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CHAPTER 1

SUMMARY

The dynamics of stars as well as dark matter in galaxies
i's governed purely by mutual gravitational interactions. Over
time scales of the order of the age of the universe
(~ IOIO years) binary encounters produce a negligible effect
on orbits calculated by assuming that the mass distribution
of the galaxy is smooth. The galaxy is then well approximated
as an incompressible fluid in 6 dimensional phase space that
moves under the action of its self gravity. This self
consistent dynamics is described by the collisionless
Boltzmann equation (CBE). Galaxies are usually modelled as
stationary (or statjonary in a rotating frame) solutions of
the CBE. Stationary solutions are relatively well understood
(see eg. Binney and Tremaine 1987) and in fact there is a
rich variety of such galaxy models. However, problems
concerning the formation of galaxies and interactions between
them involve understanding the behaviour of time dependent
solutions of the CBE
The work reported in this thesis concerns some exact
oscillating solutions of the CBE. Time dependent solutions
have long been conjectured to relax to a steady state. The
relaxation is broadly confirmed by numerical experiments
(see eg. van Albada 1982) but theoretical understanding has
been Ilimited. An early attempt by Lynden-Bell (1967) was
based on maximising an entropy function subject to

conservation of fine grained phase space density. This led to



novel statistics. More recently, the role of the constraint
coming from Liouvilie’s theorem has been emphasised by
Tremaine et. al. (1986) - see also Mathur (1988). The
statistical arguments of Lynden-Bell require violent and
random redistribution of elements in phase space. Even the
weaker constraints of Tremaine et. al. were found on closer
examination to involve a plausible but nonrigorous assumption
of repeated coarse graining (Kandrup 1987, Dejonghe 1987,
Sridhar 1987). It is clearly of interest and relevance to
clarify the role of exact and approximate invariants in the
time dependent behaviour of collisionless self gravitating

systems.

Chapter 2 includes a brief sketch of some relevant
background material about galaxy dynamics and a discussion of
the time dependent behaviour of collisionless stellar
systems. The general strategy of using exact invariants (for
time dependent harmonic potentials) to construct exact, time
dependent, self consistent solutions of the CBE is discussed
here. The method is illustrated by constructing the
homologous oscillation mode of a homogeneous slab of stars

discovered by Kalnajs (1973).

Chapter 3 is a detailed account of uniform density

spherical and spheroidal models both of which exhibit

undamped oscillations. The equations governing the
oscillations are given below without derivation to illustrate
the general structure. These equations were written down by



Chandrasekhar & Elbert (1972) and Son Sunder & Kochhar (1986)
for the case of spheres and spheroids respectively based on
the tensor virial theorem and an ansatz for the kinetic
energy tensor. However the present work goes much further in
providing the underlying phase space distribution without
which the existence of undamped oscillation could not be
regarded as proved.

Spheres. The radius (R) obeys

a _ 1 =0
R + T =3 (1.1)
where (@A is a constant. So all spatially bound solutions

are time periodic.

Spheroids. The equations governing the oscillations are

52. + B ——_._’._. = O
x?—g— x3
(1.2)

§ +28 (1-ug) -% =o
x> &3

where &« and B are constants. y_ is the axis of symmetry
and 2 is the other axis. W = axis ratio = y‘/x and u.g,(u)is
the restoring force along the axis of symmetry. 1t is shown
that (1.2) can be put in Hamiltonian form. Surface of
section studies reveal periodic, quasiperiodic and chaotic
solutions. Ve conjecture that some of these models
(especially the spheres) are stable. This implies that

nearby solutions which do not have precisely uniform density



remain in the vicinity of the uniform density solutions.

In Appendix A we present some models of periodically
oscillating spherical systems with nonuniform density. These
are made of particles moving in nonintersecting oscillating
shells. An interesting feature'is that Jeans' theorem is not
explicitly wused in building these models. In fact, the
constants of motion used are not global in phase space, but

are valid only for the specific orbits which are populated.

I n Chapter 4 we construct a generalisation of
Freeman's (1966) analytic bars. VW call these Generalised
Freeman Discs (GFDs). In addition to rotation (a property

of Freeman's bars) the GFDs are characterised by changes in

size and shape. The coupling between rotation and
oscillation allows for time varying rotation speeds. A GD
is described by a time dependent 4 x 4 real, positive

definite symmetric matrix whose elements are essentially the
covariances of the four phase space variables averaged over
the whole systems. Self consistency gives a nonlinear matrix
equation governing the time evolutionof a GFD. Appendix B
serves as an extended footnote to Chapter 4, with details
that might impede the main argument. In Appendix C we study
the general nature of the matrix equation. 1t is shown there
that the equations describe a Hamiltonian dynamical system.
Hence, in common with the earlier models, the GFDs also show
nonrelaxing behaviour. Appendix D presents a novel numerical
scheme for solving the matrix equation. The chief feature of

this scheme is that it is symplectic (and hence



nondissipative) to machine accuracy.

The only general approach to the problems of galaxy =
galaxy interactions appears to be large scale numerical
simulation. However, some |limiting cases have received
analytical study (for references see the review by Alladin
and Narasimhan 1982). In Chapter 5 we show that the
formalism developed to describe isolated GFDs can be extended
to include the effect of tidal forces due to a perturber
moving in the plane of the disc. The only approximation made
is the lowest order tidal approximation describing the
interaction. The matrix equation for the GD plus the
equations of motion for the perturber (4 for a point mass
perturber) completely describe the interaction model. So we
are able to follow the self consistent response of the GFD
without any further approximations (like impulsive or
adiabatic). As a specific example, we compute the response of
a Kalnajs disc (corotating, nonrotating as well as counter
rotating) to a massive point mass perturber moving in the
plane of the disc on various hyperbolic trajectories. The
fractional energy gained by the disc (which, due to
interactions has become a GFD) is plotted as a function of
the encounter timescale. Deviations from the predictions of
the impulse plus distant encounter approximation are
significant. Interesting nonmonotonic behaviour of energy
and angular momentum transfer along the sequence of
encounters is found. It is suggested that the short time

behaviour of these idealised systems which determines energy



and angular momentum transfer would also carry over to more
realistic cases. Of course the resonant effects would tend to

be washed out for galaxy models with a range of orbital

periods.



