
Spirals on the other hand have young stars as well. When
these blow up as supernovae, star formation may be triggered
and thus stellar evolution might play some role in the
dynamics. Gas in spirals has small peculiar velocities and is
hence gravitationally responsive. The effect on instabilities
in the disc need not be small. Spirals also have large
amounts of dark matter whose composition is as yet unknown.
By and large, the internal dynamics of a galaxy is dominated
by its stellar content and dark matter when present in
sizable amounts. On an average a galaxy has ~~ 10|| stars.
For essentially every proposed form of dark matter simple
estimates predict that over times of the order of the age of
the Universe (- 10|°years), binary (star-star, dark matter -
dark matter and star - dark matter) interactions have small
effect on orbits calculated by assuming that the mass density

distribution in the galaxy is smooth.

Bearing all this in mind, an idealised but useful
model of a galaxy is a fluid in 6 dimensional phase space
described at any instant of time by a distribution function
£(x,¥,t) where f(gg,!,f)didiis the mass of the galaxy
contained in phase volume d?(d:\;/ This phase fluid moves
under the action of self gravity. Since binary (and higher

order) collisions are absent, the equations of motion for any
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point (X ,V ) in phase space are

X =V
i- -
OX

where 50(25,'6) is the gravitational potential at X (at time
t). By Liouville’s theorem phasevolumes ( did:\%/ integrated
over any 6 dimensional region of phase space) are conserved.
This implies that \{— is conserved along the trajectory of any
point in phase space. This self consistent dynamics is
described by the collisionless Boltzmann equation - CBE -
which resembles the Vlasov-Poisson equations used commonly in
plasma physics:

df = of 4 v.df - of = o (2.1a)

ot ot X X dv

—
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where P is self consistently determined by Poisson's

equation
Vo = TGP = tf-‘n‘G-,ff ov (2.1b)

( G is Newton's gravitational constant).

Galaxies are usually modelled as stationary solutions
of the CBE (g_i = 0) and models of rotating galaxies are
assumed to be stationary in the rotating frame. It is

difficult to test the assumption of stationarity, 1t is made



for simplicity and convenience because (1) there is
theoretical/numerical evidence for relaxation to a stationary
state (see Section 2.3 below) (ii) a stationary model has
fewer parameters and it is logical to try these first.

It is not difficult to build stationary galaxy models.
In fact there are so many different models (i.e. different
'f(.’i:!)): one wonders if there is not some physical principle
that restricts choice. The reason for the wide variety of
stationary models is simple. Since the CBE is essentially

é_:EZO, any f that is an arbitrary function of the
dt

constants of motion will solve (t1.1a). To Dbe self
consistent, the assumed constants of motion should be
consistent with the potential determined by (1.1b). Of

course, T should be everywhere positive and give finite
mass, energy etc. This principle is called Jeans' theorem
and it is the most commonly used method of constructing

galaxy models.

For example, éf = 0 implies that ¥ is independent of
. 2 ot _ .
time. Then E =V, + ¢ (energy per unit mass of a particle)
o

is constant along particle trajectories. Any f(E) solves

(1.1a). Sa itself is now determined by
Vo = kTG [£(X +9)dV = bTG Ply)

This nonlinear equation together with the boundary condition
(,o —> 0 as T — oo determines p . It is interesting to

note that the only finite mass solutions are the spherically
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symmetric ones.

The distribution function provides the most detailed
description of the galaxy. VW can get a grosser description
by taking moments of the CBE in velocity space. This gives
us equations resembling the continuity equation, the Euler
equation etc. of fluid dynamics and hence they are called
stellar hydrodynamical equations (or Jeans' equations). The
main trouble with this approach is that in the absence of
collisions, the pressure tensor is not isotropic and infact
there is wusually no equation of state. The heirarchy of
equations of motion for higher and higher velocity space
moments does not close and one is forced to deal with the CBE

in its pristine form.

An approach that 1is more macroscopic leads to
interesting predictions. This is the Virial Theorem (VT) for

stellar systems

I=2‘T+W

I
- 2.2
3
where the second moment of Inertia T =ff'r"o(x, T = total
kinetic energy and W = total potential energy. In this form
the VT is a dynamical statement about the overall dynamics.

When the galaxy is in a steady state (Virial equilibrium), we

have (I.) = 0 where ¢ > is a time average. Hence
2

2717 +{Wp=0. With T"'-’EMG"?' and w~—§’7{hi where M = mass

of the galaxy, a = typical velocity dispersion and

R = measure of radius, we have
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JQ' ~ 2G6M (2.3)

This is a striking feature of self gravitating systems that
is independent of details. When dealing with neutral gases
in the laboratory, we may specify the temperature, mass and
volume of the gas as independent quantities. But for a
stellar system in Virial equilibrium these are not
independent quantities. They are related to one another
through (2.3). Collisions (or encounters) between stars
take the system through a sequence of states (in the
"precollapse” phase) each of which is in Virial equilibrium.
So this equilibrium is to be thought of as a long lived meta
stable state. All stationary solutions of the CBE are
equilibrium states of the system in this meta stable sense.
For a recent discussion of these issues and the effect of
collisions, see Padmanabhan (1990). Binney and Tremaine
(1987) - hereafter BT - provide an excellent account of many
of the issues treated rather sketchily here (the reader is
referred to BT for a more detailed account of these and a lot
more besides). W now go on to discuss some issues concerning

the time dependent behaviour of collisionless stellar systems.

.2.3 The relaxation conjecture

Galaxy formation is a difficult problem, undoubtedly
involving gas dynamics and radiative processes. A simpler,
idealized problem has therefore attracted attention; can a

system of a large number of point masses interacting



gravitationally with each other form objects resembling
galaxies? V¢ mentioned earlier that over time scales of the
order of the age of the universe, the dynamics of a large
number of stars (point masses) is described accurately by the
CBE. The question then is about the behaviour of time
dependent solutions of the CBE.

It has been conjectured (Lynden-Bell 1967) that over a
few crossing times (crossing time = time taken for a typical
star to travel a distance equal to the size of the system)
the stellar system would reach a coarse grained steady state
in phase space. Coarse graining is essential because the CBE
(which governs evolution) is a reversible equation. So
strict equilibrium is impossible to reach and it is clear
that steady state can be reached by the system only in a

coarse (grained sense, while there is activity on finer

scales.

Lynden-Bell's picture of the process may be summarised
as follows. While the stellar system is in a time dependent
state, the gravitational force experienced by a star is also
time dependent leading to rapid changes in its energy. Thus
energy is redistributed among the stars. The stars in their
courses move with different periods and so get out of phase
with each other in a few crossing times. Any structure
depending on coherence in orbital phases such as a global
oscillation is damped within a few crossing times. Lynden-
Bell called this process violent relaxation because it occurs

so much more rapidly than collisional relaxation. Perhaps
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this term is best reserved for the specific final
distribution derived by Lynden-Bell, keeping "collisionless
relaxation” for the general process. This conjecture of
relaxation has been verified subsequently by numerical

experiments (see eg. van Albada 1982).

The final (steady) state produced by collisional
relaxation (for example, in neutral gases) has a Maxwellian
distribution of velocities and the distribution functior is
unique. What is the corresponding end state of collisionless
relaxation?

Lynden-Bell (1967) attempted to predict the end state
through statisticai arguments analogous to those given for
the Maxwell-Boltzmann distribution for neutral gases. |f the
rrelaxation process is violent enough (he argued), the final
distribution function is the one possessing maximum entropy
constrained only by mass and energy conservation and the fact
that no two different phase elements can occupy the same
position in phase space at the same time (follows from
Liouville's theorem on conservation of phase volumes).
Lynden-Bell's distribution function resembles the
distribution function of particles obeying the Fermi-Dirac
statistics. When self consistency is imposed, the system

turns out to have infinite mass and energy.

The belief now is that while Lynden-Bell's physical
picture of phase mixing and energy redistribution is correct,

relaxation is just not violent enough ("incomplete
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rel axation"). The systemseens to have nore nenory of its
initial state than just the nmass, energy and m croscopic
phase vol unes. For exanple, Nbody simulations of the
evolution of an initially cold clunpy distribution of stars
produce a relaxed state with a surface density profile that
is well fit by the R%’ | aw(van A bada 1982, M G ynn 1984,
Villunsen 1984). The collapse is as violent as can be
I ragi ned because initially the systemhas very little kinetic
energy. For gentler collapses(Smth and MIler 1986, Quinn
et al. 1986, Frenk et al. 1985) the rel axed systens seemto
have flat rotation curves typical of spiral gal axi es.
Perhaps naximsing entropy a la Lynden-Bell wth nore

constraints mght explain the violent coll apses.

More recently, Trenai ne, Henon and Lynden-Bell (1986)
- here after THL - have suggested sone constraints that any
resonabl e, relaxing collisionless systemshoul d obey. They

begin by defining a generalized entropy called by theman H
function:

HLF] = - | C(#) dxdy

where C(f) is any convex function of £ .

Q

dH ~- - | dC of d%(o(:\,‘/
dt df ot

H is conserved by the CBE So at first sight the function
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looks useless. I f a system relaxes, structures (produced in
the course of evolution) on fine scales should be unimportant
and one expects that repeated coarse graining (interspersed
with time evolution) should not really affect the process of
relaxation. THL prove the following. Suppose that at t =0
the system was in such an ordered state that the fine grained
(JC) and coarse grained (fé) distribution functions are equal
to each other. (f; = § averaged over some suitable cells in

phase space; f obeys the CBE while f does not). Then at t=o¢

HIF@)] = HIEE]
At later times. H[JCC('{:)] pZ H[Jc(t)_]

Since g(_ﬂ[f] =0 we have
dt

HIE®)] 7 H[£0)

Therefore the H = function has its lowest value att=0.
During violent relaxation, the system becomes more and more
"mixed” and H[:)CC] increaseswith mixing. THL prove an

interesting theorem (the Mixing theorem). They define

V() = [odxdv B(£-7)

which is the phase space volume where fc‘)')z ; 9('71) is defined
by

8(n)

il
o

3

n
o



They also define

M(')?) = fdia(.avjf Q(JCC—"Z)

where M('Q)is the total mass of the system with jct >')2
Eliminating 72 , M can be expressed as a function of V.
Theorem: For two distribution functions f and f

I

HIE] > RIE] e MUV) < My(v)

for a11 V .

While THL haven't quite shown that i:' >/O the
mixing theorem is a useful inequality. If one knows from
some theory of galaxy formation that such-and-such an initial
state is a natural one, we can then decide if this-and-this
final state is less or more mixed by computing M(V) I f the
candidate for the final state turns out to be less mixed it

can be ruled out as a possible relaxed galaxy.

2.4 The dynamics of time dependent solutions

While peripheral progress has been made, the details
of the relaxation process are still unclear. No one has
produced (an exact or even an approximate) analytic solution
of the CBE that demonstrates relaxation. What 1ittle
understanding exists comes from numerical simulations and
Lynden-Bell's original picture. VW give below Lynden-Bell's
original example showing phase mixing in a time independent
anharmonic potential (9()()) in one spatial dimension.
Suppose that att =0, there is a distribution of a set of

mutually noninteracting particles as shown in figure 2.1a.
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x FIGURE R.1a

e
N4

E,

The distribution function takes value 1 in the shaded region
and zero outside. f, and fq_ are curves of constant energy
equal to E, and E:_. The energy of any particle E =—\2/-_~1+§D
i s conserved under evolution. As time goes on, phase mixing,
while conserving phase area occupied by the particles,
stretches out the distribution because for an anharmonic
potential, the period of oscillations varies with energy.
After many (mean) oscillation times, the distribution

function presumably looks like what is shown in figure 2.1b.

)
2
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FIGURE 2.1D

la

At later times the distribution becomes more and more wound
up. |If we coarse grain (average over suitable fixed areas in
the X—V plane) the distribution function would seem to have
reached a constant value (less than unity) everywhere in the

annulus (figure 2.1c).



X FIGURE 2.1c
Similar mixing occurs during violent relaxation. Time
dependence of the potential, .as noted earlier redistributes

particle energies. The role of self consistency is unclear.

Not all solutions of the CBE relax to a steady state.
Numerical simulations do turn up cases that show long lived
oscillations (see eg. Henon 1968, Wilkinson and James 1982,
Gerhard 1983). Recently Louis and Gerhard (1988) have
numerically constructed a spherically symmetric galaxy model

that has small but nonlinear radial oscillations.

One dimensional (ID) self gravitating systems have for
years been wused to study collisionless relaxation. The
system may be thought of as N plane parallel sheets
interacting with each other gravitationally. The sheets are
constrained to move along the direction of their common
normal and they can pass through each other. The interaction
potential between two sheets is proportional to the distance
between them. Since this potential is so much smoother than
the corresponding 3-D case (</>~"-l-,;:), we expect collisons to

be operative only on very long time scales (see Reidl and
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Miller 1988 and references therein). So the CBE should be a
good description in 1-D too. In section 2.7 we describe a

nonlinear homologous mode discovered by Kalnajs. Here we

shall discuss an interesting numerical experiment performed
by Reidl and Miller (1988). They put 100 particles into a
"dumbell® like initial configuration which is schematically

shown in figure 2.2.

v

FIGURE 2.2 X

The blobs began chasing each other in phase space and
continued doing so for 600 crossing times. The blobs
underwent very little structural change. Nityananda
(private communication) has suggested that this is the same
as the "phase Ilocking” phenomenon (well known in driven
nonlinear oscillators) in which the amplitude and phase of a
particle vary but never get out of hand. Anharmonicity and
time dependence seem to cancel each other. This phenomenon
is perhaps related to results obtained by Henon (1968) for
spherical shells. 1t is also the principle behind the

construction of Louis and Gerhard's model (1988).

The subject of galaxy interactions has grown in

importance owing to recent observational developments. On
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the theoretical side the problem involves modelling the time
dependent behaviour of two or more interacting collisionless
stellar systems ( if gas is ignored). The only general
approach to this difficult problem is large scale numerical
simulation (see eg. the impressive simulations of Barnes
(1989)). Limiting cases have been treated analytically. For
example (i) the passage of a small galaxy through the halo
of a much larger (and more massive) system perturbs the
larger system. The back reaction on the smaller galaxy
produces a drag ("dynamical friction"). Chandrasekhar's
(1942) formula for the dynamical friction is very often used.
(ii) When the time scale of encounter between two galaxies
is significantly smaller than the time scale for stellar

motions in the individual galaxies, the impulse approximation

(Spitzer 1958) has been used. In chapter 5 we derive the
consequences of the impulse approximation in some detail for
a specific model. This is preliminary to going beyond the

impulse approximation in this case.

The general approach taken in this thesis is described

in the next section.

2.5 General Strategy

In this thesis w shall use constants of motion in
some special time dependent potentials to construct exact
time dependent solutions of the CBE. In fact this is a
straightforward generalization of the use of Jeans' theorem
to construct stationary models. All the time dependent

models constructed here share the property that at any



instant of time the real space density is uniform over some
(in general ellipsoidal) region of space and zero outside.
Let us imagine that the shape and size of the region changes
with time. Then, the gravitational force within the region
is linear in the spatial coordinates, though time dependent.
The equations of motion of any particle in the ellipsoidal
region are therefore linear. Under these conditions time
dependent quadratic forms in the coordinates and momenta can
be found which are constants of the motion. The phase space

distribution function (f) is then chosen to be a function of

these and solves the CBE by Jeans' theorem. The functional
form of _7C is so chosen that integrating over velocities
gives uniform density ellipsoids. Self consistency governs

the evolution of the models and introduces nonlinearity into
the equations governing the evolution. Below we shall derive
an invariant for a time dependent harmonic oscillator in one
dimension originally due to Lewis (1968). Then we use this
to construct a time dependent model in one spatial dimension.
This turns out to be the homolgous oscillation mode of a
homogeneous stellar system stratified in plane parallel

layers discovered by Kalnajs (1973) using a different method.
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2.6 The Lewis Invariant for the 1-D oscillator
The equations of motion for the time dependent

harmonic oscillator in one dimension are

x =V

v = —wiE)x (2.4)

The linearity of the equations (2.4) guarantees the existence

of a quadratic invariant which we write as

- Av* 4+ Bvx + C x*
I = Lv +8 i (2.5)

where A) B and C are time dependent coefficients

. A 2 . . ‘ 2

Requiring L = 0 gives us

A +B =o (2.7a)
2

: 2.
B +C —Aw" =0 (2.7b)

v _
—Bw" =0 (2.7¢)

NIISh

V¢ shall be using I_ to construct a time dependent model of a
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collisionless stellar system. So we need to choose A,B, C
such that L is positive definite (if T is indefinite, lines
of constant L in the X-V plane at any instant of time are
infinite in extent and hence unsuitable for building stellar
systems). Positive definiteness of T requires AC "Bz> o .
It is straightforward to verify from (2.7) that (AC-—B"’) is

a constant. Let us choose
2
AC-B = | (2.8)

Using (2.8) and (2.7a) in (2.7b) we get

. A
A i (T) 4+ wA =o (2.9)
2 A

This can be written in a neater form in the variable Z ,

where A = %2 :

/ —
g + wl(t)‘? - E—g =9 (2.10)

Therefore, the invariant I can be written as

!

xz | . 2

T = +__(5v—-51) (2.11)
2%’7' y

where E(‘f} is any solution of (2.10).

W note that I is a generalization of the adiabatic

invariant for a harmonic oscillator. To see this, we observe

that if w"(w‘:) is a slowly varying function of time, higher
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derivatives of g can be ignored and Z(—/:) can itself be
approximated as w”/z . Using this approximation for %’
in (2.11) and dropping the terms containing é , Wwe get

I ~ U.)}__z -+ __V__z.. = A (—Z-z’/' wq:-éz

2. 2w o 2- 2

which is the well known adiabatic invariant for a harmonic
oscillator. Goldstein's (1980) text book on Classical
Mechanics has an alternative derivation of the Lewis
Invariant. This derivation is analogous to Gauss' tricyk for
evaluating definite integrals named after him - embed the
given problem in a higher dimension and exploit symmetry.
Although it is not mentioned in the text book, the derivation
also shows that the Lewis invariant is the square of the
Wronskian which, of course, is conserved for the Ilinear
second order system in (2.4). Ve thank Prof. M.V.Berry for

pointing this out.
2.7 Kalnajs’ homologous mode

In 1-D, the CBE describes the evolution of a system of
plane parallel sheets each of which is infinite in extent.
The sheets are allowed movement only along the direction of
their common normal. All equilibrium distribution functions
in 1-D are functions of energy alone since in 1-D, energy is
the only integral of motion. The distribution function for
an equilibrium. model with wuniform density within some

interval and zero outside is
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i

7, (E)

)

K(Em-E) ™ 4 E<E,

2.12
where K , Em are constants and
1.
E= Y +¢
2 (2.13)

V¢ can construct the

the Lewis |nvariant

time dependent model by replacing E by

(2.11), K and Emby some other constants

/
K and Im respectively:

F(z,v,t)

The density

Plx,)

il

f;ﬁ dv

\
0

The potential in the

P(x,%) =

where wl(_{:) is dete

—l)y
= /<’<IM"I / 'I[“‘\ I<Im

(2.14)

= o | 7L°"I>Im

= ’n‘ﬁ;K' f Ix] < E27,

fo x| 7 EJ2T, (2.15)

region [x]| < Eﬁ_fm is

) 2 (2.16)

——

w

rmined from Poisson's equation:
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2 / z
w2{_&> = q_-n—-élf = Lkma/2K = U4’/§ (2.17)
g
W recall that g is any solution of (2.10) with w"(—&) given

by (2.17). Therefore

oé ')__
& + A -L =0 (2.18)

%3

From (2.15) we see that ?(—t‘:)is proportional to the size of
the model. Equation (2.18) describes the oscillations of the
size of the uniform density region and we can see immediately
that all solutions are periodic functions of time. We thus
have a one parameter family of oscillating models (with given
total mass and energy) where the parameter may be taken as
the first integral of (2.18). In the limit LA—L—) oo we recover
cold homologous <collapse of a system of plane parallel
sheets. When E = u4- 2 ) gzo and the system is in
equilibrium. From (2.9) we see that the orbital angular
4/3
frequency of individual sheets is W, = 124' . From (2.10)

we can easily compute the angular frequency of small

oscillations of the model about the equilibrium state as

= V3 w, -

small esc.
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