CHAPTER 3
HOMOGENEOUS SPHERICAL MODELS

3.1 Construction of the models

W briefly discuss stationary models of homogeneous
(ie. uniform density) spheres and then go on to generalize
these models to time dependent states. A homogeneous,
stationary, self gravitating fluid sphere corresponds to a
polytrope of index zero which is not realisable as a
collisionless stellar system with isotropic velocities
(Vandervoort 1980). A distribution function (f)) that is a
function of energy alone implies isotropic velocites and
therefore will not describe a uniform sphere. One

- - - .L -

alternative is to seek a function of both E and L ( Lis
the angular momentum per unit mass =7 x V). Another is to
introduce some rotation by requiring fo to be 4 function of

2 . . .
E, L and L% . Two functions thatdescribe a uniform

sphere are (see Fridman & Polyachenko 1984 - hereafter FP-

and references therein)
-1
2 la.

f; o< ("L; t¥(R,) - E (3.1a)

2R>*

f < 5(V,_)5(VJ_"VC(7")) (3.1b)

where Vc('r') is the circular velocity at 77, V,._ is the

. . % “ 2 )
radial velocity and V_L =V —V,'_. Any f- is a member of a two
[+



parameter family of functions characterized by total mass
(Ma) and radius (Ro). The different members of such a family
can be derived from each other by a change in the units of
length and time (of course there could be other continuously
varying parameters which modify the distribution function in

a less trivial way). The interior gravitational potential is
2

¢(r) = W, T (3.2)
2.

Since by Poisson's equation

2 2
Ve = 3w, =href, = 3&M, (3.3)
° 3
R,
we can (for convenience) use W, and Roas parameters instead
of Mo and Ro. V¢ note below some general properties of the
S in (3.1). They can we written in the form

£ o= f (B, P50, R) (3.4)

Since
3
Po e fo\ dv (3.5)
using (3.3), we have
2 2
ff dv = 3% f T <R,
]
bma
3.6
= ) —fa—» 7">/ R° ( )

| /
Defining V = .Y-/r"'w and T = ')"’/wo , we have
— o — ——
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The time dependent generalization is based on the following
simple observation. In (3.7), the expression in the first
slot is the energy which is a constant of motion for a
particle moving in the potential given in (3.2). The energy
is quadratic in ¥V and T (equivalently _\_/_I and _’I‘_I). When the
potential acquires time dependence (whil e remaining
proportional to ')"7'), the corresponding constant of motion is
the sum of the Lewis Invariants (with the same function
E(—{_—)) for motion along x, vy and z. Since the Lewis
Invariant is a quadratic expression in _\_/_ and _ , replacing
energy by this sum of three Lewis invariants in (3.7), should
on integration over velocities give uniform density inside a
spherical volume. VW carry out this, programme explicitly

below.

Let us write the gravitational potential of the time

dependent sphere as

p(r,£) = wi(E) %’_-2 (3.8)
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The Lewis invariant for motion along the x direction is

2. . 2.
Ix_ = %%7»—,— —%(EVL’?:t) (3.9a)
where .5 + wl(t) -g 1. =0 (3.9b)

gB
VW have similar expressions for Iy and Iﬁ. Choosing the same

function ?—@ for all of them, and adding, we define

g

\

IL +I —f—I (3.10)
= T/zg’— + /gv—'g"-/

The proposed distribution functlon for the time dependent

sphere is
EACHY

Notice that W, and Rodo not have the same physical meaning

(3.11)

as in (3.4) but they still define characteristic scales of
time and length associated with a given time dependent model.
Alternatively they can be regarded as labelling a stationary

model which gives birth to a family of time dependent models.

The density

f =IJ€(%/5.‘£-E’1‘]+—E—;_ JIIX!}'L) otV

. 2 3
=——f(}_¢_ + & ,/g_xu./)oéu
- 2 - (3.12)

»

where



il

EV —§r (3.13)

= _'7_"/?

From (3.7), (3.12) and (3.13)

23
a

P(rt) = 3dae fo o+ ¢ RiG &
b6 g2

- o 74« N >/ Rom';g (3.14)

VW see that the radius of the sphere is oC %’({-) The strength

of the gravitational potential

wit) = @:/;3

(3.15)

Therefore, from (3.9b) and (3.15), ? satisfies

é" + ~ Wo - 1 =0 (3.186)

We note

(i) the spatially bound solutions of (3.16) are time
periodic, while others eventually expand to infinity.
These, as we shall see below correspond to spheres

with total energy negative and positive respectively.

. I

(ii) Choosing ; o /./wa corresponds to the stationary model
described by (3.1a). Small oscillations about this

stationary configuration (easily computed from (3.16)) occur

with angular frequency W, -

3.2 Some properties of homogeneous time dependent spheres
The mass (Mo), potential energy (ké) and the kinetic

energy (7:) are easily calculated for the stationary sphere



(3.4).

2.3
Mo - woRo
G
5
Wo = "'.,3_-. w04Ro
5
G (3.17)
T = -k
2.

In a similar manner various parameters for the time dependent

model described by (3.11) can be directly calculated.

Mass = M = Mo
Radius = R(-&) = Ro'\/z)_; %'('z‘)
Potential energy = K = Wo/f,j %'(_t)

Mean velocity at X = 14 (7_ —é) - r (_E_/\I
-’ g . 7 o3

= 4l = (5—)7‘7“/

.
. O
w, o

Bulk kinetic energy = 7;

Heat (kinetic energy associated with local peculiar

velocities)

h 2 w -
23
Total kinetic energy = 7] = ’/'Z —+ 71

The second mass moment about the origin is

2.
f)
I = P?"’LO!T‘ — 2—? 7: (3.18)
73]

o

The Virial theorem (see eg. BT) is



LT = 2T+ W (3.19)
2-

Using the formulae for I, 72 , 7;\ and N from (3.18) in

(3.19) we have

5 + ———%’3 = 0 (3.167)
Z')—

which is identical to (3.16) governing radial oscillations.

This connection with the Virial theorem allows easy
interpretation of the terms occurring in (3.16). The term

(-'/E?:) resembles the (repulsive) centrifugal force occurring
inl the radial equation for a central force problem. It is
clearly proportional to (7;1/%') and it makes good physical
sense that the sphere is hottest when maximally compressed.

The heat makes it bounce back. The total energy

v L
E :T_*'W:g'i(-g—'“/—_“ii + L ) (3.20

o \E & 2%*

Equation (3.16) admits a first integral

L2
A= 5w —1—-—’—-,2_ (3.21)
73 3 25

Therefore

o, (3.22)

when A 7} o the solutions to (3.16) are unbounded as t >
while for )\ £ O the solutions are bounded and time periodic.
As noted earlier, we see that these correspond to positive

and negative total energies respectively.



3.3 Oscillations of homogeneous spheroids

V¢ use the method used for spheres to construct models
of oscillating uniform density spheroids. The method is
applicable because the interior potential of a homogeneous
spheroid is quadratic in the spatial coordinates. A spheroid
with axes (6{,, a, aa with a,:az) along the x, y and z
directions respectively and mass density f; has an interior

potential (see eg: Chandrasekhar 1969).

2
()0 = Q,, 2"_:2" + w}_tt'__?‘ whone T = x7‘+g_°‘
° = - | (3.23)
where
2
L, = 2m&a LA (m)
. (3.24)
W, = 2mG L A3(m)
and axis ratio m = a'?:/Cl,

A(m) = (—m——-)f(w\) R (3.25)

,—W\,L/ I~ML

i\

()—-m'l'-)—‘,/z M‘<(/—_ML>1/Q_) Lo e /
(M')-__,>—"/7.,@,,\_<M+ (M%,,)‘/z_> foam | (3.26)

R (m)

il

2
Since Q% and _/2 satisfy V(ﬁa s[,qréuf, we have the following
relation between A‘ and A.B:

Allm) = 2 - 2A,(m) (3.27)
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Some examples of phase space distributions functions for
stationary wuniform spheroids are Freeman's rotating model
which is cold in the plane of rotation and Polyachenko's hot
model (see e.g. FP for details and references).

VW first explain the general strategy for constructing
time dependent spheroids and then go to details. The
distribution functions of these models depends on the

following integrals of motion

2 2 2
E_L ’\,/.:9- +—v_i— +Qor_
2 2 2
1 2 _ 1l
Eq; = Y_?—'_. + W Z
2. 2

(3.28)
L_ = xVy - ny_

The time dependent model is constructed from the static
distribution function by replacing EJ./_Q,, and E%/wo by
the corresponding Lewis invariants (see equation 3.32 below).
The axes are proportional to E(—é) and ')7({:) (see equation
3.37) which from the construction of the Lewis invariants
satisfy equations (3.34). Self consistency eliminates the
explicit time dependence in these equations since the force
constants _Q_Z(-é) and wz('&)are functions of g and ”7 from
(3.24). W get a pair of autonomous coupled second order
ordinary differential equations for 5 and ')Z (equation

3.39).
Uniform spheroids can be grouped into families
with three parameters determining the massM, and axes 0., ’

a_l. For convenience we choose the parameters to be ({} , wo y
(o]
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af Then, the density je is determined from Poisson's

equation.

brap = 207> +w,

while Q,is determined by equation (3.24)

A, (“3/0(,) -(Zoq'/ZW'GzJﬁ

!

and

_ 2
Moo= G Lala

We write the distribution function for any stationary uniform

spheroid in the form (Wd* 2, W, and a, as ¢a¢anuﬂzh4)

£=4(& 2.0

The density 3 2
.P - jlﬁ dy = S §7V’

Therefore,

i n 1 3
x +,i. + 0. V + W, _
ff<2m 29, DI N Bl A tv

Z
A
2
_J——- (ZIL *’a%i> h#qu Ziﬁ + jél Z /
ar a*r =

(3.29)

N

i\

LR

otherwise

i\
o

Defining
X=Vux ,Y=/0y ,Z={52z

(3.30)

ij = \QyQ?L ) Liy =:\%Z[ﬁg I sz = LQ/OZ%
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we have

2 ! r 2
§3€(L_ﬁ()—( +l-_'(l + X+Y ’ u’)"_f-zl, XUY"'YuX) d{(

———

2 2 2 2 2

2 2
— 204w, whem X +Y 2" |
ontz  mear * Ly €1

= o A2 rtae

The time dependent model is constructed from the stationary
distribution function by replacing E_L./_(L, and E%./a)o

respectively by the corresponding Lewis invariants

. 2
T+ Llgu - Er] whee r= (x50

A
I

2 2
g Vi = (%,Vy0)
o (3.32)
= ___%__. + — %
1“3 Z’)t 2 (07 V—z 7*}

The interior potential is

P(rnzt) = _(2_"-(19)1_2:7. + wz(f)%_?’ (3.33)

2 1L
where () (—t)and 2y H:)are determined from the density P(T‘I —2/-[-)
and the time dependent axis ratio by formulas similar to

equation (3.24).

5, ’>) are any solutions to

£+ 2@)x -.—;—-3 =0 3 £ vo
v - (3.34)
qor W) m o me g g e

The time dependent distribution function is

40



fo=£(ZT. 1)
The density is

P =ffd3v

Therefore

_ _7:__1 Iy V_,_—-' 2 Q. . 1
P - fjg (£ +L 15 P e ey

Defining / /
X=32g Y =4 ,7'= 2/
U, =

_ ! /
X EVL 7uY=EV} ,uzz’)]kk

kAT RSVl Y U IRV AU’
1% |2 XY, +___7=?XUY—YUX U

2 z 2

(3.35)
From (3.31) and (3.35)

— _L__' (Zﬂz—"‘wo?‘)
BN 46, Jo,

2L )2
whu. X +Y +Z < |

s , S (3.36)
LA, u%aa

A

= (o} otherwise
Therefore the new axes are
b= b, = {5 a,%

53 = .,/wo a3‘7 (3.37)

and the axis ratio
“ > bs /L1
From (3.24)
2
L =

2T G LA, (1)
wq, = 2TMG&G JDA3 (74-)

(3.38)



2. 1.
writing 29, + W, 9 K = [w, 43
2 SN e, i, Q,
and wusing (3.36), (3.37) and (3.38) in equations (3.34) we
get the follow ng equations governing the behaviour of the

axes of the honogeneous spheroid

) g 53 (3.39)
7+ E A (KLY - =0
g* .| %) 7

3.4 Sone properties of the oscillations of uniformspheroids

3.4a Hamltonian formulation
In this Section we point out sonme general features of

solutions to (3.39). Firstly, they can be recast in

Ham | t oni an form by a sinple scaling.

x = F y 4 =K1

(3.40)

The axes

b= ARAx b= may

(3.41)

while the axis ratio (ellipticity) is

u = bs/g, = ¢/x

(3.42)

Introduciné a function

= 7? u) —u
%}(t{) ( ) (3.43)

| — wu*



we can express A, and A3in terms of g,

Aw) = Ug(u)

(3.44)
AS(“') = 2~ Zug,(u)

For convenience we shall use constants & and B in place of

andK
2.
« = K* - ﬁ-(ﬁi)df
22\ a (3.45)

A = K = m/?—(‘%,)

0()/5 > o

Written in terms of x, y, ¥ and /3, equations (3.39) read

I
3

:'i—;-ﬁl?,—-

(3.46)

y + 24 (- wq) —X -,
U mg) T

To see that (3.46) can be derived from a Hamiltonian, we need

the following identity for 9,.

(1—-%1) %j:_ = 3“—3— — 2 (3.47)
w |

Using (3.47) it is easy to verify that (3.46) is generated by

the Hamiltonian (with parameters ¢ and ﬁ in the potential

O
7’( = 75::- -+ P‘yl -+ V(x-,g_>

_x. (3.48)
2



where —V' — —— + X —_é_ u_——(/—-u"-)?_]

2x* 4-g,°' x
An immediate consequence is that }( is a constant of motion.

Direct calculations using the Virial theorem and (3.46) show

that
H = 5E
2 (3.49)
P EINY
where M and E are total mass and energy of the model. The

time-independent Hamiltonian structure of (3.46) guarantees
that the oscillations do not damp asymptotically. Another
advantage is that we can use Poincare's method of the surface
of section (see e.g. Lichtenberg and Lieberman 1983) to
understand the nature of these oscillations.

For every allowed value of ¢ and B , 'V- has a minimum whose

location (Z, 31 ) is determined by,Bl/.- = _a_l/_— = 0.
ox oy

Equivalently, with W 6 = 9;/1 ’
o

3
X = 22U } —
9—(6:) | ubg(up); (3.50)

g = '/Zog,(“-o>
The solutions turn out to be unique; (o(,ﬂ) é (Zo,é(-o)-
The minimum inv_corresponds to a stationary spheroid with
axis ratio LLD . From (3.50) it is clear that LLO depends
only on O(' implying that & alone determines the ellipticity
of the underlying stationary model. Note that while & is

Vo

dimensionless, B has dimensions of (time) and hence can be

set to any convenient value by a choice of units. L(_o is an
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increasing function of o implying that prolateness of the
stationary model increases with increasing « . For X = 1,
the stationary model is a sphere. Figure 3.1 shows a contour

plot of _V—for ¢

1 and ,3 = 8/2. The minimum is at X, = |,
g.o = | where V = -0.75. Away from the minimum and toward
the coordinate axes, V" rises indefinitely. The contours of

Vfor other values of &« and '8 are topologically similar.

X

Fiaure 3.1. hevel surfoces of V(x,y)
for x=1 , B =3/
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3.4b A preliminary study of Orbits

(i) Variation of Ellipticity: 1t is clear from (3.49) that
#L 70 implies that E >o. Stellar systems with positive
total energy eventually disperse to infinity. Therefore
(x,y) should asymptotically increase without bound for
H yo- One such orbit is shown in Figure 3.2 for #{=o0'l.
The orbit can be interpreted as a collapse from infinity
followed by bounce and expansion back to infinity at a

different ellipticity.

(@]
N L) L] L L) l T L] L] T
> 2+ -
= ; e
3
L i /
1
i .
0.1 1
O »—..r b § 1 3 l A A s 2
0 10 20

FIaGuRE 3.2 . An unbounded ovbit at H =01
sl\owinj fhe c/\anje.é in el/ip‘ﬁ'c}fj
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Under what circumstances will ellipticity be conserved?

W should look for conditions under which U is constant
while x and y change with time; if y/x o y/x at some time
under what circumstances is y/x = y/x? Using (3.46) we
require

p 0w

'/2:3 " ﬁg’/xﬁ'

I
N

(3.51)

Since U is assumed to be constant, we can use (3.50) to set

i\

3 .
X LU (1 - u?—) (3.52)

Using the identity (3.47) for ?(u.), we get the condition
(lfu"') da. = o
aAdu

g. is an increasing function of { . Therefore W =] ; the
only self similar oscillations allowed are spherical

oscillations. Wren W=/, , 9_.=2-/3and X =] (3.46) reduces to

i' -+ (Zﬁ/3 -— —,__ = O
. %

-2
V¢ determine B from (3.46). Since =1, -Q,, = W, and
a, = a_3 from the very definitions of w, and _Qoin terms of
Q,and Q, . Therefore /8 = e, = 3 Ja,
Using this we get 9’('> >
>~ 4 A% _ 1 =0
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which is identical to equation (3.16). Note that while the
external appearance of these oscillating spheres is the same
as those described by (3.16), the phase space structure is

different since f now depends on Lzas well.

(ii) General features: W have solved equations (3.46)
numerically for « = 1 and B = 3/2 using a simple first order
scheme (update momenta and then coordinates). This has the
advantage that it represents an exact symplectic map of the
4-d phase space onto itself. So general properties like
Liouville’s theorem are preserved to machine accuracy
irrespective of step size. The suitability of the scheme was
tested on the Toda Hamiltonian (see e.g Lichtenberg and
Lieberman 1983) with satisfactory results = no spurious chaos
induced by discretisation or round off was found. Figure 3.3
shows a surface of section ( p{ versus y at x = 1, P&z. v o) for
H = -0.45. The (unstable) fixed point on the upper left
corner corresponds to oscillations of uniform spheres. For
H £ -0.45, this fixed point is stable (although we do not
show the section here). At M = -0.45, the oscillating sphere

is unstable to spheroidal modes and bifurcates into a quasi-

periodically oscillating spheroid. It should be noted that
this is not necessarily a general feature of all uniform
density oscillating spheres. The class of uniform density

spheroids is much more restricted than the class of wuniform
density spheres. So the present work only allows us to note
that the instability occurs for the subset of spheres that

are members of a sequence of uniform spheroids.
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The stable fixed point on the right hand side with its
accompanying islands corresponds to oscillations that are
roughly "orthogonal®” +to the oscillations of spheres (i.e.
they represent oscillations of ellipticity). The chain of
islands in between is due to orbits trapped near a 5:3

resonance between the two "orthogonal” nonlinearly coupled

modes.
. . I . r . I . . r
.0 .,
o een .
: ;0
. . X
. x\. \t\o k! R ¢
\\ C ..! .. . < “ |
v * : - 0
‘\.,_ PR C e aley 0:!":- - ) 1
>- P R
or T A -
o ooE et -
. aen '’ K -. ] "";‘:. - ’.v‘" é// ]
. TR T Seenert y
: BRI _
. 0 \\ \\ et .
1) [ ;°: ’-.J e s ‘:..s".'. ) |
or i L _
l [
1 | | 1 | | | | | |
0 1 2 3
Y
Ficure 3.3. Suvface of section (2= I )-/bx>°>74"‘
H = -0 45
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for 4 = -0.3. At

Figure 3.4 is a Section at x = 2.5, P

x
this high value of { , the basic instability of the spheres
has given birth to chaotic oscillations of spheroids. The
oscillation "orthogonal”" to spherical oscillations is still
stable and large regions of phase space around this are

filled with regular orbits.

10
o

-0.5

Fiaure 3.4 . Suyface of section (:z:= 2:5 'bx>°>
-pr H = -0'3
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3.4c Discs and Needles

W briefly discuss the extreme oblate/prolate limits of
the spheroidal model. These correspond to discs and needles
repectively.
(i) Discs: I n the stationary model we let QB—-)O, while
keeping the mass M fixed. The oscillations perpendicular
to the disc as described by the time-dependent behaviour
of bs. Since we are looking for solutions that correspond to

highly flattened configurations, we let bs —> 0.
When Cla —> © y m = 3 —_S 0

Also g(m)=T/y and A, = EE_G‘_% in this limit.

: 4a; 2.-(20/77‘
From equation (3.45), B — «/J—_Z:/g,(m)
VW recall that b,:fﬁ‘q,xvand bsz.,/:(—loa,#_. Since 133——)0 ,
and both m and &, are finite, %—-}o . The oscillations in
the plane of the disc are described by the first of the
equations (3.46).

% +__B__.9’(9'/x> — L =0

x% =3

Since -0 1 o) =TT d it
Y , we replace ?-(5-/1) by (o) ~ and write

X + 5% — o (3.54)
x* x3

which governs the oscillations of the radius (b,) of the disc

2 \/2
with surface density o (”'—E;_) obtained by projecting a
)
uniform density spheroid onto its plane of symmetry. What we

have is a time dependent generalisation of Kalnajs’ circular
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discs. A still more general family of time dependent discs

is discussed in the next chapter.

(ii) Needles: This extremely prolate Ilimit of spheroids
corresponds to a stationary model, with al-——) o while the
mass of which is kept constant at M. When 4, >0 ,m= A3 —> 00

/
and asymptotically

l/ i/
L = X <367Ma3)+ L = Y (3611‘40_3 *
: T 9 b= | ——=
m 2. ~'m 2

The equilibrium values of x and y are determined by setting

b’.—.: a, and b3=a3 :

-y

36,M 36 M
= ,,./_—- = Jm

*o N < za;) » 4 2q,°

Vs

The oscillations of the length of the needle are described by

the second of the equations (3.46)

9, +E§T(/_u%>——;%§ = ©

Since the equilibrium value of X >0 when mM = 0, WwWe set

w=Y%=2=min the above equation :
<

Il

' . d
y + 28 l:'mq‘(l —-Mg.(m))] = o (3.55)
4 &

As m —> o0
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« = (1) s 2t
2| a
Lo / y 3eM 1/4_
m'? (

3
24,

(3.56)

ﬁ = «[ﬁ;/?—(M) —
(I—n«g)m" — Aum
Yo
0 —> m <_3_w_>
2a2
Also, since g_—)oo , we need to work with ba=sz,a,y_. So, with

y_: _!3?—-, we have

4,
s

b§ = (3.57)

This is the equation of motion for a particle in a potential

!
0

b+ saM(bom) [ TE
2

well that is infinitely deep at b3=a3, Strictly speaking the
original CBE is not applicable to 2 and lower dimensional
systems due to collisional effects (Rybicki 1972). The
calculations on discs and needles given above must be
regarded as describing systems in which the thickness is

finite but small compared to the other dimensions.

3.5 Discussion

There has been earlier work on the oscillations of
uniform spheres and spheroids by Chandrasekhar and Elbert
(1972, hereafter CE) and Som Sunder and Kochhar (1985, 1986,
hereafter SK | and SK II). The approach of CE was to apply
the scalar form of the Virial theorem to a sphere. The

moment of inertia term and the potential. term could be



expressed in terms of the instantaneous radius, @ , and the
kinetic energy .followed from energy conservation. The
resulting equation for the variation of Q& with time is
identical to (3.16). Notice thatapplicationof the Virial
theorem in this manner presupposes the existence of undamped
oscillations preserving the uniformity of the sphere. The
application of the Lewis Invariant proves this hypothesis by
providing the underlying phase space distribution function.
CE also used the tensor virial theorem to study the
oscillations of spheroidal systems. There are now two
independent kinetic energy terms along the Q, and aaaxes, SO
energy conservation alone is insufficient. CE introduced an
additional postulate setting these equal to each other at all
times (an algebraic error was rectified by SK B> _ SK 1II
criticised this assumption as unnatural and instead assumed
that the mean streaming velocity in the stellar system was a
linear function of the coordinates. This hypothesis was a
natural one to make sure that the uniform density and
spheroidal shape are preserved as for fluid ellipsoids. This
assumption enabled them to derive a pair of coupled equations
for @, and Qawhich are identical to (3.39). This identity
can be understood since the Lewis Invariants I, and IB
(equations 3.32) depend on velocities in the combination
]‘g\_/i,_— ‘é:\z and (TZV%—"}Z)'Lrespective]y. When  the
distribution function depends on velocities through I, and
3’ it is clear that the mean value of the velocities y_J_-__and
\/a are linear functions of X and % . In brief, the

distribution functions presented in this paper provide



underlying detailed dynamical models realising the
assumptions of CE and SK II for wuniform spheres and
spheroids. VW know of no way to provide a similar basis for
general (eg. Gaussian) density profiles studied in CE. W
should also mention (i) that the Ilimiting case of a cold
collapsing spheroid has been studied by Lin, Mestel and Shu
(1965) and (ii) the work of Louis and Gerhard (1988) who
constructed an oscillating non uniform density spherical

oscillating model by numerical methods.

The stability of these oscillating solutions 1is an
important question that remains unanswered. If a given
oscillating solution is stable, it implies the existence of
nearby solutions which do not have precisely uniform density,
but share its nonrelaxing properties. V¢ know that the
stability of static models depends on the details of the

distribution function - there is a trend for hotter models in

general to be stable. When the parent static uniform sphere
or spheroid is stable, one might expect models with
sufficiently small oscillations to be stable as well. The

existence of nonrelaxing solutions would probably be missed
by numerical codes which directly attack the CBE (eg. White
1986) because of the unavoidable dissipation produced by

finite grid size.
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CHAPTER 4

GENERALIZED AREEVAN DISCS

In section (3.4c) we briefly discussed a limiting case
when the minor axis of oblate (time dependent, uniform
density) spheroids was allowed to shrink to zero, while the
mass of the spheroid was held constant. The resulting
axisymmetric, time dependent disc had surface density

a2
oC (l'_?:“:.) . When "a", the radius of the disc is constant in
time, the disc reduces to the equilibrium solutions
discovered and studied by Kalnajs (1972). In this chapter we
shall construct time dependent, collisionless discs that are
much more general in that the discs are allowed to be
nonaxisymmetric and they can not only oscillate but rotate as
well. V¢ begin by taking a quick look at Kalnajs' discs and
Freeman's analytic bars which are their nonaxisymmetric
generalizations.

4.1 Kalnajs Discs

These are axisymmetric discs which are stationary
solutions to the CBE, They are described by a phase space
distribution function (f‘;)'which has three parameters; the
disc mass (M), radius ( &) and angular (rotation) speed

(L1). The surface density
Yo
_ 33M [1=-2x
2 (r) = o1 O at (4.1)

The gravitational potential at any point in the disc due to
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the surface density in (4.1) is

p(r) = —17-_‘0‘37—1 (4.2)
where
—QZ‘ _ BZCG:BM (4.3)
Using instead of M _y,
5 (E,Ly) = 437r|\{‘|-a_3 (ar-n*)" Bﬂ:*ﬂi)az i (QL%—E):)

-gy,_ [] > 0© (4.4)
- o g [] %o

2 1.
E = % *+Y% 4+ er)
2

' (4.5)
L% = ’Y‘Ve

where (T, 6) are polar coordinates and Vé and VT_. are
A A
velocities along 8 and T  respectively. It is also clear

that _Q°>/ﬂ V¢ briefly note some important properties

(i) The argument of the radical in (4.4) can be written as
2 y
° 2
(0, —-_ﬂ_q')(a_ -*r-‘-) — (Ve —_O_T-) - V)

Thus
A
a) The mean velocity of stars at _'7_'_" is r{lo . Therefore

these discs rotate rigidly with angular speed .
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b) The distribution of peculiar velocities at any point

is isotropic.

(ii) The degree of heat can be varied. Hot Kalnajs discs
have {L & _Qo where random motions balance self gravity.

Cold discs (HD=~=0N) are supported against self

gravity by rotation.

4.2 Freeman's Analytic Bars (0or Freeman Discs)

Freeman (1966) attempted to model the bars of spiral
galaxies through a generalization of Kalnajs discs. Here, we
briefly describe them. Freeman discs are elliptic discs
stationary in a frame rotating with constant angular vzlocity
(say .Q.% ). Let (x,g_) be coordinates in the rotating
frame such that the major axis of the disc is along X and

the minor axis is along y, . The surface density of a Freeman

disc of mass is
Y /2
3M [1-x7 -y
pa = = — & .

The gravitaticnal potential in the interior of the disc is
B 2
Y5 2
X ol A X "I" 8 %_ - D 4.7
()0( /(‘}L) - = (4.7)

where

AT = 3aM JF(k) - E(k)

R*a
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sp? = 36M {E(Iz)—— (1- K*) F (k)

k*a

D = 3aM F(k)

2a
h’L _ - 576{"‘ (4.8)
and /2 ly
2
Ek) = | (1 - /eAm?;)ob]
— (4.9)

i\

F (k) (1 - kAM}o])'/Z

o
are complete elliptic integrals.

The potential in (4.7) gives rise to a force of self
gravity per unit mass (acting on a star at x,y,) that is a
linear function of X and % Since we are in a rotating
frame, in addition to self gravity, Coriolis and centrifugal
forces act on the stars in the disc. The Coriolis force is a

linear function of VY, and VY while the centrifugal force is

a linear function of Y and y_ . The net result is that the
equations of motion (for a star in the disc) are linear in
(x, 14, , v:c , Vj ). Linearity of the equations of motion

guarantees the existence of integrals of motion that are
quadratic functions of (x, g(, vx_, . In particular, the
integrals of motion may be chosen to be positive definite.
Freeman used these integrals to construct self consistent
discs by finding those distribution functions (denoted by
" ji:bs ;these are functions of the integrals of motion) that

on integration over velocities give the surface density in



(4.6). VW note below some properties of the Freeman discs.
(i) The discs may have any axis ratio ( b/a_), but they

should not rotate too rapidly:

n < A < B
(ii) When A=, , they reduce to Kalnajs’' discs.

Freeman discs have many other interesting properties and for

more information see Hunter (1970, 1974).

4.3 Generalized Freeman Discs (GFDs)

The GFD introduced here is a Freeman disc which
writhes. and rotates in its plane under the action of its self
gravity. By "writhe” we mean that the disc can change its
axis ratio ( b/a_) as well as its size. While writhing and
rotating the surface density of the disc Z < (l—%(‘t‘>>|/2\7vhere

%(-é) is a positive definite quadratic form in X and g_(which
are inertial Cartesian coordinates in the plane of the disc)
with time dependent coefficients. The surface density Z
causes the force of self gravity to be linear in X and g, ’
though time dependent. Hence the time dependent

transformation from {( X, (a(, , Vx_ ' Vy_ ) at time t to (x', xa{_/,

|
Ve s Vy' ) at time t' is linear in the phase space

coordinates. Let us write this as

/

Z = 827_' (4.10)

where
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i

Z = (=g, %)

_ / ' / /
Z - (x ’ y’ ’ vz 7 Vg_)
(T denotes transpose)
and S is a 4 x 4 time dependent symplectic matrix. By
"symplectic" we mean that
T
SwsS = w (4.12)
where .
OZX'L ‘]]'2)('2—
w =
-1 O (4.13)
2X2- 2Xx2
- -

Let us consider the action of the transformation in (4.10) on

a quadratic form

T = 2 Qi) Z (5.14)

Il

where Q(‘t) is a4 X 4 symmetric (in general time dependent)
matrix.

TW) = 2 Qu)z

il

1\

Z' STQ)S £ (4.18)
If we require that I('t') = I(-\l:)we get

s'Q) S = Q) (4.16)



So, when I- is an integral of motion, (4.16)
determines the time evolution of the coefficients of I By
Jeans' theorem L can be used to construct a phase space
distribution function ( G‘F)Dthat describes a GFD. I_ should
be chosen to be positive definite, otherwise the Ilevel
surfaces of L in phase space will not be compact - it is

easily seen that time evolution as given in (4.16) will

preserve the positive definiteness of T.. B®we choose jC as
GFD

' -1
:F = f (l""I) e 732 = posifive (4.17)

&@FD e constgnt

then, by integrating f over velocities ( annd V}) it is
GFD

straightforwa.rd to check that the surface density so obtained
isoc (1- cg(f))./"
4.4 A convenient form of the equations of evolution

Equation (4.17) shows that the GFD is described
completely by one number )Co and the ten coefficients of L .
Once these quantities are specified at some initial instant
of time, evolution is governed by (4.16). Let us rewrite
(4.16) in terms of P: Q_—I because the elements of the matrix

P directly give "phase space averages"' of prdducts like

xy_, XX , :JCVx etc. Defining

- | 4
Za%h = T\jf Z4.Zk JiFD(I) d'£ (4.18)

we show in Appendix B that

'Dk = 5'242/{ (4.19)
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To write the equation of evolution in terms of P, we take

the (matrix) inverse of (4.16) and obtain

P(t') = SP('&)ST (4.20)

The constant fo in (4.17) is proportional to the mass (M) of
the disc. P (like Q ) is a4 x 4 symmetric matrix and
contains 10 independent elements. V¢ now take M and 10
independent elements of P as the basic variables that
describe the time evolution of GFDs. It is clear that M
does not change with time and we may choose this to be unity.

So the GD evolves in a 10 dimensional "phase space" spanned

by Pth ] This time evolution is itself determined by (4.20)
where is required to be that transformation which is

generated by the self gravity of the GFD. The proper
formulation of the time evolution of a GD is the (self
consistent) infinitesimal version of (4.20). This is written
down below.

Meanwhile we can understand some general properties of
time evolution (that are independent of self consistency)
from (4.20) itself - for example, Liouville’s theorem implies
that det P is conserved. I n Appendix C we try to understand
the general nature of (4.20) for a general (symplectic) S .

The further results of this chapter do not directly require

these formal developments. Here, we merely note that in
Appendix C, it is shown that (4.20) is a Hamiltonian system.
Therefore, in common with all finite dimensional Hamiltonian

systems, the GD will also show nonrelaxing behaviour.
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4.5 FEfecting Self Consistency

W shall now write (4.20) in its infinitesimal form.

Writing

S = 1+atkK (4.21)

where AT is a small time step, we have

p(t+at) = (1+atK)Pwt)(1+at.K")

i1

Pt) + At[KP+P/<"} + (O (at?)
Therefore = KP +PKT (4.22)

VW need to work qut K . S itself was defined by (4.10) and

(4.11). Therefore

Z = Kz (4.23)

defines K which contains information about the equations of
motion for a star in the GFD. The gravitational potential of

Vo
a GD with surface density Z < (I-—i) can be written as

- & x? 2
(,p(:c,g,;t) = .7__.1 +,Bxg. + ))_%—. (4.24)
where &« , ‘B and )) are time dependent. The equations of

motion for a star are

= 4=

\°/x - ~Xx —By \{y = —-ﬁx—))y_ (4.25)

|\



Therefore, from (4.23) and (4.25)
- |

Or L

K = 2x2 (4.26)

LTS Ozx'z_

where -

=

ﬁ \) (4.27)

contains the "strengths" of the force of self gravity of the

i

GFD. If we express « , ﬁ and )) in terms of the elements of
P, we would have effected self consistency. This we
implement below. To calculate the force of self gravity we
need to know the size and orientation of the GFD. This

information is contained in

P” = 5'—1—{

_ —
Ez = 5 % (4.28)
Fo = B, = 5=k

Let us suppose that the major axis (= 2a) of the disc is
|
along X and the minor axis (=2b) is along (5{,/ . When the

major axis makes an angle of 6 with respect to the positive

. axis we can write

xl (ot 6 Am. 8 X

1\

¢ “dn6  Cx6 [ |y

(4.29)

Therefore



——

't = x* Gste + —fy:,dw\.a'w + ?«d«mxé

it

x? 426 — XY An28 + Y (Ceo

%12.
(4.30)
—T— t——— ) ——
X'y = - ZT 420 + XY Gs26 + YT Aen26
2 2
Since the disc is symmetrically disposed about the Z/and y_l
axes, x’g,' = 0.

Therefore from (4.30)

— > &

ton 6 = 2 x4 = 2R, (4.31)
o 2
x F Pu - Pz'z.

determines 6 upto an additive constant of ’71'/2_ . The

ambiguity in 8 is resolved by requiring that the major axis

of the disc lies along x'. i.e. by requiring x'* >/ la/,”'

—
2 : .
W now express X' and g_'z directly in terms of 4 and

b. The surface density of the GFD with mass M is (see

(4.6))
YV
Yxhy) = 3M_ [1-z" g
2TMab a* L (4.32)
Th
o 2T = (X)) () datdy
M
1
_— 2 -
Similarly y_,'z. = Eys‘ . Using these values of X' and

%_,2. in (4.30) and writing x?%* , xYy and g_"' in terms

of}?l,l'?,z_andp

22 7 We have

66



a* = B0 + F,dn26 + B L0

(4.33)

!
The force per unit mass at a point (X, g.l ) inside the disc

2, A ,
—Axiey, — By €y (4.34)

2. 1
where A and B are determined in terms of &, b and M from
A

A
(4.8) and (4.9). ex, and ey, are unit vectors along .‘Il
|
and g, . Resolving the force along the X and g. axes, we get

the following expressions for & , ﬂ and 9 (in 4.27):

= ATCs®0 + B

(A= B™) L6 Cos6 (4.35)

I\

i\

(o4

P

4 AT 4o + B Gt
The time evolution of the GFD is given by (4.22),
together with equations (4.26), (4.27) and (4.35). As shown
in Appendix C, the evolution occurs on an 8 dimensional
submanifold of the 10 dimensional space spanned by the
elements of the matrix P; the reduction in dimension from 10
to 8 is due to the existence of conserved quantities which
essentially are (i) the volume in phase space occupied by the
GFD and (ii) the 2-area of the plane section of the GFDin
phase space that is maximal. In addition, the total energy
and angular momentum are conserved. Freeman's bars could only

rotate with constant angular velocity and in the rotating

,frame, their size and shape were constant in time. For GFDs



the coupling between rotation and oscillation allows for time
varying rotation. The rich behaviour implicit in the

equations remains to be explored.
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