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1. INTRODUCTION

THE frequencies of the normal modes of vibration of the structure of dia-
mond admit of very precise determination from its Raman spectrum. Accord-
ing to the theoretical formulation of the dynamics of crystal lattices by
Sir C. V. Raman (1943), a crystal with p atoms in its unit cell is capable
of (24 p-3) normal modes of vibration. In the case of diamond, the vibra-
tion spectrum consists of eight discrete monochromatic frequencies of which
one is triply degenerate, two are fourfold degenerate, three are sixfold de-
generate and two are eightfold degenerate. The triply degenerate oscilla-
tion is active in the first order and marifests itself as a single very sharp and
intense frequency shift of 1332 cm.”' (C. Ramaswamy, 1930). The remain-
ing seven frequencies are inactive in the first order, but may be expected to
manifest themselves as octaves and combinations in the second order
Raman spectrum.

The investigations of R. S. Krishnan (1947) have shown that this is
actually the case and that the octaves and combinations of the frequencies
manifest themselves as sharply defined frequency shifts capable of being
measured with high accuracy. A rigorous method of calculating the eight
fundamental frequencies of the diamond lattice taking into consideration
the interactions between each atom and its 28 nearest neighbours has been
developed by K. G. Ramanathan (1947). The identification-of the spectro-
scopic frequencies actually observed with the respective modes to which
they refer presents no difficulty, since the eight frequencies arrange them-
selves in the correct order even in the first approximation where only the
four nearest neighbours alone are considered. The identification is further
confirmed by a consideration of the intensity relations between the different
lines in the second order spectrum (C. V. Raman, 1947). Ramanathan’s
formule show that the eight fundamental frequencies are expressible in terms
of eight force constants. The latter can therefore be completely evaluated.
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The object of the present paper is a rigorous treatment of the problem
of the evaluation of the three elastic constants of diamond, taking into
account the interaction between each atom and its 28 nearest neighbours.
Utilising the values for the force constants derived from K. G. Ramanathan’s
investigation of the second-order Raman spectrum, it is shown to be possi-
ble to determine the elastic constants from the spectroscopic data alone.
A gratifying measure of agreement with the experimental values of the
elastic constants emerges (Bhagavantam and Bhimasenachar, 1946).

2. THE ENERGY OF DEFORMATION

The deformation energy can be represented as the sum of the changes
in mutual energy of pairs of points. The strain energy W can be calculated
in terms of the force constants and the relative displacements u, v, w of an
atom i with respect to the atom o at the origin. The force components
are:

F,=uF® 4 v F2 4 w Fx l

F,=uFi+ vFi+ wF; (€))
F,=u Fs + v Fi5 + wF% J,

where FZ, represents the force constant acting in the z direction on atom o
due to the displacement of the atom 7 along the y direction. Hence the

deformation energy for this pair is given by
¢;=—3[uF, + va—{—sz]. 2)

The relative displacement of the atom i is made up of two parts. The
first part consists of the relative displacement of the two interpenetrating
lattices with respect to each other. The second part consists of a uniform
expansion or contraction along the three directions which is the same for
both lattices. Hence u, v, w are given by

U= x+( ’bx+y’ b;+z"<%ezt>
v=ket (xay 4o+ a5;) ®

W ow

w=rkt (x 3o+ by+zib7>
where k,, k,, k, represent the relative inner displacement between the two
atoms. In the case of a pair of points belonging to the same lattice
k.=k,=k,=0. Xx;, ;2 represent the position of the atom i in the
ou oV

undeformed state. The terms 2’ 3% etc., are the components of a tensor
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which can be presumed to be symmetrical since a simple rotation is of no
significance.

We may remark that the displacements u, v, w increase proportionately
with the distance of the atoms from the origin and the number of such atoms
to be taken into account increases even more rapidly at the same time.
Hence even if the force constants diminish rapidly with increasing distance
—-as they should—the expression for the deformation energy may be expected
to converge rather slowly. The numerical values for the force constants
deduced by Ramanathan fall off very quickly with increasing distance.
Even so, as we shall see, the outermost 12 of the 28 neighbours considered
by him play a far from negligible role in determining the magnitude of the
elastic constants of diamond.

"~ 3. THE ForCE CONSTANTS

The force constants introduced by Ramanathan can be defined by using
the notation given above.

P= on — Fl}a —_ on
Q — Fya F..o
R Fyi - F:': - Fgg F_Ut; - on FZ(;,

where 7 represents the atom at (1, 1, 1). The unit used .for co-
ordinates is d/4, where d is the lattice constant =3-56 A.U.

For the second neighbours we have
S=F3; T=Fj=F;
U=Fy=F3
V=Fi=F; and W= v
"where i represents the atom at (0, 2, 2).

For the third neighbours we have

o= z'l - on
g= "= = Fj;
on th)

o=F}; and e=F"=F»

254

where i represents the atom at (1, — 3, 1).

Due to the symmetry of the structure of diamond, the force constants for
the other atoms can be got by considering the position of the atom and the
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nature of its displacement. The actual constant involved in a particular case
can be found from the table given by Ramanathan.

In the case of second neighbours, there is a plane of reflection perpendi-
cular to the yz plane bisecting the line joining the origin to the atom (0, 2, 2)
and hence it can be shown that T=—V,

In the case of third neighbours, there is a centre of inversion between
the two atoms which involve the constants 8 and e. By inverting about
the centre it can be proved that 8==¢. These two relations considerably
simplify the calculations. '

4. ELIMINATION OF THE INNER DISPLACEMENTS

In the deformed state each lattice point should be in equilibrium. Due
to the relative displacement of each of the 28 surrounding neighbours, forces
act on the atom at the originn. These forces should be in equilibrium. The
relative displacement of each atom is known from equation (3), and the
forces can be computed from equation (1) by substituting the proper force
constants. In the summation of the forces due to all the atoms it is found
that the effect of the second neighbours add up to zero. Due to the sym-
metry of the crystal, the final expression gets considerably simplified and
we have

k {4Q + 8o+ 40} + (T 35 (4R + 88 — 12)=0

{1z

fes ke Q43D+ {54+ R+ 28— 30,
where 32 =2a 4 8, ‘
_(RA+28—=3y)v | w

Hence k, = (o Fi >y i G + W
__ RH2=3y) ou  w
bh=="q1m . (T o)
(R +28—3y)7w ,
k== Qi et o)

It is important to remark that the inner displacements are of consi der
able magnitude and that the equilibrium condition is not satisfied if we assume
that the inner displacements do not exist.

5. CALCULATION OF THE DEFORMATION ENERGY

The deformation energy of the 28 typical pairs of points can be written
down and the final summation made. For the nearest neighbours we have,
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2¢; = — {Q (u*+ v* + w? 4 2R (wv + ww + wu)}
2p=—{Q @ + v* + W) + 2R (— wy + vw — wid)}
2¢3=— {Q (u® + &2+ w2 + 2R ( — uv — vw + wu)}
2¢e=— {Q (* + v* 4 w? + 2R (wv — yw — wu)}

For the second neighbours we have,

[

245 = — {Su? 4 U (v? 4 w?) + 2W (vw}
2¢y = — {Sv2 4 U (® + w?) + 2W (w)}
2¢,3=— {Sw? + U (u? + v + 2W (uv)}
2¢¢ = — {Su? -+ U (v® + w?) + 2W (ww)}
2y =— {Sv* + U (@* + w?) + 2W (uw)}

2= (S0P U+ ) 4 2W @)}

2¢; = — {Su® + U (v»* + w?) — 2W (vw)}
2¢1p=— {S¥* 4 U (@2 + w?) — 2W (uw)}
2¢15==— {Sw? + U (u? + v?) — 2W (w)}
2¢g = — {Su?® + U (v* + w?) — 2W (mw)}
2pro=— {S¥? + U (u? + w?) — 2W (uw)}
2430=— {Sw? + U (u® + v — 2W (w)}

For the thfrd neighbours we have

2¢1:=3u® + a (v3+ w?) + uv (2P) + vw (2y) + wu (2B)
2$15= 2 + a (u wd) + uv (28) + vw (26) + wu (2y)
2pig= Wk a (WP V) + v (29) + vw (26) + wu (26)
200 =0u? + a (V2 w?) — uv 28) + vw (2y) — wu (28)
2¢9,=08v2 4 a (u2+ w?) — uv (28) — vw (28) + wu (2y)
2¢o=0w? + a U+ v?) + uv (2y) — vw (2B) — wu (2f)

 2¢9=238u® + 2 (V¥+ w?) + uv (2B) — vw (2y) — wu (2B)

200 =8v% + a (u®+ w2) — uv (2B) + vw (28) — wu (2y)
2dgs= w2 + a (u? - v — uv (2y) — vw (28) + wu (2B)
2po3=Su® + o (V*+ w?) — uv (28) — ww (2y) + wu (2B)
2hoy =8V -+ a (U4 w?) -+ uv (28) — vw (28) — wu (2y)
Dbgy = SWE + @ (12+ v1) — uv (2y) + vw (2B) — wu (28)
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6. EXPRESSIONS FOR THE ELASTIC CONSTANTS

If we consider the unit cube in the case of diamond lattice, it is found
that there are four similar pairs of poiits of each kind. Hence the total
deformation energy is four times the summation over all the different types
of pairs of points. The force constant P does not enter the discussion here
since only the change in the mutual energy of pairs of points is considered.
Carrying out the summation over all pairs and dividing by the volume of
the unit cube, the energy density W is found to be given by

W= (e %+ 2.9] — 5 (Q + 8U+ 95 4 20)]
+ (exalyyt epe,t ene,) { — }I(R + 4W —6 8+ ) }

(o™t et e | — 5 QR+ 4U S 4 W)
+a+1oa—6,e+-,]}

28 — 3y)2
-+ (exy2+ eyz2+ ezxz) {é(R_‘_Q _ﬁ 323’)/ )!

du du oV
here =5, and Cay = 3 + e

The strain energy W in terms of the elastic constants is given by
W=% Cll (exx2_!__ eyy2+ ezz2) + C12 (éxxeyy+ eyyezz+ ezzexx)
+ % C44 (exyz'}‘ eyz2+ ezxz)
Identifying the two expressions for W

Cu=- {Q +£8U 498 422}

Cpp— — {R + 4Wd— 68 + y}

_ (Q+R+4(U+S+W)+ 5+10a — 68+ y
Cu=—{ }

2d
R+28—-3p* 1
Q + 32) d
We may remark that the effect of the third neighbours is of the same order

of magnitude as that of the second neighbours. Ramanathan has obtained
the following values for the constants,

+
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Q=—1-39 x10°; R=—0-858 x 105; S= — 0-005 x 10°
U=—0-131 x 10°5; W=-—0-114 x 105; 2= - 0-06 x 10°
and 2 =0-005 x 10° dynes per cm. where 3X=2a + 8and 32 =8+ ¢+ v

7. NUMERICAL EVALUATION

In the expressions for Cy;, C,, and C,, the constants a, 8, v, 8, € appear
separately. But Ramanathan has evaluated only the constants (2a 4 8)
and (8 + -4 y). Hence there arises a slight difficulty in the numerical
computation of the values of the elastic constants. o and & are the force
constants for the two atoms that are at the same distance from the origin
and whose x co-ordinates are in the ratio 1:3. With the help of a model
of diamond, it can be seen from the position of the two atoms and the nature
of the displacement that a and 8 would be of the same sign and that « would
be definitely less than 8. As regards the magnitude of a, we may surmise
that it would be somewhere between 38 and 186.

TABLE 1
- Elastic constants 8 a==_827 [32: - 827 ; 3; = 827
Cy1 %1012 } 8.7 9-38 9-77
Cy2%x10712 ! 3-88 3.88 3.88
Cuyx10712 . 4-37 4-20 4-11

1t will be seen from Table I that changes in a produce considerable changes
in the values of the elastic constants deduced from the formulz.

The constants B and y represent forces acting in a perpendicular direc-
tion to that of the displacement and they are, in consequence, of small magni-
tude. Considerations similar to those stated in respect of a and § indicate
that y and g are of opposite sign and that | y | << | 8]. We assume B= — 2y
as a near enough approximatiorn.

The most probatle values of the clastic constants of dtamond deduced
from the present investigation, may be given as

Ciu=9-6 X 10'1%; C;,=3-9 x 10'2; C;;=4-2 x 10'2 dynes/cm?.
These values show satisfactory agreement with the values experimentally

determined by the ultrasonic method by Bhagavantam and Bhimasenachar
(1946) who get the following values. '

C;;=9-5 x 1012; C;,=3-9 x 10'%; C,y=4-3 X 102 dynes/cm. 2
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The bulk modulus of diamond K ==} (C;;+ 2C;,) comes out as 5-8 x 1012
if the theoretical values are substituted. This result agrees with the value
obtained by Williamson who gets 5-6 x 10'%2. Adams obtained a value
6-3 x 102 for K and this is rather high.

In conclusion, the author wishes to express his sincere thanks to
Prof. Sir C. V. Raman, F.R.S., N.L., for suggesting this problem and for
the many illuminating discussions he had with him. He also thanks
Dr. G. N. Ramachandran for his kind interest in this work.

8. SUMMARY

Expressions for the elastic constants of diamond have been derived in
terms of the force constants calculated by Ramanathan which express the
interaction of any atom with its 28 neighbours. The calculated values are:
Ci1=9-6 X 1012; C;,=3-9 x 10'%; C,y=42 X 10'2 dynes/cm.2 while the
values experimentally determined by Bhagavantam and Bhimasenachar
are:

Cp=9-5 % 10'2; Ciu=3-9 x 10'2; C,,=4-3 x 102 dynes/cm.?
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