APPENDIX A

SHELL MODELS OF INHOMOGENEOUS SPHERICAL SYSTEMS

These models are time dependent generalizations of the
stationary model of equations (3.1b).  For convenience we

write down the distribution function again

jco < (S(V'r) 5(\/_1_"‘\/‘:(7')) 74"' <Ro
o ‘}C"\- A

(A.1)

il

This stationary model has uniform density within radius equal

to Ro and i1t consists of stars moving on circular orbits.

= GM(r,
The gravitational force on a star at radius T = > )OCT'
2 T
Balancing the centrifugal force, Vc/r , against gravity we
see that VC(Y) T . So we imagine that the system is made

of concentric gshells of stars each of which moves in a circle
about the centre.Wwhat happens if all the stars in a shell of
radius r (for brevity S,.) are, at some instant of time, given
some (say, outward) radial velocity? The motion of the stars
in S‘r’ is not affected if the mass [M(T)] in the shells
enclosed is Ilumped into a point mass at the centre. The
outer shells do not affect the motion of the stars in S.,_

anyway, so for the present let us ignhore them. When all the

stars in S,r_are given some radial velocity, they will (if the
radial velocity is not too large!) oscillate between 'Y; and
where 7: <7r< 7'; . The motion of every star of S is a

'r

Keplerian ellipse with apocentre ')"> and pericentre '): .

W have got one sh‘ell oscillating periodically. To



keep it oscillating, it has been asssumed that it does not
not intersect other shells (the mass enclosed by the shell in
the course of its oscillations should not vary with time).

This can be achieved by making the other shells oscillate

too!

If a shells oscillate with eaual periods and in
phase, it looks as if we can prevent shells from crossing.
To do this, it is necessary (though not sufficient) that the

7: andT;of a shell should both be greater than 7, and 7; of
shells enclosed and at the same time are less than the T, and
T;of shells outside. The semimajor axis of a particle in a

shell moving on a Keplerian ellipse is given by

a = Tc+7
2

(A.2)

So (L orders the shells.

Since we require that the periods of oscillation of all

shells are equal,

: L Lf'Trl ag = Conslont
(PW"”() -y ‘;;,‘(';) (A.3)
Hence M(Q) oC _lt_‘/l'-"' a® (A.4)
4
Even if at some instant of time all stars are at their
apocentres (and hence will be at their pericentres after half
a period) we have not yet ensured that shells will not cross

at any time. To make sure that shells do not cross, we need



to follow the motion of a shell for half a period from
apocentre to pericentre (the other half of is similar).

Choosing a period of oscillation to be Z7T units of

time, we require that

%I > 0 fn o0 <& t LTT (A.5)
a t = tonst
Since the time variation of the radius of a shell is

identical to the time variation of the radial coordinate in
the Kepler problem, we shall use the standard

parameterization of and 't'interms of the eccentric

anomaly ’)2 .

~ = O <I — e les) (A.Ba)
t = 7 - 34"“’7 (A.6b)

€ is in general a function of A. Since all orbits are

closed

o & é(a) | (A.7)

To express the requirement in (A.5), we first need to see how

7 varies with @ when T is held fixed. From (A.6b)
dt = dy(l—elesy) — dmyde =o
Therefore
dy = Avm’y de
| — e losy
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From (A.6a)

dr = dq_(/_ g[%o)> —+ a,(e,dm?a@ - 055[%"7) (A.9)

o

{
Using (A.8) in (A.9) and with € = U€ ang x = Cas? we
a
rewrite (A.5) as

2
&r/ (1—ex)” +ae'(e-x)
Qa (A. 10)
a t= ot (/-&Z)
The denominator i s always positive. So we only need require
that the numerator be positive for all X €& ["I) ’,7 :

N(x_) = (I—€x>2+ 6?.8’(_6"2.))0 1 x & [”, ’J (A.11)

This is a quadratic expression in X , which gives us
constraints on the allowed functional forms of 6(4).

We summarize the models briefly and work out two
examples.

The models are described implicitly by the equations

3

M(a) = % for A < Qopay (A.12a)
- = a_(/——éfoaﬁ) (A.12b)
+ = N - €-/4»m'7 (A.12¢c)

The allowed functional forms of €(4) are constrained by
(A.11). In principle from (A.12b) and (A.12c), we can

express A as a function of 7 and f’ Then
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3
M(rt) = —GL,—[OL.("‘){)_? (A.13)

Example 1: Let € = constant (i.e. independent of 4 ). Then
(A.11) is immediately satisfied.

From (A.12) 3
| 7
M(rt) = = | — et (A. 14)

where "7 is now a function of £ alone. Since M « 7“3

this is a uniform density oscillating sphere such as the ones

described in section 3.1.
Example 2:. Let € = AA. where M is a positive constant. W

choose amX = | . So o< <. W shall see below that

(A.11) places further constraints on A
2
N(z) = (I—-él) + e(e—x) v 0O for X é[_’/ ’_7

where we have chosen to work with & itself instead of )\ and

i.e. N(x) = 811_?’ - 3€x + (I+€2> >0 for X e [:—I, ]:)

It is clear that NN >0 for x £o6. The roots of N(x)=o

are real. So if we require that the smaller root be greater
than 1, then N (x) will be positive for x & | . The smaller
root

3 — J5-4e?
M= > |
2e

implies that
2e* —2e +1 Yo
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This condition is satisfied if € <!/, or €%]. Snce € is

always less than 1, we should require that ¢ ¢ e < I/, .

-~

The choice Q,,, =/ inplies that

o < N <l/2 (A.15)

The nodel is now descri bed by

Ma) = 2%,

r = a(l- Mi&’""’)) (A.16)
t = ’)7 - M”]
The density is
P(re)y = L M

YT 27

It is not easy to express A as a function of 77 and t .

But we can see what the system | ooks |ike at
Cd Maximum contraction (7 =0)
Then T = a(l-ia) (A.17)

and + = o0
Snce 2,.,, = | the radius of the system is ’r‘mx*;(l -A) -
Solving for @A from (A.17) we have
L'L L A O

2 A

Theref ore
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M(r, t=0) = ——[ ./"U—AY"J

and >’2_.
— J1= A
ﬁ('r/f=°> = (l 'J_J L/- s
l6T \*Gr 1= s

(i1) Maximum expansion(%=7r)

Then f =TT

T = al(l+ia)

Since Qomayx =I the radius of the system is 7

Solving for A from (A.19) we have

I+ ear — |

2\
Therefore

M(*r,t:'ﬂ') = L r' I+4-A7_ il ‘)

Gy |

pr =y = (wem —1)
16T MG rrJarr+]

(A.18)

(A.19)

= (| +)\).

(A.20)

The _fJ corresponding to (A.18) and (A.20) are shown in the

figures At and A2 below for )‘ = L and G; =3

4 vl
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Discussion

All models constructed in this appendix have finite
size -M(a) < a.3 implies that for finite total mass =
M@max) 9 Qmaxis finite.

While 1t is not difficult to construct a variety of models,
it should be noted that we have not used Jeans' theorem at
all. The gravitational potential (,0(7‘,15'>is nonlinear and
time dependent. Other than angular momentum (which is
conserved due to spherical symmetry) the potential may not
admit global constants of motion. The models have been
constructed by selectively populating periodic elliptical
orbits of (P(7,+). The nature of the unpopulated orbits
might reveal interesting dynamics, and throw some light on

what could happen if the models were slightly perturbed.



APPENDIX B

PROOF OF EQUATION (4.19)

By definition

_ t+
Z. 7 _ﬁ-fz,_z?f Atz

4 GFD
..)/
= __fL %4%4_(1*:[) Ttz (B.1)
M
where I = ZfIQZ (B.2)

. = oL _ .
Since zj_-,,_%} 5Q‘}(Where Q;a:m the element of Q in the A

row and the ?ft column) we have

.7, = __2__71 2 (/—-I)VLdL'Lz— (8.3)
M an_

Q is a positive definite symmetric 4x4 matrix. Let wus

2 2 Y3
1.’)‘3’)\4' VW can

diagonalize Q (and hence I. ) by performing a

o
denote its eigenvalues by A\ , )Y

special ( de& Q o 1) orthogonal transformation, @

W= OF
4
T =2zQ2Z = W(07Q0)W = )3 MW e

/

b 4
a(th_ = 1 implies d Z=dW. Therefore



= -2f p) ] o\ /2 4
2 0 |e— I — U d
M BQ%<JMQ>f( )
= k{ G
= K% (detq) T [det Q]
M BQ*} (B.5)
Yo
where IQ, = f("’“‘l) d—47"- = %77’7' (B.6)
Defining P: Q_’ we have
= C
B?' %/MQ where C‘J— is the
"cofactor" of Q"a" . Therefore

5’329 [tto] = C, =(wq)@:@&¢)@ (8.7)
From (8.5) and (8.7)

£ F = k£ 7?? (B.8)

The mass

-1
M =ffd“z = ﬁ/‘('*I Td*z

(B.9)
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where kz —_ J‘(l _ u:l-)"'/'z. d4:u_ . ﬂq_

Using (B.9) and (B.10) in (B.8) we get

= R —
Zuty —,Q';Edf"s*at
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APPENDIX C

A HAMILTONIAN BASIS FOR THE CBE
AND

AN APPLICATION TO THE DYNAMICS OF A GFD

Morrison (1980) and Morrison and Greene (1980) have shown
that many non disspative field equations governing the
behaviour of fluids and plasmas can be written in Hamiltonian
form. In particular the Vlasov-Poisson equations for
collisionless plasmas falls in this class of field equations.
Since the CBE for stellar systems is identical to the Vlasov
equation plus the Poisson equation with a sign change, the
Hamiltonian description carries over. Morrison (1982) and
Littlejohn (1982) present very readable accounts of these

developments.

The relevant field that evolves according to the CBE
is the distribution function 7[: . V¢ shall say that a
Hamiltonian structure for the CBE has been found if it can be

written as
f = [f/ }(J (c1)

where H , the "Hamiltonian" is a functional of JC . The
expression on the right hand side is the Poisson Bracket (PB)
between gc and # . The PB is any binary operation between

two functionals giving a third functional obeying the wusual



rules of antisymmetry, Leibnitz rule and the Jacobi indentity
(for more details see eg. Arnold 1978). A PB is called

singular 1f there exists a functional that gives zero PB with

all other functionals. By (C1), this means that the
functional is conserved under the action of any H
whatsoever. For the CBE it turns out that there are an
infinity of such conserved functionals. For example, any

PIF] = | C(£) ddv

is such a conserved functional. These, in principle, have

to be eliminated before the PB becomes nondegenerate.

VW give a nonrigorous derivation of the PB for the CBE
below. 'Let us imagine that f represents a large number (N)
of point particles each of mass equal to 1/N. Let the
position of the pﬁq particle in (6-dimensional) phase space

be denoted by

(P) P) (P) (P) (P) (P (P) T
Z- ""(7C 4R, Va /Vy , Ve (c2)
and let
T
Z = (x,%,z,vx,v},v}_) s

denote an arbitrary point in phase space. Then

i J(Z _ Z(P)

J
NI (c4)

a——
——



where

5(2"2(',)) = J(x—xw),,,,, J(Vz“vacp)) (c5)

For two functions

! (2) N
F =F(2", 27 .....,2%

F.z_ — E_ (Z(:)) Z(a-),”'”) Z(N)) (cs)
the PB is
by SF
= N il bFz.
[7. R Z Zz, 02" 3z (er)

where —O_ is the 6 X 6 matrix

Osx3 j‘BXS

0 = (c8)
_'—ﬂ-sxs Oaxa»
| 7

The factor N appears 1'n'( of equation (C7) because

0 _ _N_2d
d(momentum)™  3(velocity). When FI and F)_are symmetric in

their arguments, they may be thought of as functionals of :)C

and we may write E DSZIIJC] and 5 = }z[ﬂ Functional

derivatives are defined by the functional Taylor series
é
r}a[{] = 7 [o] +\/;C(Z')[é5-.—§'— AZ + ----- (c9)

Therefore (with (frf,[?]set to zero)



P=) 53C =2(P)
(c10)
oF  _ 103 57
02" N 3ZP | 5F
Similar results are true for$~.' Using (C10) in (C7) we get
N 3
R =5 ) [ ) Lo(2) (éi)}
N PL_' f;a §F13Z°\SF )], L
52 (s AR
- f(z){ (9’)3 ( )} d%
. 0z® Dl
“k= J‘f BZI(() &f Z=2F)

I g.
The expression in { } is the ordinary PB between §——-’- and

&F

which are functions on single particle (6-D) phase space.

On this phase space we take {x,Vx_}zh Therefore

[_3':)?] &b [.) 7_] f(2) {55‘ } 6 (C11)

This agrees with Morrison (1982).

Given f , the total energy of the stellar system is

= Jiff vdz - G |F(2)F(2) dz d%’
2.

EEFY

(c12)




Then él’f’_ = _\{3' + P
&f z

where (p :—fo(:z_ V)dZ

(Ci13a)

(C13b)

To now see that the CBE can be written in Hamiltonian form,

let us define a functional

S, [£] = F(z)

(C14)

Then

0o, = §(z-2.) (c15)
5

Using (C13) and (Ct5) in (Ct1) we have

[S, ,H] = -%-98 +2¢ .2f
o ) 52‘.0_ 5_6_ dV, (c16)

———

Therefore (dropping the nought in the subscript)

(f, 27’(_] (c17)



W show below that the restriction of the PB defined
in (C11) to the space of functions describing GFDs

f (0 _I)—‘/z_ {,4.(,9_ 2qpuating

GFD T Ak (c18)

gives us a PB on the 10 dimensional space of the matrix P .
Let F be the space of all real symmetric 4 x 4 matrices. P
(which in addition is positive definite) belongs to ]—’ For

any H € [, we define a function on I e
T 4
h(P) « f(sz);gm ol 'z

The right hand side is proportional to T')—(PH). Ignoring

overall constants we define

%(P) = T7'<PH> (C19)

Two such functions ‘ﬁ(P)and ﬁ(P) are also functionals on the

space of functions of the form (C18). Their PB is

_ [fe= 5 :
e8] = U5, %, [ 4. 4

o« T (PEwH —PHwE)
Again ignoring an overall constant we define

[e,2] = Tr(PEwH —PHwE)

(c20)
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where

O

X2 JL'LX'L

(c21)
-1 O

2X72

&
I

22X 2

VW now show that the equation of motion for P (equation

(4.22))
’ T
P = KP+ PK
can be written in Hamiltonian form. VW note that K is of
the form
/< = o.)H 3 H € f" (c22)
Therefore
5 = — O
P = wHP PH (c23)

Let us define 10 real symmetric 4 x 4 matrices indexed by an'

unordered pair of superscripts (a,b):

ab

M _ é;ag?b + &bg&,a

(C24)
4
2.

These select the elements Pab from P:

ab
P, = Tr(PM ) (c25)



ab
Multiplying (C23) by M and taking the trace we get

P, = Tr(PM@H — PHoM™)

which from (C20) and (C25) now reads

étb = [Pab ) 79»] (c26)

The equations of motion for the GFD are now in Hamiltonian

form. The PB between Pab and Pc_dis easily calculated to be

[Pabfpod.] :"'!z{abwac + _Pcawbd.+aa.wbc+8bwad}(cz7)

These are identical to the basic Lie bracket relations for
the elements of the Lie Algebra of the group Sp(4,R). W
derived (C27) by defining a Morrison type PB for functions
(on I ) of the special form (C19). Having got the
fundamental PB in (C27), PBs between more general functions
on r’ can be calculated wusing the wusual rules for
manipulating PBs.

From (C27) it is clear that the Pa.b are not canonical
variables. Hence (C26) is in nonstandard form. Also the PB
i s degenerate. This follows from the existence of functions
on I"‘ that are conserved for any "ﬂ. whatsoever (in group
theory language, a function on the Lie Algebra that commutes

with every other function is called a Casimir function). We



can construct conserved functions most easily by studying the
properties of the evolution equations for P written in the

"finite form".

(c28)

For completeness the derivation of several useful properties

of Pw and its eigenvalues is given below (also see Arnold

1978).
(i) The eigenvalues of Pw are constants of motion

Proof: An eigenvalue, )\t' obeys /Af 1 - Qw/ =0

(c29)

| hd - Bw] = |2t - SRS
= 1S, (MN1)S, - Rw| = | N2 -Ruw]
| (C30)

VW have also shown that the entire characteristic equation

Therefore >\é = >\

[}

(C29) is conserved. Writing (C29) as

4

3 2
A F AN AN AN+ A, =0 (ca1)

we note that 4, , CI,_, Q, and Q4 are also constants.

CiidIf ) is an eigenvalue so is - A

Proof: /)x]l“‘Pwl:‘—‘-o %/(AZL——P"O)-TI:O



:.él)\‘ﬂ_'l'wPI:O Since LL)Q'-"—"'II.

|dw —P|] =0 = |M\L +Rs|=o0 [

Hence only the terms with even powers of )\ ( a.z_and a_—_,,) in
(C31) are nonzero. These coefficients are sums of products
of the eigenvalues and they are related to the traces of

various powers of Pw . So we can write our Casimirs as

f, = Tr (Poo)q_

£ = Tr(Pw)4 (c32)

Since (C29) is of degree 4, higher powers of Pw can be
expressed in terms of lower powers (by the Cayley-Hamiiton
theorem - we thank C.S.Shukre for pointing this out to wus).
So two independent Casimirs are f, and ﬁ,)_ which are
conserved for any S'(:' Therefore the evolution of P is
restricted to an 8 dimensional submanifold of F W could
have anticipated the existence of two conserved quantities
from the existence of two Poincare invariants for the
Hamiltonian evolution on the (X y Y s V,,_/Vj) space. For
evolution wunder the action of generic potentials Poincare
invariants other than the phase volume do not give global
conserved quantities on r—’ - harmonic potentials are
exceptional. The Poincare invariants for a GD are the volume
occupied by the GD in phase space and the 2-area of the

maximum plane section through the GFD.



(iii) The eigenvalues of Pw are pure imaginary. W give a
nonrigorous proof of this. Let us consider the Ilinear

dynamical system

2::)7«,02

T
This conserves 3'—'—‘ prw?_'_. It is easy to see that when
P is positive definite w'Pwis negative definite. So the

- - T -
level surfaces of 3 are compact implying that Z Z remains

bounded. V¢ know that if )\ is an eigenvalue of Pw , SO are
* ¥* N . .
)\ ’ -\ and -\ . I f is not pure imaginary two of these
four will have positive real parts implying that for some
T
initial 2, ZZ will grow without bound.

So the eigenvalues of Fo are of the form

a ) , , y ( & 1"-',3 , the nondegenerate case)

or of the form

b) A = AKX (p(=ﬁ , the degenerate case)

The 8 dimensional surfaces on which the le are constrained
can be labelled either by (X, IB ) or by (:,I’KZ)'

The implication for the dynamics of GFDs - even when they are
tidally perturbed - is that two configurations which have

different (o(,/@) or (f,,/:?_) cannot be deformed into one

another through symplectic means.
Our starting point in the above analysis was the PB
structure of Morrison and Greene. In fact we could have

started with (C28) without worrying about the wunderlying



applications to galactic dynamics. In some recent work in
quantum mechanics and paraxial optics properties of equations
which are related to (C28) are studied (see eg.Mukunda et
al. and references therein for a different perspective).
This approach emphasises the group theory aspect wherein
(c28) is viewed as the action of the group Sp(4,R) - in
general Sp(2n,R) - on its Lie Algebra. A theorem due to
Kirillov, Kostant and Souriau (see eg. Chu 1974) guarantees
the existence of a symplectic structure in more general
cases.

It is interesting that the two constants ¢
and l& associated with the oscillating spheroids of chapter 3
can be simply interpreted in the framework given here. The
motion of particles along the z axis of the spheroid is
governed by a time dependent oscillator equation, and the
projected "area’ of the model in the Z_—-V2 plane is
conserved. There is a similar conserved quantity associated
with the x -V, (or y_-Vy ) plane. For a time independent
oscillator this phase area is clearly proportional to -Qo a_2
where _Qois the frequency and @ the maximum amplitude. Once
these two constants are computed for a given static model,
they retain the same values for any oscillating model derived
from the static one by Hamiltonian evolution in phase space.
A look at equation (3.45) shows that ﬁ is essentially one of

these invariant areas and & is their ratio.



APPENDIX D

NUMERICAL SCHEME USED FOR GFDs

W outline the basic features of the numerical scheme

used to solve (4.22) self consistently. W recall that

p = KP + PK'

It

(D.1)

h
where OZX'L 12)('2.
K = (D.2)

- }F Ozx‘L

": is the 2 x 2 matrix given by (4.27) and (4.35).

depends on , Pm_ , P-‘,_.,_ and this'is what makes (D. 1)
nonlinear and self consistent. When (D.1) is to be solved
numerically, one has to use a finite difference scheme. W

use the "finite" version of the evolution equations as given

in (4.20)

P(t,) = SP*)S’

(D.3)

instead of writing down a naive finite difference
approximation to (D.1) itself. The advantage of evolving P
by (D.3) is that symplectic properties (like conservation of
Tr(Pw)'L, T,—(Pw)4-) are automatically preserved upto machine

accuracy. 5 is that symplectic matrix that takes Z(‘f,)to

Z(t,):
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2("51) - SZ(fO (D.4)

This is just the evolution equation (in finite difference

form) for two coupled harmonic oscillations. A simple leap

frog scheme ( update coordinates and then momenta with forces

computed from the new coordinates) will guarantee

preservation of the symplectic nature of the equations as

the time sTep

well as numerical accuracy to second order in Af}/\. The
matrix that updates coordinates is

:H'?-X'Z. At 12x7.
A, = (D.5)

Oz :ﬂ-zx'z_
while the matrix that updates momenta i s
[ 1 O 7
202 2x7

/<§V = (D.8)
-at F ]’J

Ve write
N

S = AV_:_ /3?2\/ AXA\)AX_L (D.7)

where the time interval (1‘:?_—{:,) has been subdivided into N

equal intervals

(D.7)

At

/‘Sx'i and ’<§V—'- are updates over times > ; this is required
Z

by any leap frog scheme. Since we are dealing with a self



consistent problem, AV at each stage is calculated from the
present value of P
The addition of the tidal field of a perturber just adds

terms to and the whole scheme outlined above goes through.
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