CHAPTER 5
EFFECT OF AN ENCOUNTER ON A GFD

5.1 Review of the impulse approximation

When two galaxies encounter each other at high
relative speeds the effect of the encounter on the gross
features of each galaxy such as energy and angular momentum
can be estimated analytically. The nature of the
approximation is as follows. If the relative speed between
the galaxies is large enough, the effective duration of the
encounter is short when compared to typical orbital (or
dynamical) times for stars within each galaxy. Then, it is
reasonable to suppose that during the encounter stars
(relative to the centres of their galaxy ) have not moved
appreciably. Having frozen the stars, it is straightforward
to calculate the "impulse™ (change in velocity) given to each
star as a result of the encounter. During the encounter, the
centres of the galaxies are assumed to move in Keplerian
hyperbolae. W shall also show that within the impulse
approximation theory, straight line trajectories are a good
approximation.
Let the galaxies have masses M’and Mz_and median radii

T, and 7T, . Then, the orbital timescales within the

galaxies are.

3/2
~ T 3
tl ' t ~ T P (5.1)
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Suppose now that the galaxies undergo an encounter and at the
instant of closest approach let b be the separation between
their centres and V, the relative speed. The effective
duration of the encounter is

+ ~ Ma X (77 )T b>

ehc (5.2)

V

W treat the encounter as impulsive when

To, « min (€, ,t, ) (5.3)

While wusing the impulse approximation, we assume that the
density distribution in each galaxy remains unaltered during
the encounter. Hence we may treat the galaxies as rigid
bodies with their centres moving in Keplerian hyperbolae. A
simple argument shows that the hyperbolic trajectory of the
reduced mass can be approximated by a straight line
trajectory. It is the deflection angle of the reduced

mass then

tan (6/,) = G(M+H)

(5.4)
A%
00
where P is the impact parameter and Voois the relative
speed at infinity. Since b < }5 and
2 2
Vw =V - QGI(M,"‘MI) »¥€ have

b I
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3 3
From (5.1) G‘l(“;"'”’m) ~ '77/{__"2. + 7;'/7‘::-

Let us suppose that b > max (7 'r;_) Then with tz fvb/v

we have
/N a2 ic} 2.
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YGRS I S o i
t tr £,> ke

From (5.3), since Ty, < M(f,)—tg_>

bV~ S
G(H,+M,)

Therefore'tam,(9/7_)~01'mp1y1'ng that the relative separation
vector is hardly deflected from a straight line path. Also
the impact parameter (/3) is very nearly equal to b .

Let the centres of M, and MQ_ move in the (x-y) plane and
let the position vector of the centre of Mz (the perturbing

galaxy) with respect to the centre of MI (the perturbed

galaxy) be given by

R =~ <b,\/1‘:,.o)

——

(5.6)

|
Let AV} be the change in velocity of the jth star belonging

to the galaxy with mass M, due to the impulse given to it by

_F

M . The total momentum transferred to M

) ‘|SZMA
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where ’M}is the mass of the jth star ( Z_’M?=M’). Therefore
4

the change in the velocity of the centre of mass of Ml is

/
BV = Ll (5.7)

cm M’

The change in velocity. of the jth star with respect to the

centre of mass of M, is

AV, = AV, — AV, (5.8)

—c— ———

VW can write down an explicit expression for AVQ_ in terms of
the approximate orbit (5.6) of Mz' It _E(r,-l':) is the force
per unit mass (at position 7 with respect to the centre of

M, ) due to Mz. at time t, then
00

av, = | F(nt)#

(5.9a)

AV} = F(E,‘{-‘) - / Z'mk_E(rk)t ot (5.9b)

— - M R
=00
Having calculated AV;—, we estimate the change in the
internal energy and angular momentum of Ml . Since the

potential energy of M, does not change during the encounter,
the change in the internal energy equals the internal kinetic

energy imparted to M, which is
| 2 2
AE = o %"’”k{(‘fﬂ“"%) - Vi j
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where Vk is the velocity of the kth star before the

encounter.

W note that the first term (which is 1linear in AVlg)

vanishes when there is no streaming motion within the
unperturbed galaxy. Also, it can be shown that since _E is
derivable from a potential i.e.F=—Vjo), Z’Mk<Vh'AVk>
vanishes, by symmetry, for an axisymmetric galaxy. Th.e—:ef;_r—e
the galaxy gains internal energy

Z“k/’l_vi!z

= 1
AE Z (5.11)

Also the change in angular momentum i s

—
e,

AL = Z_ My ( t’i X Avh> (5.12)
R

When the galaxy gains AE (5.11) as pure internal Kkinetic
energy, 1t is disturbed from its equilibrium state. The
process of readjustment to a new equilibrium involves
considering how much mass and energy are lost from the system
(see eg. Aguilar & White, 1985 and references therein for a

discussion of these issues).



5.2 The tidal approximation

Let R be the position vector (at some

instant of time t) of the centre of M,_With respect to the

centre of MI . W can expand the force per unit mass at
position (from the centre of M‘ ) due to Mq_in a Taylor
series.

F(riR) = F(o3&) + (2 9)E| + OfFe.rm

=0

The first term gives the acceleration of the centre of mass
of M, while the second term (to first order in % Y is the
tidal force acting on M,. In the ( first order ) tidal
approximation only these terms are retained. It is clear that
the tidal approximation is quite independent of the impulse
approximation. But when they are combined one obtains a

simple and useful expression for the impulse ( AV(_“_/_")).

5.3 The impulse + tidal approximation

Let us suppose that Mzis a point mass whose position
vector (KB) with respect to the centre of M, moves according

to (5.6):

R@) = (b,VE,0)
Then

f(r)B) ::G‘M7_<B-—r)
IR =1 |®

(5.14)

In the first order tidal approximation (5.13)
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= =

_E(I;_R_) ~ GM, g +{3_€(B_'I) _r
(5.15)

Using (5.15) and (5.6) in (5.9) we get

é)/fr) = 2GM, <Z,o,—2)
b*V

(5.16)

I f P(I) is the density distribution of (the unperturbed)
Ml, using the expression for AV(Z_")'From (5.16) in the

expressions (5.11 and 5.12) for AE and AL , we get

2o
2:‘:-!;1;: (x"'+%")f’(r) d?— (5.17a)

i\

AE

([ x
3

A
AL = Q{i’\\jzﬁ%(—#%) +g(2xz)+ %(-I&)}/\d

1l

)
+(5.17b)

For a spherically symmetric system
3 3
f(x_%r 2B P(ryar = %fv-if(r) ar

Defining the mean square radius of I\/II as

3
rr = 4 T fr)dr (5.18)
I



we write
26 M M
AE_ _—:.v G" 2 !
bFv®

el a

(5.19)

Therefore the most effective encounters are those which are
slow and close - precisely the cases for which the impulse
plus tidal approximation can be expected to fail. Even if
the encounter is fast and distant, AE can be large if Mzis
large. VW note that the only properties of the perturbed
galaxy that enter (5.197 are its total mass and mean square
radius. In particular the impulse + tidal approximation
predicts that the velocity space distribution of the
perturbed galaxy does not determine the energy transfer in
most cases of interest - the exceptions being those for which
the linear term in AY in (5.1CL makes _a nonzero
contribution. For most galaxy models 1}, y,%, Z X are zero.

Therefore é_l____ in (5.17b) is expected to be zero.

5.4 The tidally forced GFD

It is quite easy to relax the assumptions of a point

mass perturber and of a distant encounter (ie. the first
order tidal approximation). Results for these more general
cases are reviewed by Alladin and Narasimhan (1982).
However, it is much more difficult to go beyond the impulse
approximation. An exception is the work by Palmer and
Papaloizou (1982). They studied the effect of a slow

encounter on a rotating disc in an approximation that went

beyond the impulse approximation, but one which neglected the



changes in the self gravity of the disc during the encounter.

VW present an analytic model of the effect of an

encounter on a galaxy which has the following features.

(1) The perturbed galaxy is a GFD.

(ii) The perturber moves in the plane of the GFD.

(iii) The tidal forces on the GD are truncated at first
order as in (5.13).

The return for confining oneself to these special
circumstances is that one obtains a set of ordinary
differential equations for the (10) parameters of the GFD.
The numerical work involved in integrating this model is
trivial compared to that needed in a full N-body code. This
model goes beyond the study by Palmer and Papaloizou (1982)
in that the fully self consistent response of the GID is
retained, although it is restricted to harmonic forces.

Below we summarize the construction of GFDs which was
discussed in detail in chapter 4. Then we show how to
include the effect of the tidal field of a perturber (on the

GFD) moving in the plane of the GFD.

5.4a Summary of the construction of GFDs
(i) GFDs are described by phase space distribution functions
which have the form

£ _ jf("‘I)—'/Z

&FD

T
where I. = £ Q% is a positive definite quadratic form
T
"”%=(xl‘4—,Vx,Vy) [ Q_isapositive definite 4 x
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real symmetric matrix].

(i1) Integrating j‘?FDover Vx_and Y‘I’ the surface density

Z

2.

) < (1 —-q@))

where ?(—é) is a positive definite quadratic form in X and
(iii) The interior gravitational force due to is linear
in Z and g_ The resulting linearity of the equations of
motion ( Z =K%Z) for a star belonging to the GDF allowed
us to construct the integral of motion

(iv) I = an integral of motion implies that Q obeys

Q = -KQ —QK

(v) This equation for Q is more conveniently written in

-1
terms of P = Q since the elements of P are averages of

phase space coordinates like XxX?*, Yy, xV_etc.

P = KP +PK

(vi) K is determined self consistently from )D itself:

r-OZX?. :H‘a.xz’\

VAN
I

- O,z
- _J

where ": is the 2 x 2 matrix containing the "strengths” of

the force of self gravity as given in (4.27) and (4.35).



5.4b Including the tidal field of a perturber

V¢ recall (4.24) that the internal gravitational

potential of a G-D can be written as
YR
(x + = _9_{_2.7' + B x -}—-_l)_
pzigt) = & pxg + L ¢

where ¢ , B and )) are time dependent.

From (4.27) and (4.35) ” /B

F=1g v

ACors + Bdn’o

K
i

p o= (A% B7) dnb Cost
¥

A (perturbing) galaxy moving in the plane of the GFD exerts

Adnre + B tsso

1l

tidal forces on it. When the variation of this tidal force
over the size of the GO can be well approximated by the
first order tidal approximation (5.13) we note that the
addition of these tidal forces to the self gravity of the GD
preserves the linearity of the equations of motion
( 2 =Kz). All we need to do is to add the "strengths" of
the time dependent tidal force to ¢ , ‘B and )) . The
perturber could be the extended halo of another galaxy which
is assumed to have a rigid density distribution or it could
be another GFD whose structure itself could be time varying

and coupled to the original GFD. Or again, for simplicity,
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the perturber could be a point mass moving in the plane of
the GFD. In any case, the motion of the perturber is

determined by

acceleration of the) acceleration of the)
R= centre of mass of the = |centre of mass of the (5.20)
perturber by the GFD GD by the perturber

where _R_ is the separation between the centres of the
perturber and the GFD. W note that (5.20) contains the back
reaction of the GD on the orbital motion and allows for
energy and angular momentum transfer from the orbital
motions of the GD and the perturber to the internal motions
of stars within the GFD.

In particular for a point mass perturber the addition

of its tidal field changes

”:::/(X’B & FI O(I ,
Y Py

I

where 2

X
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AL\l
Y —G6MI{3(Rg) 1
RZ R*
The force exerted by the G on the point mass depends on

the instantaneous shape,size and orientation of the GFD. To
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GFD sIzE
first order in R this force depends only on the

position of the centre of mass of the GFD. So we write

R = —G&G(M+M) R

= . (5.22)

F23

s
which is correct to first order in (____GF) R' /-ZE)

5.5 Preliminary numerical studies

VW study the response of a GFD to a point mass moving

in its plane by numerically integrating (4.22):

p = K'P + PK'T

/
K now i s given by

OZX’L jl'

X2

K' =

, (5.23)

-F Ozx'z._
where ' , Wwhich includes both the self gravity of the G
and the tidal force of the point mass is given in (5.21).

The motion of the point mass is governed by (5.22).

Although we could have the pertuber moving along
elliptic or circular trajectories around the GFD, in this
preliminary study we shall only consider cases when
describes hyperbolae. At time = 0 we keep the point mass far
away (R(o)) 50 x GD size) from the GO and choose the G
itself to be a Kalnajs” disc. Let us recall the form of the

phase space distribution function of the Kalnajs disc from

section (4.1):
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Usi ng
= (5.25)
Ve -4 (& Vy’

in (5.24) we can imediately wite down the matrix Q as
K
2
| 2,1 N9

(5.26)
\—m 1

/I © o -]
where ﬂ.= and 52‘- (5.27)
- 0 | ) o)

-
We can easily invert QKto get 5 = QK :

i -Na+y

K (5.28)

na*g Noly'Sd
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Let the point mass perturber pass by with a distance of
closest approach = b (l>>>a_) where its speed is V . Before
we describe our results in the next section let us see what
the impulse + tidal approximation predicts for the changes in
energy and angular momentum of the disc. From (5.16), the

impulse transferred is

AV(xy) = 2G0Ma (x0)
blv (56.29)

(the Z component is ignored because the disc always remains

confined to the x-y plane).
From (5.17a), the energy gain of the disc is
2, 2
mp Bty

— 2
V¢ know from (4.28) and (5.28) that x? = a/s

ZL

Therefore

2 2 0
(AE) Z G MM, g (5.30)
ImP 5" bq'\/:' .

1

O ——

From (5.28) we see that XY is zero for the Kalnajs disc.

Using this fact in the expression for angular momentum

transfer, (5.17b), we have

I
o

(5.31)

(AL) mp

The total energy of the undisturbed Kalnajs’ disc is



% 2

Defining
. : : : _
(i) dynamical time for the unperturbed disc = -t-dyn." 1,
(i1) encounter time = ’I‘:m = b/\/
V¢ can write the fractional energy transfer as
(AE)'”"’ = 22 (_ﬁ/’_'f. )L Eone l'ﬁ_é (5.33)
| E| A% \ Myee (1&,,% ‘b

These are the results in the impulse approximation,
which can be compared to the exact calculation for this model

described below.

At t = 0 the system was chosen to be a Kalnajs’

disc of-unit mass and radius. The gravitational constant, G,
was set equal to unity in all cases. Then -Q-:- = %’I_L’ and the
only free disc parameter is 0 , the angular rotation
velocity. The kinetic and potential energies of the disc do

not depend on 0L -

3m
Kinetic energy = | = =T
(5.34)
’ — 3T
Potential energy = W = —-2T = =
while the angular momentum ( L ) is proportional to {2 -
= 20
L . (5.35)
5
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The perturber was chosen to be a point mass with mass
Mg_,—-_-_ 2000. |t was set on a (Keplerian) hyperbolic trajectory
with a distance of closest approach, b:ZO . Since the
perturber is on a hyperbolic trajectory, there is a certain
maximum angle, (’O’M\x’ which its asymptotic velocity at t = o0
makes with the line joining the centre of the disc and the
point of closest approach:

/ )90m>777?_7£"\
= )

= Cog! T (5.36)
(IDW ( Eccentricily don ol E

At t = 0, the perturber was chosen to be at (-0-9 C,Omax).
The speed at closest approach was varied from its minimum
allowed value (\/,,\,h = (2—51(:4[;*@1.).)sz Iy 14569 - for
parabolic orbits - to quite large values. The response of
the disc was monitored by solving (5.23) numerically for a
period of time in which the perturber moved from (,0:-'-0'930

max
to ¢y = 0'9(,0 . The program that solves (5.23) numerically is

ma x
described in Appendix D where, now, the tidal field of the
perturber is also included.
W have performed experiments for the cases Ll = +1,0 and
-1. While the behaviour of the disc itself is an interesting
problem that remains to be understood, here, we discuss only
the energy and angular momentum changes. Using (5.33) and

(5.31) we note that the (impulse plus tidal) approximation

predicts

L:
Il

I
(0-02.7_5‘158‘> (—;E-,_ (5.37a)
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(A‘—>.m/, = 0 (5.37b)

where T ='tdzm =V (5.38)
tene bLl,

is a dimensionless measure of V .
5.5a Energy transfer
Figures 5.1,5.2 and 5.3 show the fractional energy transfer

as a functionof T forﬂ = 10,-1 respectively. The

ordinate is

Vo= (_’A.%)'z_’ix 100

(5.39)

Then Y”\P = 2.25158 for all three figures. We discuss our
results briefly below. T takes values starting from its
minimum allowed value of Tmm: _\_/_vyn_z 0.4608 to values as
large as = 25. bﬂo

The case L = 1 (fig.5.1) corresponds to a disc
rotating in the same sense as th'e angular velocity of the
perturber's orbit. For low encounter speeds, corresponding to
small values of T , the response of the disc is very
sensitive to T . In the range 0.4608 & ’Cg 0.75, the
energy transfer is almost unpredictable, oscillating wildly
from sub-impulsive (Y< me) to more than 20 y‘”‘P' VW have
displayed a few data points in this region. The line joining
them is only schematic because the real oscillations of y

are much too wild for sensible display. As T increases

beyond 0.75, the encounter time decreases and the energy



transfer approaches the Iimpulse approximation prediction
asymptotically, while always remaining (as far as we can

tell) greater than Y’"P'

........................................................................................

ok ‘6 1 158 251 & 63 Jo 158 251
[ 3 A

Fiaure 5.1 . £Energy Transfer o (L = |

The case Q = -1 (fig.5.2) corresponds to a counter-
rotating disc. This also shows rapid oscillations for
0.4608 £ T £ 0.75 and Y asymptotically approaches ka

™
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while always remaining below Ym/,-

a5

04316 1 3-16 10 316
TAU

Fisure 5.2 . Ekergy ’ﬁ'ywv\sfa £ S2= -]

The oscillations of Y for slow encounters is surely due to
a resonance between the orbital motion of stars in the disc
and the perturber's tidal field. The rapid oscillations are
perhaps due to the harmonic (though time dependent) nature of
the forces on stars in the GFD. The inclusion of nonlinear

terms (in x and y) in the force acting on stars belonging to
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more general discs might smooth out these oscillations.

When () = 0, the unperturbed Kalnajs’ disc is maximally
hot. As fig.5.3 shows, the rapid oscillations for small
values of T seen in the cases fL = +1 are absent here.
Instead, y shows a gentle non monotonic behaviour for these

small values of T. For T £ I'58 , (_Y__) > 202
lmP

which is a large () 100%) deviation from that predicted by
the impulse approximation. \/ generally is greater than Y,,.\P

and approaches me rather slowly asymptotically.

0

04 63 1 |59 2.'5'_{_AU‘I- 6.3 10 I58 251

FiswrE 5.3 . Energy Tramsfer fo 2 =0



5.5b Angular momentum transfer
For all cases, the angular momentum
transfered to the disc increases monotonically as T
decreases from about 24 to 0.8. In this range at any fixed
value of T, AL (the angular momentum gain of the GFD) is
greatest for the corotating case ({L = 1) and least for the
counterrotating case ({lL= - 1The details are briefly

described below.

Case = 1: The unperturbed disc has
L. oo0.4. AL increases from leo_efor T = 24 to9FX JD-zfor
T= 0.8. As T is decreased further, A behaves
nonmonotonically. This is shown in fig.5.4 below. As before

the line is only schematic.

FIGURE 5.4 ang. mom. transfer

omega=1,.=0.4
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case £2 = 0: The unperturbed disc has no angular
momentum. AL seems to increase monotonically from Z'S'XIO_ for
T = 24 to 0.1 for T = Tm":‘ 0.4608.

case {L = -1: The unperturbed disc has L. = -0.4. AL
. - 6 -3
increases froml'4x10 for T = 24 to6éx10 for T = 0.8. It

i s nonmonotonic for smaller T as shown in fig.5.5 below.

Fiavre 5.5 ang. mom. transfer

omega= -1, L= — 0.4

16

14 %
12

NI AY

(delta L) * 100

...................................................

=9
045 0.5 0.55 0.6 0.65 0.7 0750758908499

tau
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5.6 D scussion

In a different context Subramanian (1989)
considered the response of a maximally rotating Kalnajs disc
to the tidal field of a perturber (in the first order tidal
approximation) moving in its plane. The disc itself was
assumed to be embedded in a rigid, homogeneous spherical
halo. . Such a halo introduces an additional potential
(-P‘1 =D-h|2_1which can be incorporated in the formalism we have
used to describe GFDs. The Kalnajs disc problem studied by

Subramanian turns out to be a particular cold case of the

interactions of GFDs discussed in this chapter.

The formalism we have set up allows a wide
range of intersting situations to be explored. Energy and
angular momentum transfer, heating and disruption of a model
galaxy by an encounter can be studied. |t should be mentioned
that there is no post-encounter relaxation in this model. A
more realistic model would presumably relax . However,
encounters represent behaviour on at most a few dynamical

timescales and we are optimistic that this will prove to be a

useful guide to the behaviour of more realistic systems.
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CHAPTER 6
CONCLUSIONS AND OUTLOOK

This thesis began with the general theme of studying
the time dependent behaviour of collisionless self
gravitating systems. It is rather hard to obtain exact,
general results by analytical methods (see Mathur 1986 for an
attempt in the linearised case). The traditional route
chosen has been numerical and considerable progress has
recently been made in this direction (see eg. Barnes 1989).
This approach will certainly allow the study of cases without
special symmetry or other simplifying assumptions, at least
when enough computing power is available to handle three

6
space dimensions and a large (~/0 ) number of particles.

The analytical studies that gave so much insight into
steady state systems (see eg. BT) are all too rare in the
time dependent case. To our knowledge Kalnajs’ (1973) model
was the only one before this work wherein time dependent
behaviour was studied analytically without approxiamtion.
The work reported in this thesis has now added four distinct
families of exact, analytic, time dependent models (described

in detail in Chapter 3, Chapter 4 and Appendix A).

The shell models of Appendix A are cold, occupying a
four dimensional surface 1in six dimensional phase space.
Time dependent generalizations of Freeman's spheroid also

occupy a four dimensional region, while the time dependent
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generalizations of Polyachenko's "hot" spheroid occupy a five
dimensional region. It is not clear whether these models
will be stable to small disturbances. In any case, it seems

hard to find situations in which such models could form and

they should basically be regarded as illustrations of
behaviour allowed by the CBE. Viewed as such, .they
demonstrate two interesting possibilities. (i) the

existence of oscillating spheres with nonuniform density.
This possibility was raised by Louis and Gerhard (1988) in
their numerical work. (ii) The chaotic behaviour of the
spheroid axes. This is very remniscent of anisotropic
cosmological models which again reduce to Hamiltonian systems

with a finite number of degrees of freedom (Misner 1969).

There are also two hot families, occupying a nonzero
phase volume. The hot oscillating spheres have . "inverted"”
phase space distribution functions and uniform real space
density. In both these they differ from realistic galaxy
models which have higher phase density at low energy and a
strong decrease in real space density outside a central core.
It is not clear whether the oscillations of uniform spheres
found here will turn out to be stable and hence applicable to
a wider class of models. This possibility is worth
examining, perhaps in future numerical work. An undamped or
weakly damped oscillation of a dark matter halo (for example)

could be an energy input for gas flow in the time dependent

potential.

The second hot system studied in this thesis is the
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generalized Freeman disc. Again there are significant

differences between these models and the phase space

structure of more realistic bars. The stability is again an
open question which will probably have to be answered by
numerical studies. It is interesting that these model bars

are stable under external harmonic potentials (these keep the
model within the class of generalised Freeman discs). A more
general stability analysis would be of great interest because

bars are abundantly found in the real world.

Finally, the analytical study of a particular tidal
encounter model in this thesis has allowed a convenient
exploration of the validity of the impulse approximation, the
effect of roation, and resonance effects between internal and
orbital time scales. 1t will again be of interest to see how

well this tractable model is able to mirror more realistic

situations.

In brief, the new analytic models of time dependent
stellar systems presented here have interesting properties
in their own right and may also point to directions which

need systematic explorations by numerical methods.
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