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1LAL, Université Paris-Sud, IN2P3/CNRS, Orsay, France
2GReCO, Institut d’Astrophysique de Paris–C.N.R.S., Paris, France

3Raman Research Institute, Bangalore, 560 080, India
4School of Physics and Astronomy, Cardiff University, 5, The Parade, Cardiff, United Kingdom, CF24 3YB

5Department of Physics, Indian Institute of Science, Bangalore, 560 012, India
(Received 27 July 2007; published 9 November 2007; publisher error corrected 21 December 2007)

It is generally believed that the angular resolution of the Laser Interferometer Space Antenna (LISA)
for binary supermassive black holes (SMBH) will not be good enough to identify the host galaxy or galaxy
cluster. This conclusion, based on using only the dominant harmonic of the binary SMBH signal, changes
substantially when higher signal harmonics are included in assessing the parameter estimation problem.
We show that in a subset of the source parameter space the angular resolution increases by more than a
factor of 10, thereby making it possible for LISA to identify the host galaxy/galaxy cluster. Thus, LISA’s
observation of certain binary SMBH coalescence events could constrain the dark energy equation of state
to within a few percent, comparable to the level expected from other dark energy missions.
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I. INTRODUCTION

An outstanding issue in present day cosmology is the
physical origin of dark energy (see, e.g., Ref. [1] for a
review). Probing the equation-of-state ratio [w�z�] provides
an important clue to the question of whether dark energy is
truly a cosmological constant (i.e., w � �1). Assuming
the Universe to be spatially flat, a combination of
Wilkinson Microwave Anisotropy Probe (WMAP) and
Supernova Legacy Survey (SNLS) data yields significant
constraints on w � �0:967�0:073

�0:072 [2]. Without including
the spatial flatness as a prior into the analysis, WMAP,
large-scale structure, and supernova data place a stringent
constraint on the dark energy equation of state, w �
�1:08� 0:12. The Laser Interferometer Space Antenna
(LISA) could play an important role in investigating the
nature of dark energy as argued in Refs. [3,4].

Binary supermassive black holes (SMBH), often re-
ferred to as gravitational-wave (GW) ‘‘standard sirens’’
(analogous to the electromagnetic ‘‘standard candles’’)
[5], are potential sources for the planned LISA mission.
LISA would be able to measure the ‘‘redshifted’’ masses of
the component black holes and the luminosity distance to
the source with good accuracy for sources up to redshifts of
a few. However, GW observations alone cannot provide
any information about the redshift of the source. If the host
galaxy or galaxy cluster is known, one can disentangle the
redshift from the masses by optical measurement of the
redshift. This would not only allow one to extract the
‘‘physical’’ masses, but also provide an exciting possibility
to study the luminosity distance-redshift relation providing

a totally independent confirmation of the cosmological
parameters. Further, this combined observation can be
used to map the distribution of black hole masses as a
function of redshift [6–8]. For this to be possible, LISA
should (a) measure the luminosity distance to the source
with a good accuracy and (b) localize the coalescence
event on the sky with good angular resolution so that the
host galaxy/galaxy cluster can be uniquely identified.

References [3,4] identified two potential problems in
using binary SMBH as standard sirens. First, they found
that LISA’s angular resolution might not be good enough to
identify the source galaxy or galaxy cluster, and that other
forms of identification would be needed, and second, they
pointed out that weak lensing effects would corrupt the
distance estimation to the same level as LISA’s systematic
error on the measurement of the luminosity distance. Their
analyses, like most others in the literature on LISA pa-
rameter estimation, were based on the so-called restricted
post-Newtonian (PN) waveforms. The restricted wave-
forms (RWF) retain only the leading order (i.e.,
Newtonian) term in the wave amplitude, a PN series, but
incorporate the phase up to the maximum available PN
order, which is currently 3.5PN [9–12]. Recent studies
have shown that the inclusion of higher order amplitude
terms in the waveform (and hence higher harmonics of the
orbital frequency) would play an important role in the
detection rates (by increasing the mass reach of the detec-
tor) [13–15] as well as in the problem of parameter esti-
mation [16–20] of both ground-based and space-based
detectors. Specifically, Refs. [18,19] examined the im-
proved angular resolution of different space-based detector
configurations due to the inclusion of higher harmonics.

In the present work, we revisit the problem of parameter
estimation in the context of LISA using amplitude-
corrected PN waveforms. We investigate systematically
the variation in parameter estimation with PN orders by
critically examining the role of higher harmonics in the fast
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GW phasing, higher PN corrections in the amplitudes and
frequency sweep, and their interplay with the slow modu-
lations induced due to LISA’s motion. More importantly,
we explore the improvement in the estimation of the lumi-
nosity distance and the angular parameters due to the
inclusion of higher harmonics in the waveform. We trans-
late the error in the angular resolution to obtain the number
of galaxies (or galaxy clusters) within the error box on the
sky. We find that, independent of the angular position of the
source on the sky, higher harmonics improve LISA’s per-
formance on both counts raised in Refs. [3,4]: On the one
hand, we will show that the angular resolution improves
typically by a factor of �2–500 (greater at higher masses)
and the error on the estimation of the luminosity distance
goes down by a factor of �2–100 (again, larger at higher
masses). For many possible sky positions and orientations
of the source, the inaccuracy in our measurement of the
dark energy would be at the level of a few percent, so that it
would only be limited by weak lensing. We conclude that
LISA could provide interesting constraints on cosmologi-
cal parameters, especially the dark energy equation of
state, and yet circumvent all the lower rungs of the cosmic
distance ladder.

This paper is structured as follows. In the next section
we introduce our signal model and the LISA noise power
spectral density (PSD) we will use. In Sec. III we discuss
our results on parameter estimation and their relevance for
astrophysics and cosmology. Section IV gives an overview
of various effects that are likely to affect our estimates.
Conclusions are presented in Sec. V. Technical details on
how the parameter estimation was performed can be found
in Appendix A. Finally, in Appendix B we give an in-depth
discussion of the way parameter estimation is influenced
by the inclusion of higher harmonics and their amplitude
corrections.

II. SIGNAL MODEL AND LISA NOISE PSD

The post-Newtonian formalism has been used to study
the evolution of a binary under gravitational radiation

reaction to a very high order in the small parameter v
characterizing the velocity of the component objects,
yielding accurate expressions for the orbital phase and
the two gravitational-wave polarizations. For binaries con-
sisting of component stars of negligible spin on quasicir-
cular orbits, the most accurate computations currently
known have corrections not only to the orbital phase up
to order v7 (i.e., 3.5PN order in the notation of PN theory)
[9,11,12,21,22], but also corrections to the gravitational-
wave polarizations to order v5 (i.e., 2.5PN order) [23–25].
We shall call this the ‘‘full’’ waveform (FWF).

The waveform as seen in LISA is modulated in two ways
due to LISA’s motion. LISA consists of three spacecraft at
the vertices of an equilateral triangle of 5� 106 kilo-
meters, each craft on a heliocentric orbit slightly inclined
to the ecliptic. As the craft orbit the sun, the triangular
formation also spins around itself with the same one-year
period as the orbital period. Therefore, relative to LISA the
source location and orientation changes with time with a
one-year period and induces amplitude and phase modu-
lations in the waveform.

It is well known that, at signal frequencies f &

5� 10�3 Hz, LISA can essentially be modeled as a pair
of two-arm interferometers, usually labeled as I and II [26],
and this suffices for the sources considered in this paper.
(However, it would be interesting to investigate the added
value of the remaining third combination ignored in this
work.) In what follows, to begin with, we consider a single
detector.

Let us consider a source of total massM � m1 �m2 and
symmetric mass ratio � � m1m2=M

2 (where m1, m2 are
the individual component masses) located at a luminosity
distance DL. In the stationary phase approximation (SPA),
the Fourier transform ~hI�f� of the response of detector I to
the full waveform, including the modulations due to
LISA’s motion, is given by [15]

 

~h I�f� �

���
3
p

2

2M�
DL

X7

k�1

X5

n�0

AI
�k;n=2��t�fk��x

�n=2��1�t�fk��e
�i�I

�k;n=2�
�t�fk��

2
�������������������
k _F�t�fk��

p exp	i f;k�t�fk��
; (2.1)

where fk � f=k, an overdot denotes derivative with re-
spect to time, and  f;k�t�fk�� is given by

  f;k�t�fk�� � 2�ft�fk� � k��t�fk�� � k�D�t�fk�� � �=4:

(2.2)

In Eq. (2.1), the factor
���
3
p
=2 is due to the 60� angle

between the interferometer’s arms, and t�f� is given in
Ref. [11]. The waveform is a superposition of harmonics
of the orbital frequency (labeled by the index k), and each

harmonic has PN contributions to the amplitude (labeled
by n; note that we can only go up to n � 5, as no amplitude
corrections are explicitly known beyond 2.5PN). As the PN
order in amplitude is increased, more and more harmonics
appear; at 2.5PN order there are seven, which is why the
index k only runs up to k � 7. Quantities in Eqs. (2.1) and
(2.2) with the argument t�fk� denote their values at the time
when the instantaneous orbital frequency sweeps past the
value f=k, and x�t� is the PN parameter given by x�t� �
�2�MF�t��2=3, F�t� being the instantaneous orbital
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frequency of the binary. AI
�k;n=2��t� and �I

�k;n=2��t� are the
polarization amplitudes and phases of the kth harmonic
appearing at the n=2th PN order. ��t� is the orbital phase
of the binary and�D�t� is a time-dependent term represent-
ing Doppler modulation. Explicit expressions for AI

�k;n=2�
and �I

�k;n=2� can be found in [14]; time dependence of these
quantities arises through the beam-pattern functions due to
the varying sky position and orientation of the source
relative to the detector [26]. The expression for �D�t� is
given in [15,26]. For the PN expansions for t�F�, ��F�,
_F�F�, we refer to Ref. [11].

The RWF corresponds to retaining the term with k � 2
and n � 0 in Eq. (2.1) and neglecting all others. It is clear
that the RWF has only the dominant harmonic at twice the
orbital frequency but no other harmonic, nor PN correc-
tions to the dominant one. It does, however, include the
post-Newtonian expansion of the phase to all known or-
ders, i.e., up to v7. The FWF, on the other hand, not only
has the dominant harmonic but also other harmonics up to
7 times the orbital frequency and their PN corrections to
the relevant order. The distinctive nature of the FWF as
compared to RWF, especially the richer structure in its
spectrum, can be seen in Fig. 1 of Refs. [15,20].

Expanding the denominator and extracting the lowest
order term helps us rewrite the waveform in a form more
suitable for our purposes,
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where M � M�3=5 is the chirp mass of the binary, and
	
 
 

p denotes consistent truncation to pth post-Newtonian
order (in our case p � 2:5). The coefficients S�m=2� are the
PN expansion coefficients of _F�t�fk���1=2 and are given in
Eq. (A.4) of [14].

Each harmonic in ~hI�f� is taken to be zero outside a
certain frequency range. The upper cutoff frequencies are
dictated by the last stable orbit (LSO), beyond which the
PN approximation breaks down. For simplicity we assume
that this occurs when the orbital frequency F�t� reaches
FLSO � 1=�63=22�M�—the orbital frequency at LSO of a
test particle in Schwarzschild geometry in c � G � 1
units.1 Consequently, in the frequency domain, the contri-
bution to ~h�f� from the kth harmonic is set to zero for
frequencies above kFLSO. In determining the lower cutoff

frequencies we assume that the source is observed for at
most one year, and the kth harmonic is truncated below a
frequency kFin, where Fin is the value of the orbital fre-
quency one year before LSO is reached [15]:

 Fin � F�tLSO ��tobs� �
FLSO

�1� 256�
5M �tobsv

8
LSO�

3=8
: (2.4)

For simplicity the quadrupole formula was used. In the
above, tLSO and vLSO � 1=

���
6
p

are, respectively, the time
and orbital velocity at last stable orbit, and �tobs � 1 yr.
However, LISA’s sensitivity becomes poorer and poorer
below �3 mHz and current estimates normally assume a
‘‘noise wall’’ at fs � 10�4 Hz. Thus, we take the lower
cutoff frequency of the kth harmonic to be the maximum of
fs and kFin. For more details we refer to [15].

As we mentioned before, the LISA detector can be
viewed as a combination of two independent detectors.
Until now we have dealt with one detector. Calculations
for the two detector case closely follow the corresponding
treatment for the RWF, which is explained in detail in [26].
The beam-pattern functions for detector II can be obtained
from those of detector I by a simple rotation. The wave-
form ~hII�f� for the second detector is formally identical to
~hI�f�, and quantities AII

�k;n=2� and �II
�k;n=2� are obtained from

their counterparts AI
�k;n=2� and �I

�k;n=2� by replacing the
beam-pattern functions of detector I by those of detector II.

The waveform given in Eq. (2.3) together with its coun-
terpart for the second detector form the basis of the analy-
sis in this paper. Following earlier works of Refs. [6,7,26–
28] we employ the Fisher matrix approach [29,30] to the
problem of parameter estimation. The waveforms depend
on nine parameters which are chosen to be

 p � �lnM; �; tC; �C; lnDL; �S; �L; �S; �L�; (2.5)

where � � �m2 �m1�=M (m1 and m2 being the individual
masses; throughout this paper we assume m2 � m1)2 is
used as a parameter instead of �, following Ref. [20]; tC,
�C are, respectively, the time and orbital phase at coales-
cence3; �S � cos�S and �S determine the source position
in the sky; while �L � cos�L and �L determine the ori-
entation of the binary’s orbit with respect to a nonrotating

1Note that the cutoffs are placed on the orbital frequency of the
binary, not the dominant GW harmonic, hence the extra factor of
2 in the denominator of the expression for FLSO.

2The waveform is invariant under interchange of mass labels
provided that, at the same time, the phasing is shifted by �; since
we use a single phasing formula we need an ordering in the
definition of �. The parameter � was originally introduced in
place of � to ensure that the FWF Fisher matrix remains non-
singular on the surface m1 � m2. The situation is reversed in the
case of RWF: there the Fisher matrix becomes singular in the
limit �! 0 whereas it remains regular at m1 � m2 when � is
used in place of � (see the discussion in [20]). The equal mass
case is dealt with in more detail in [31].

3Below we will consistently set the values of tC and �C to
zero, but both parameters are included as coordinates on the
space of signals in computing the Fisher matrix.
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detector at the solar-system barycenter.4 Following
Ref. [26], we have fixed the initial position and orientation
of LISA by setting the constants�0 and �0 defined there to
zero at t � 0. The polarization amplitudes and phases
depend on the location and orientation of the source
through the beam-pattern functions. The orientation of
the source changes relative to LISA with the period of a
year. Therefore, these quantities are modulated on a one-
year time scale and depend on �S, �L, �S, �L and also on
�, lnM, and tC. The phase  f;k�t�fk�� depends on lnM, �,
tC, and �C and varies with the orbital time scale which is
much shorter than a year.

Following Ref. [32], the parameters can be subdivided
into two subcategories: pfast � �lnM; �; tC; �C� and
pslow � �lnDL; �S; �L; �S; �L�. The classification arises
naturally because the signal that LISA observes can be
viewed as a (slow) low frequency modulation due to its
motion around the sun superposed on the (fast) high (GW)
frequency carrier signal. The accuracy of estimation of
pfast follows from the GW phasing of the binary while
that of pslow from the modulations associated with LISA’s
orbital motion.

In our analysis, we take the noise power spectral density
(PSD) to be that given by Eqs. (2.28)–(2.32) of Ref. [7]. As
usual, the Fisher matrix � for LISA as a whole is simply
� � �I � �II, where �I;II are the Fisher matrices computed
from the waveforms ~hI;II�f�. The parameters used will be
the ones listed in Eq. (2.5), so that � is a 9� 9 matrix.
However, the errors in the estimation of �S and �S ob-
tained in this way will be converted to a solid angle ��S

centered around the actual source direction. Following the
notation of [28],

 ��S � 2�
��������������������������������������������������������
���S��S�

2 � h��S��Si
2

q
; (2.6)

where the second term is the covariance between �S and
�S. A similar quantity ��L is used to quantify the error
estimate in the orientation of the binary’s orbit.

In what follows, whenever it is necessary to consider a
specific cosmological model we will assume a flat universe
with Hubble constant H0 � 75 km s�1 Mpc�1, matter den-
sity �m � 0:27, and dark energy density �d � 0:73, with
�Total � �m ��d � 1.

III. THE RESULTS AND THEIR ASTROPHYSICAL
IMPLICATIONS

In this section we will discuss the extent to which LISA
will be able to constrain cosmological parameters by ob-
serving a binary SMBH with a large signal-to-noise ratio
(SNR) and measuring their parameters, most importantly
their location on the sky and the luminosity distance. As we
shall see, the number of clusters in LISA’s angular error

box reduces dramatically when using the FWF as com-
pared to RWF, thereby enabling us to identify the host
galaxy, or galaxy cluster. Consequently, it should be pos-
sible to measure the dark energy equation of state by
combining LISA observations with electromagnetic
observations.

We start by outlining the generic features of parameter
estimation with higher harmonics; after that, we will focus
on angular resolution and the estimation of luminosity
distance, and what these can tell us about cosmology.

A. Parameter estimation with the full waveform:
General trends

Inclusion of higher harmonics results in a significant
improvement in the determination of a binary’s parameters
in the context of LISA, as is the case for ground-based
detectors [20]. A typical variation of parameter estimation
(PE) accuracy with PN orders in amplitude is displayed5 in
Table I. We observe the following general features of
amplitude-corrected waveforms with regard to PE: For
all masses and all angles we have explored, there is a
significant improvement in the estimation of all parameters
for LISA when considering the full waveform as compared
to the restricted PN waveform. The orbital frequency and
the inspiral rate, and therefore the phase evolution of the
waveform, are determined primarily by the chirp mass M.
Thus, accurate phase tracking leads to a precise measure-
ment of M. The phase also depends on the ‘‘mass differ-
ence’’ � which, therefore, can also be measured quite
accurately. This is borne out by Table I where the trend
is shown to be true for the FWF also. Finally, note the
spectacular improvement in angular resolution and the
determination of luminosity distance in going from RWF
to FWF, which will be the focus of the rest of this section.

We relegate to Appendix B a more critical and in-depth
discussion of the trends observed with increasing PN order
in amplitude and consequent inclusion of higher harmonics
in the waveform.

B. Effect of higher harmonics on angular resolution and
luminosity distance

Table II lists the one-sigma errors in parameters of
interest for seven different combinations of the angular
parameters, as in Ref. [26], each for three different binary
masses. The angular parameters (cf. A1, . . ., A7 in the
table) chosen are a coarse sample of the possible orienta-
tions of the orbit and the source’s sky location, and our
choice of masses is indicative of the different binary
SMBH coalescences LISA is likely to observe with a large
SNR. To make direct contact with astrophysical systems,
we give the physical masses M � Mphys and not the ob-

4This is a different notation from Ref. [26], where the source
angles measured in the fixed barycenter frame are denoted by
� ��S; ��S; ��L; ��L�.

5The numerical values in all our tables and results are un-
affected by the missing terms discussed in [25] to the accuracies
quoted.
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served (i.e., redshifted) masses Mobs. The two are related
by Mobs � �1� z�Mphys, where z is the cosmological red-
shift of the source. In order to compute the upper frequency
cutoff, one should first convert the total physical mass to
the total observed mass and then use the formula for the
LSO frequency. Our sources are all at z ’ 0:55, i.e., a
luminosity distance of DL � 3 Gpc. Theoretical predic-
tions of event rates for SMBH coalescence vary over a
wide range, but the rate could be as high as 1 per year
within z � 0:55 [33]. (See Sec. IV for a discussion of our
results for merger events occurring at a higher redshift.)
The physical masses and the corresponding LSO frequen-
cies in the form �m1=M�; m2=M�; 7FLSO=mHz� are (105,
106, 9.03), (6:45� 104, 1:29� 106, 7.33) and (106, 107,
0.903). Thus, the highest harmonic (at seven times the
orbital frequency) of the heaviest system that we consider
does not quite reach the sweet spot of LISA’s sensitivity.
For the other two systems the dominant harmonic is close
to the sweet spot and higher harmonics sweep through
LISA’s sensitivity bandwidth.

The table lists the 1-sigma errors incurred in the estima-
tion of all the parameters except for the errors on �L, �L

(the direction of orbital angular momentum), and �C. As
usual, we have converted the error in the estimation of �S

and �S to an error in the solid angle ��S centered around
the actual source direction. For the sake of completeness
we have given, in alternate rows, the errors for both the
RWF and FWF.

For certain values of the angular parameters the presence
of the harmonics seems to have a considerable impact on
the determination of the luminosity distance and the angu-
lar position of the source. The errors in the luminosity
distance (i.e., �DL) and the source’s sky position (i.e.,
��S) are reduced by factors up to 600 and 400, respec-
tively, while using FWF as compared to RWF. This means
that the error box could be smaller by a factor of 2:4� 105.
However, what is relevant for cosmological applications is
by how much the error in the sky position goes down (i.e.,
about a factor of 2.5 to 400). Interestingly, the heavier, and
astrophysically most relevant, system of �106; 107�M�,
where none of the harmonics get close to the detector’s
sweet spot, shows the largest improvement in distance
estimation and angular resolution in going from restricted

to amplitude-corrected waveforms. This observation,
based only on the few systems studied in this paper, is
found to be generally true in an independent and more
exhaustive study by Trias and Sintes [31]. The larger
improvement over the RWF is to be expected since for
very massive systems only the higher harmonics radiate
significantly within the detector’s bandwidth. However,
what is striking is that, when considering only FWF, for
most choices of angles the errors on distance and the
angular resolution are almost at the same level as for
lighter systems. Doppler modulation does not seem to
affect the accuracy of estimation of parameters for the
systems considered in this paper; they are expected to be
important for systems with lower masses [26]. An alter-
native method to study these issues is by direct use of the
three time delay interferometry variables. Work along
these lines is in progress [34] and should provide an
independent check of our results in the near future.

C. Number of clusters in LISA’s error box

Binary black holes are standard sirens [5]. The ampli-
tude of gravitational waves from a binary SMBH is pro-
portional to M5=6=DL. As evidenced by the numbers in
Table II, LISA will measure both the chirp mass M of the
source and the amplitude of gravitational waves to a great
precision. Thus, the luminosity distance to a source can be
extracted by gravitational-wave observations alone. In or-
der to derive the luminosity distance-redshift relation, it is
also necessary to measure the redshift z to the source, but
LISA cannot measure z. However, it might be possible to
determine the source’s redshift if the host galaxy, or galaxy
cluster, can be optically identified. Whether or not this is
possible depends on how good LISA’s angular resolution
is, and whether it is small enough that no more than a few
galaxies or galaxy clusters are found within the angular
error box.6

To determine the number of galaxy clusters within a
solid angle ��S of the angular error box, we need the

TABLE I. Variation of parameter estimation errors with post-Newtonian orders in amplitude for a �106; 107�M� binary at z � 0:55
(corresponding to a luminosity distance of DL � 3 Gpc for a Hubble constant H0 � 75 km s�1 Mpc, matter density �m � 0:27, and
dark energy density �d � 0:73, with �Total � �m ��d � 1). The angles are chosen to be �S � �0:8, �S � 1, �L � 0:5, �L � 3.

�106; 107�M�; z � 0:55; �S � �0:8, �S � 1, �L � 0:5, �L � 3.
PN order SNR � lnM (10�6) �� (10�6) �tC (sec) ��C (rad) � lnDL (10�3) ��S (10�5 str) ��L (10�5 str)

0 1824 380 310 90 65 32 2400 6600
0.5 2005 110 110 32 2.6 2.3 6.3 9.9
1 1793 87 93 28 2.6 2.5 6.1 8.0
1.5 1680 87 95 29 2.9 2.7 6.8 8.7
2 1585 94 100 31 3.1 2.8 7.8 10
2.5 1549 96 100 31 3.2 2.9 8.2 11

6Note that we have to use the angular error box and cannot use
the smaller volume error box also fixed by the luminosity
distance. In order to do precision cosmology we have to measure
the source’s redshift independently of the luminosity distance.
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TABLE II. Accuracy in LISA’s measurement of the various parameters in Eq. (2.5), for seven different sets of the angular parameters
and three different combinations of the (physical) masses at a distance of 3 Gpc (z � 0:55). When the number of clusters in the error
box on the sky is significantly larger than 1, it will not be possible to determine redshift unless the inspiral event has a clear optical
counterpart; we have chosen not to quote results for �w in such cases. (Note that the error on w is ultimately determined by both
LISA’s statistical errors and weak lensing errors in the determination of luminosity distance.) The figures clearly demonstrate
significant improvement in parameter estimation when higher order terms are included.

Orientation �S ’S �L ’L Model SNR � lnDL ��S � lnM �� �tC Nclusters �w
(rad) (rad) (10�2) (10�6 str) (10�6) (10�6) (sec)

�m1; m2� � �105; 106�M�
A1 0.3 5 0.8 2 RWF 750 1.2 12 6.0 31 1.7 0.25 0.068

FWF 754 0.88 4.3 4.6 23 1.2 0.088 0.050
A2 �0:1 2 �0:2 4 RWF 1168 1.1 110 4.7 21 1.7 2.2 0.062

FWF 1150 0.58 13 3.5 16 1.1 0.27 0.033
A3 �0:8 1 0.5 3 RWF 2722 0.25 170 3.3 12 2.6 3.5 
 
 


FWF 2497 0.17 26 2.7 9.7 1.1 0.53 0.0096
A4 �0:5 3 �0:6 �2 RWF 1868 0.74 150 3.1 15 1.2 3.1 
 
 


FWF 1781 0.19 13 2.5 12 0.58 0.27 0.011
A5 0.9 2 �0:8 5 RWF 3740 15 84 2.3 8.0 2.1 1.7 0.82

FWF 2857 0.11 8.1 1.7 7.9 0.69 0.17 0.0062
A6 �0:6 1 0.2 3 RWF 2185 0.42 220 3.9 15 2.9 4.5 
 
 


FWF 2108 0.24 65 3.0 11 1.6 1.3 0.014
A7 �0:1 3 �0:9 6 RWF 2213 0.58 410 3.5 13 1.1 8.4 
 
 


FWF 2175 0.45 300 2.9 10 0.74 6.1 
 
 


�m1; m2� � �6:45� 104; 1:29� 106�M�
A1 0.3 5 0.8 2 RWF 385 1.3 21 5.5 13 3.2 0.43 0.073

FWF 511 1.0 8.4 4.2 9.1 2.1 0.17 0.056
A2 �0:1 2 �0:2 4 RWF 595 1.1 120 4.2 9.2 2.5 2.4 0.062

FWF 771 0.70 25 3.3 6.5 1.7 0.51 0.039
A3 �0:8 1 0.5 3 RWF 1345 0.33 170 3.4 5.8 2.7 3.5 
 
 


FWF 1573 0.25 53 2.6 4.2 1.6 1.1 0.014
A4 �0:5 3 �0:6 �2 RWF 924 0.78 160 3.0 6.8 1.7 3.3 
 
 


FWF 1158 0.26 27 2.3 5.0 1.0 0.55 0.015
A5 0.9 2 �0:8 5 RWF 1863 15 87 2.4 3.8 2.2 1.8 1.0

FWF 1506 0.19 25 2.0 3.9 1.3 0.51 0.011
A6 �0:6 1 0.2 3 RWF 1069 0.47 240 4.1 7.2 3.1 4.9 
 
 


FWF 1378 0.32 110 2.9 4.8 2.1 2.2 0.018
A7 �0:1 3 �0:9 6 RWF 1093 0.57 420 3.1 6.1 1.6 8.6 
 
 


FWF 1448 0.50 350 2.5 4.2 1.1 7.1 
 
 


�m1; m2� � �106; 107�M�
A1 0.3 5 0.8 2 RWF 495 11 600 1400 1100 290 12 
 
 


FWF 444 2.2 16 190 240 75 0.33 0.12
A2 �0:1 2 �0:2 4 RWF 773 10 6500 870 710 190 130 
 
 


FWF 685 1.2 43 130 160 51 0.88 0.068
A3 �0:8 1 0.5 3 RWF 1824 3.2 24 000 380 310 90 490 
 
 


FWF 1549 0.29 82 96 100 31 1.7 0.016
A4 �0:5 3 �0:6 �2 RWF 1249 6.9 2400 550 450 120 49 
 
 


FWF 1081 0.34 40 110 130 40 0.82 0.019
A5 0.9 2 �0:8 5 RWF 2493 110 8300 270 220 63 170 
 
 


FWF 1954 0.18 18 200 180 49 0.37 0.010
A6 �0:6 1 0.2 3 RWF 1465 4.7 53 000 470 380 110 1100 
 
 


FWF 1273 0.44 300 105 115 36 6.1 
 
 


A7 �0:1 3 �0:9 6 RWF 1480 21 170 000 520 390 98 3500 
 
 


FWF 1300 1.3 3400 87 100 30 69 
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comoving volume corresponding to a cone defined by ��S

whose height is the physical distance from the detector to
the source, which, of course, depends on the cosmological
model. In a universe whose matter density is �m and in
which dark energy density takes the form of a cosmologi-
cal constant7 �d (with �Total � �m ��d � 1), the co-
moving volume per unit redshift within a box of angular
size ��S is

 

dVC�z�
dz

�
��S

H0

D2
L�z�

�1� z�2
1�������������������������������������

�m�1� z�3 ��d

p : (3.1)

In the above, DL�z�, the luminosity distance as a function
of redshift, is given by

 DL�z� �
1� z
H0

Z z

0

dz0��������������������������������������
�m�1� z

0�3 ��d

p ; (3.2)

whereH0 is the Hubble parameter at the current epoch. The
comoving volume from the observer to the source within a
cone defined by ��S is simply the integral of Eq. (3.1):

 VC�z� �
Z z

0
dz0

��S

H0

D2
L�z
0�

�1� z0�2
1��������������������������������������

�m�1� z0�3 ��d

p :

(3.3)

The number density of clusters at high redshifts is not
known very well. Following Ref. [35] we assume that the
number density of clusters is �2� 10�5h3 Mpc�3, where
h is the present value of the Hubble parameter in units of
100 km s�1 Mpc�1. We take h � 0:75, �m � 0:27, and
�d � 0:73. For this choice of cosmological parameters
the number of expected clusters within the LISA angular
error box is given in the second to last column of Table II.
Clearly, in many cases the number of clusters is of order 1,
which means that LISAwill help us to uniquely identify the
host galaxy cluster of a binary SMBH merger event within
a redshift of z � 0:55.

There is a caveat with regard to the number of clusters
found within the error box that is important to mention at
this stage. Note that we integrated the comoving volume up
to z � 0:55, the location of our source. In reality, we would
not know the redshift of the source and are not fully
justified in integrating only up to this point; in principle,
we should consider all clusters within the error box up to
much larger redshifts. However, sources at redshifts much
larger than z � 0:55 for the same luminosity distance
would probably give radically different cosmological pa-
rameters. Consistency with other observations justifies
considering only galaxy clusters that are roughly in the
redshift region determined by inverting a luminosity
distance-redshift relation based on parameter values from

other measurements. In any case, we have checked that
integrating the comoving volume up to z � 1 (which for
our chosen value of DL would already imply a very sig-
nificant departure from current cosmological models)
does not drastically change the results of Table II.
Indeed, despite the higher limit of integration, the number
of clusters in the angular error box remains less than 3 for
most choices of angles, which is the (arbitrary) cutoff in
Nclusters we have chosen to assess whether redshift can be
determined.

There have been suggestions that in order to identify the
source associated with a binary SMBH merger we should
also look for optical/UV counterparts; the improved angu-
lar resolution with the correct signal model should help in
this case too. Optical and other electromagnetic telescopes
will need to survey a much smaller area on the sky than was
thought before and should therefore more easily identify
the galaxy cluster in which the merger took place.

The error in DL being less than a percent means that we
should, in principle, be able to tightly constrain the cos-
mological model a lot better. However, as discussed by
several groups, the possible effect of weak gravitational
lensing on parameter estimation, in particular, on our
ability to measure the luminosity distance (see, e.g.,
Ref. [3]), will limit the extent to which LISA can measure
dark energy. These considerations do not alter the main
conclusions of this paper, as our main goal is to show that
the field of view in LISA’s angular resolution in most cases
involves only a few sources.

D. Constraints on the equation of state of dark energy

We conclude by mentioning the implications of our
estimates for astrophysics and cosmology. Up to this point
in our analysis we have not assumed any electromagnetic
counterpart to the coalescence events LISA will observe.
But in reality, many of the LISA observations are likely to
have electromagnetic counterparts, either as a precursor or
as an afterglow [36,37]. The implications of a uniquely
identified quasar source in coincidence with LISA were
examined in [38] specifically assuming quasars as a pos-
sible electromagnetic counterpart. Even a single event of
this type would provide us with unprecedented tests of
SMBH accretion physics, such as a precise measurement
of the Eddington ratio [38]. For this to be possible, and to
identify a unique electromagnetic event in coincidence
with a merger event as seen by LISA, the use of higher
harmonics would be crucial, since for many of the direc-
tions in the sky it brings down the number of candidate
clusters to less than 1.

Another exciting possibility is to use LISA as a cosmo-
logical probe. If a unique host is identified electromagneti-
cally in coincidence with the LISA observation, the
redshift of the host galaxy will be known to very high
accuracy. The improved estimate of the luminosity dis-
tance obtained by using the FWF would play a crucial7In the next subsection we will relax this assumption.
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role in determining the cosmological parameters as sug-
gested by Schutz [5].

Gravitational-wave observation of a single inspiral event
coupled with an electromagnetic determination of the red-
shift would allow LISA to strongly constrain the equation
of state of dark energy. In a flat universe, the luminosity
distance can be written as

 DL � �1� z�
Z z

0

dz0

H�z0�
; (3.4)

where H�z� is the Hubble parameter. Given a form of
matter energy with density parameter �d and a (constant)
equation-of-state index w, one has

 H�z� � H0	�m�1� z�3 ��d�1� z�3�1�w�
1=2: (3.5)

For a given, fixed redshift (and fixed H0, �m, and �d), the
error on w is

 �w � DL

��������@DL

@w

��������
�1�DL

DL
: (3.6)

Using (3.4) and (3.5) and setting �d � 0:73, w � �1, and
DL � 3 Gpc, one obtains

 

��������@DL

@w

��������’ 533 Mpc: (3.7)

With these assumptions and using the values for �DL=DL

from our analysis, we find that, in all of our examples, the
FWF always leads to a smaller value for �w than the RWF
whenever a comparison can be made. Indeed, in Table II
there are many instances where the RWF does not allow for
a determination of the redshift because the number of
clusters in the angular error box on the sky is too large,
in which case w cannot be measured. In most of the
examples we have considered, the FWF does not have
this problem.

The foregoing analysis does not take into account the
error in luminosity distance arising as a result of weak
lensing of gravitational waves by the intervening mass
concentrations between the binary SMBH source and
LISA. It is estimated that the weak lensing will introduce
errors in the luminosity distance at the level of about 3%–
5% for sources at z� 0:5 [3]. This is far greater than the
systematic error in LISA’s measurement of the luminosity
distance. Therefore, weak lensing will be the limiting
factor in LISA’s ability to measure the dark energy equa-
tion of state unless weak lensing can be corrected by
properly modeling the weak lenses.

We now revisit the caveat in the previous subsection
regarding the fact that we tend to consider an error cone
that stretches only to z � 0:55. Let us evaluate �w when
considering a measured luminosity distance of DL �
3 Gpc, but allowing for the possibility that the source
may be at a different redshift. Given our luminosity dis-
tance, to assume that the source could be at, e.g., z � 0:6
and keeping H0, �m, and �d the same would already

require w � �0:47 [from Eqs. (3.4) and (3.5)], a value
excluded by WMAP and SNLS results [2]. In that case
j@DL=@wj ’ 668 Mpc; substituting this into the right-hand
side of Eq. (3.6) one finds that all values of �w will
decrease by about 25% compared with the z � 0:55 (w �
�1) case. In reality, uncertainties in H0, �m, and �d will
also have to be taken into account, but it will probably not
be necessary to consider potential sources in the angular
error box at redshifts that differ from the ‘‘favored’’ value
by more than 20%. A more complete treatment should take
into account the covariances among H0, �m, �d, and w;
this we relegate to a future study.

We conclude by noting another interesting feature of our
analysis. In addition to the improved angular resolution
and luminosity distance, the errors in the estimation of
mass parameters reduce considerably while using FWF.
Even though the RWF itself would give a very good
estimate of the masses, the improved measurement of the
mass parameters would be very important in performing
certain novel tests of general theory relativity and its
alternatives [7,39,40]. For example, the use of FWF should
help improve the accuracy with which the individual phas-
ing coefficients can be determined independent of each
other, an idea proposed in Refs. [39,40].

IV. FACTORS AFFECTING THE ESTIMATES

In this section we will briefly discuss some caveats
regarding our results. Here we focus on physical issues;
limitations related to our chosen methods for computing
errors (and their resolution) are commented on in
Appendix A.

(a) Effect of black hole spins.—Our analysis is re-
stricted to the case of nonspinning black holes, while
astrophysical black holes are known to have signifi-
cant amounts of spin. Including the spin effect could
significantly alter the estimation of different pa-
rameters [7]. To get an estimate of the effect of the
spin on parameter estimation, we have recomputed
the covariance matrix by including the leading order
spin-orbit parameter in the waveform model. We
observed a deterioration of up to an order of magni-
tude for the mass parameters but only a factor of a
few in the estimation of luminosity distance and
angular resolution. As suggested by Vecchio [41],
the inclusion of precession should compensate for
the deterioration of the mass errors to a great extent.
For instance, including the leading spin-orbit term
with a simple precession model, Ref. [41] showed
that the angular resolution and luminosity distance
determination could be improved by a factor be-
tween 3 and 10. A more recent analysis [42] incor-
porated the 2PN spin effects. Thus our estimates
may not be too far from the realistic case despite
the assumption of nonspinning holes. An interesting
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exercise for the future would be to include the
amplitude corrections with the spin effects and see
the extent to which the results of this paper change.

(b) Weak and strong gravitational lensing.—An impor-
tant physical effect we have neglected in our analy-
sis is the possibility of gravitational lensing of the
signal. Weak lensing by intervening matter distribu-
tions distorts the gravitational waveform, inducing a
systematic error in the estimation of luminosity
distance [3]. This could be as high as 5%–10% for
some of the systems, much higher than LISA’s
systematic error on the luminosity distance. On the
other hand, strong lensing may improve the angular
resolution, as multiple gravitational-wave ‘‘images’’
formed will reduce the correlations between various
parameters [43]. This improvement could be as high
as 100 times for a million solar mass (redshifted)
binary [44]. Thus the net effect of lensing of a high
redshift source may not be disastrous.

(c) Inaccuracy in the cosmological parameters.—In
computing the accuracy with which we can measure
the dark energy parameter w, we have assumed that
other cosmological parameters, namely, H0, �m,
and �d, are all known precisely and that the redshift
z of the host galaxy is measured accurately. In
reality, all these quantities will have their own sta-
tistical errors that must be folded into the analysis
and we hope to do so in a future publication.
Moreover, it might be possible for LISA to measure
the luminosity distance-redshift curve by observing
many supermassive black hole binary coalescences
during its mission lifetime and extract all the cos-
mological parameters. How well LISA might be
able to do would be a very interesting question
that we would like to reserve for future studies. In
any case, the fact that higher harmonics enable a
greater accuracy in the measurement of the parame-
ters should help.

(d) Event rates and measurement of w.—The rate of
binary SMBH mergers in the Universe is not known
with good accuracy. The rate depends on the cos-
mological model of choice and on structure forma-
tion and growth. Current models predict rates that
vary over 2 orders of magnitude. For one of the
models the rate of binary SMBH merger is as large
as �10 yr�1 within z � 1 or about �1 yr�1 up to
z � 0:55 (see [33] for an overview). A single source
at the right point in parameter space at z � 0:55 will
be good enough to measure w to a few percent.
However, events at z � 1 will be more frequent
and consequently a few of them are likely to end
up in the favored region of parameter space. We
have verified that at z � 1, for all choices of masses
considered and angles A1–A5 (except for A3 in the
case of the most massive system), the number of

clusters within the error box is less than 10 when
using the FWF. It should therefore be possible to
either directly identify the merger source (by de-
manding consistency of the inferred cosmological
parameters with those from other observations), or
to locate it by observing an afterglow. Values of �w
will be about 70% higher than before; however, with
repeated observations one would be able to perform
a statistical analysis along the lines of [5]. Thus,
merger events at z � 1 also allow for a measurement
of w, although in this case the microlensing would
probably restrict our accuracy in its estimation to
�10 percent [3].

V. CONCLUSIONS

In this paper we have reassessed LISA’s ability to per-
form precision cosmology by using waveform models with
far richer structure than those used before, and we find
remarkable improvement in its angular resolution and
estimation of the luminosity distance. Our ability to reli-
ably measure the parameters of a binary SMBH depends
crucially on the signal model onto which the data is pro-
jected. If the signal model is incorrect or even inaccurate,
then regardless of how good the instrument might be, the
measurement is prone to systematic errors which will make
precision measurements meaningless (see, e.g., Ref. [45]
for a detailed discussion on parameter extraction errors due
to inaccurate template waveforms). From the point of view
of incurring the minimum possible errors in the estimation
of parameters, it is desirable to use the best known signal
model. We have provided critical insight into the role of
higher harmonics in the fast gravitational-wave phasing,
higher PN corrections in the amplitudes, and their interplay
with the slow modulations induced by LISA’s motion (see
Appendix B).

By using a waveform whose phase is correct to order v7

(3.5PN) and with the amplitudes correct to order v5

(2.5PN), we have found that LISA’s angular resolution
improves typically by a factor of 10, even with a very
conservative choice for the detector’s lower cutoff fre-
quency (i.e., 10�4 Hz). This means that LISA will be
able to uniquely identify the galaxy cluster in which the
merger event took place and thereby facilitate optical
identification and the measurement of the redshift of the
source. Together with the fact that binary SMBH sources
are standard sirens, this means that LISA will be able to
measure the cosmological parameters by circumventing
the lower rungs of the cosmic distance ladder.
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APPENDIX A: IMPLEMENTATION OF THE
PARAMETER ESTIMATION WITH FWF AND

ISSUES RELATED TO NUMERICAL ACCURACY

The computation of the covariance matrix for LISA
using FWF starts with a simpler code (in MATHEMATICA)
which reproduces the results of Refs. [13,14,20] for the
ground-based detectors. The modulations due to LISA’s
orbital motion are then accounted for to obtain the wave-
form in LISA’s frame. This waveform is differentiated
analytically and the derivatives are stored in an array and
used in the computation of the various elements of the
Fisher matrix. The integrations that are needed in comput-
ing different elements of the Fisher information matrix are
performed using numerical integration routines of
MATHEMATICA. The program thus evaluates the Fisher
matrix for the given input values of the component masses
of the binary, the four angles describing the source in the
solar-system barycenter frame, and the PN order of the
amplitude for a fixed distance of 3 Gpc (phasing is always
3.5PN). The input masses are always physical masses
consistent with the cosmological model we described
earlier.

We have checked that our code reproduces the numbers
in Ref. [26] (with the corresponding restricted waveform
which uses a 1.5PN phasing including the spin-orbit pa-
rameters, and the corresponding noise PSD) with less than
1% difference. Since we use the noise PSD of Ref. [7], we
have checked that we obtain the numbers for the pattern-
averaged case of [7] to less than 1% difference using their
waveform parametrization, which includes all nonspinning
and spinning binary parameters up to 2PN but ignores
higher PN order terms in the phasing. Lastly, we recover
the results of [27], which uses a 3.5PN phasing for the
parameter estimation, and recover the results again to less
than 1% difference.

The numbers quoted in this paper were checked with
three independent codes, all in MATHEMATICA, but using
different numerical integration routines (such as
NINTEGRATE and LISTINTEGRATE) and matrix inversion
routines [such as INVERSE and another method based on
singular value decomposition (SVD)], and all three codes
agree to less than 5%.

A large dimension of the parameter space often leads to
ill-conditioned Fisher matrices; i.e., the magnitude of the
ratio of the smallest and the largest of its singular values
(the inverse of the condition number) approaches the ma-

chine’s floating point precision (10�16 in our case). For the
�6:45� 104; 1:29� 106�M� system, only the RWF Fisher
matrix is ill-conditioned, for the third angle. The
�105; 106�M� system, for both RWF and FWF, is free of
ill-conditioned Fisher matrices. More specifically, the in-
verse of the condition number is always 103–105 times
larger than 10�16. The MATHEMATICA inversion routine as
well as SVD are used to obtain the covariance matrix, and
both methods give the same results. For these systems, we
also note that the numerical eigenvalues (computed
using the MATHEMATICA function EIGENVALUES) coincide
with the numerical singular values (obtained through
SINGULARVALUEDECOMPOSITION) at the standard floating
point precision of 10�16. On the other hand, the Fisher
matrices for the �106; 107�M� system show ill-conditioned
behavior at this precision. However, this may not mean that
the results obtained are unreliable for reasons outlined
next. The SVD of the Fisher matrices shows that one or
more of the singular values approach zero. Indeed, a ma-
chine precision calculation of the singular values yields
zero for at least one singular value of the Fisher matrices
for this system. In such cases, we replace the singular
values by the numerical eigenvalues (whose machine pre-
cision calculation does not yield zero) to obtain the inverse
using SVD. However, MATHEMATICA has the option of
computing at higher precision by padding unknown digits
beyond the known ones. Using this facility and repeating
the inversion procedure using SVD but with precision
higher than 10�16 does not alter the results and shows
that the singular values are equal to the eigenvalues, as
expected, with none of them being zero. The condition
number is also seen to be 10 times larger than the precision
used. In the case of one or more almost zero singular values
(at standard floating point precision), one can also obtain a
pseudoinverse [46] that is closest to the ‘‘real’’ inverse, in a
least-squares sense, and end up with different results.
However, for the �106; 107�M� system, the errors given
by the pseudoinverse do not seem physically correct and
so we refrain from using it in this work. A detailed analysis,
by perturbing the Fisher matrices and observing how the
inverses behave, will be a stronger test of the reliability of
our results [47].

A recent Markov Chain Monte Carlo (MCMC) analysis
of Ref. [48] revealed an interesting point relevant to our
analysis. It compared the estimates from the Fisher infor-
mation matrix with those obtained from MCMC and found
that there is excellent agreement between the two methods
in the case of the extrinsic parameters (what we refer to as
pslow), although in the case of the intrinsic parameters the
two methods are not in good agreement. This is good news
since our main concern here is the angular resolution and
the luminosity distance. Though their analysis used the
restricted waveform, we believe that similar trends would
exist in the case of FWF too since the dimensionality of the
parameter space is the same as that of RWF.
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APPENDIX B: PARAMETER ESTIMATION WITH
THE FWF AND VARIATION WITH PN ORDER IN

AMPLITUDE

In this appendix we will attempt to provide some quali-
tative understanding of the trends observed in the parame-
ter estimation accuracy with increasing PN order in am-
plitude. Recall that the covariance matrix goes as 1=SNR2

and therefore errors go down as 1=SNR. However, notice
from Table I that, even though the FWF SNR is less than
the RWF SNR, all errors decrease as we go from RWF to
FWF. This provides the clue that the SNR cannot account
for the improved performance of FWF: In going from the
RWF to 0.5PN, the ratios of the two SNRs are nowhere
close to the inverse ratios of the errors in various parame-
ters. Further, as we go from 0.5PN to 2.5PN, although the
products of the SNR with errors do not fluctuate much,
they are noticeably different, implying that the SNR is not
the main reason why the parameter estimation improves.

Next, we note that at 0.5PN both the first and the third
harmonic possess the same structure (f dependence) and
almost the same variety (dependence on the inclination
angle �) (compare Eqs. (5.7b) and (5.8b) of [24]). How-
ever, their effects on PE, when examined independently,
are vastly different, as seen in Table III. The 0.5PN PE is
hardly distinguishable from the PE with the first harmonic
suppressed, and thus the improvement at 0.5PN is solely
due to the third harmonic. This is further confirmed by
performing the PE with a ‘‘mock’’ FWF where the third
harmonic is replaced by the second harmonic: as seen from
Table III, the PE worsens in this case. Thus, the presence of
higher harmonics brings about improved PE. It must, how-
ever, be pointed out that the improvement is obtained not
merely due to the presence of the higher harmonic but
crucially due to the increased span of the kth harmonic

in the frequency domain [k�FLSO � Fin�]. This is first
checked by working with a mock 0.5PN waveform con-
taining the second harmonic but using for its span the
increased span of the third. It is confirmed by an alternative
mock waveform, suppressing the first and third harmonics
and including instead the seventh harmonic at 0.5PN. The
dramatic improvement in PE compared to the regular
0.5PN waveform, but with almost the same SNR, shows
that at the 0.5PN level, where complications due to PN
corrections to the harmonics and higher order expansion
coefficients of _F�1=2 are not present, the SNR is not the
determining factor.

To understand the variation in PE from 0.5 to 2.5PN we
need to disentangle many effects. The FWF introduces
more structure (f dependences) at different PN orders.
Different harmonics appear at different PN orders and in
our model are associated with their respective spans. At
2.5PN, higher order corrections appear in every harmonic
except the sixth and the seventh harmonics. The frequency
sweep _F�1=2 in the Fourier transform of the binary signal
brings in further PN corrections associated with it [the
coefficients S�m=2� in Eq. (2.3)]. Finally, the coefficients
involve angles which are fixed in the barycentric frame but
suffer modulations (Doppler and orientational) due to
LISA’s motion. To this end, we reexamined the PE with a
series of mock waveforms including, where possible, only
one of the above aspects. For instance, in Table IV we
consider only the second harmonic and its associated PN
corrections. From the results it is clear that although PN
corrections to the second harmonic bring in additional
terms, they do not improve PE; rather, in comparison
with the RWF, the PE worsens. This is probably due to
the fact that PN corrections with the same frequency
dependence as before (or powers thereof) increase the

TABLE III. Parameter estimation at 0.5PN order with mock waveforms corresponding to different choices. The first (second) row
corresponds to the restricted (0.5PN) results. The third (fourth) row corresponds to the 0.5PN waveform with only the third (first)
harmonic and suppressing the first (third) harmonic. The fifth row corresponds to a mock waveform suppressing the first harmonic and
replacing the third harmonic by the second. This implies retaining its polarization amplitude and phase but changing t�f=3� ! t�f=2�
in the Fourier and the Doppler phases and decreasing the frequency span from 3�FLSO � Fin� to 2�FLSO � Fin�. The sixth row
corresponds to the previous case but with an enhanced span 3�FLSO � Fin�. The last row corresponds to a mock waveform where the
seventh harmonic is moved from 2.5PN to 0.5PN and treated with its associated normal frequency span 7�FLSO � Fin� with the first and
third harmonics suppressed. In this and other tables in this appendix the system and angles are the same as in Table I.

�106; 107�M�; z � 0:55; �S � �0:8, �S � 1, �L � 0:5, �L � 3 (A3).

PN order
SNR � lnM

�10�6�

��
�10�6�

�tC
�sec�

��C

�rad�
� lnDL

�10�3�

��S

�10�5 str�
��L

�10�5 str�

0 1824 380 310 90 65 32 2400 6600
0.5 2005 110 110 32 2.6 2.3 6.3 9.9
0.5 (third) 2004 110 110 32 2.6 2.3 6.3 10
0.5 (first) 1825 370 310 81 21 10 360 960
0.5 (second) 1648 410 340 90 12 10 690 1800
0.5 (second with span of third) 1757 190 140 31 5.0 2.2 17 44
0.5 (seventh) 1943 11 22 8.5 1.9 2.1 3.6 4.2
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covariances among the various parameters and thus worsen
PE.

In Table V, on the other hand, the mock waveform
includes all the higher harmonics but excludes their PN
amplitude corrections and PN corrections arising from the
frequency sweep. Clearly, the PE improves monotonically
as we go from one order to the next in all the parameters
quoted, and so does the SNR. Additionally, an examination
of the results in Tables I and V reveals that, while the
higher harmonics by themselves tend to generically im-
prove PE, the PN corrections to the harmonics arising from

the higher PN amplitudes and higher PN frequency sweep
tend to degrade PE. However, their effect is less dramatic
than one may naively expect. This is because higher har-
monics necessarily appear at higher PN orders and, as is
evident from Eq. (2.3), they come with higher powers of
the PN expansion parameter: �2�Mfk�n=3 for the kth har-
monic appearing at the n=2th PN order. The upper cutoff of
the kth harmonic in the frequency domain is kFLSO at
which �2�Mf�1=3 reaches its maximum of 6�1=2. The
seventh harmonic, for example, will be scaled by a factor
which is always less than 6�5=2 and consequently will

TABLE V. Variation of PE with PN orders for a mock FWF retaining all the harmonics and neglecting both higher order PN
corrections to them and also PN corrections to �dFdt �

�1=2 arising from the frequency sweep. Thus most higher order PN corrections to the
harmonics are neglected. Higher harmonics generally improve parameter estimation. PN corrections to harmonics tend to degrade PE.

�106; 107�M�; z � 0:55; �S � �0:8, �S � 1, �L � 0:5, �L � 3 (A3).

PN order
SNR � lnM

�10�6�

��
�10�6�

�tC
�sec�

��C

�rad�
� lnDL

�10�3�

��S

�10�5 str�
��L

�10�5 str�

0 1824 380 310 90 65 32 2400 6600
0.5 2005 110 110 32 2.6 2.3 6.3 9.9
1 2058 83 87 26 2.4 2.2 5.1 7.03
1.5 2068 78 82 25 2.3 2.2 4.8 6.4
2 2070 77 82 24 2.3 2.2 4.8 6.3
2.5 2070 77 82 24 2.3 2.2 4.8 6.3

TABLE IV. Variation of PE with PN orders in amplitude for a mock FWF retaining only the second harmonic and its higher order PN
corrections. The PN corrections to a given harmonic at PN order n=2 add terms of type �2�Mf=k�n=3. While they bring in new
structure in the waveform, they do not help improve PE; instead, they enhance the covariances among different parameters and thereby
worsen PE relative to RWF.

�106; 107�M�; z � 0:55; �S � �0:8, �S � 1, �L � 0:5, �L � 3 (A3).

PN order
SNR � lnM

�10�6�

��
�10�6�

�tC
�sec�

��C

�rad�
� lnDL

�10�3�

��S

�10�5 str�
��L

�10�5 str�

0, 0.5 1824 380 310 90 65 32 2400 6600
1, 1.5 1510 450 370 110 110 44 2000 5900
2 1387 490 400 120 120 45 2300 6700
2.5 1353 500 410 120 130 48 2400 7200

TABLE VI. Correlation coefficients computed using RWF for a binary at z ’ 0:55 comprising �106; 107�M� SMBH. The table shows
how the ‘‘fast’’ and ‘‘slow’’ variables behave. There is a high correlation among parameters in the same subclass, but only a weak
correlation between members of different subclasses. Entries that are vacant can be found by symmetry.

�106; 107�M�; correlation-coefficient matrix; 0PN (A3)
lnM � tC �C lnDL �S �S �L �L

lnM 1 �0:99 0.93 �0:19 �0:17 0.14 �0:13 �0:15 0.031
� 1 �0:92 0.098 0.084 �0:06 0.065 0.074 �0:0088
tC 1 �0:43 �0:45 0.33 �0:43 �0:46 �0:022
�C 1 0.98 �0:95 0.70 0.92 �0:39
lnDL 1 �0:88 0.81 0.98 �0:22
�S 1 �0:45 �0:77 0.65
�S 1 0.92 0.38
�L 1 �0:016
�L 1
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contribute less power. The seventh harmonic in the FWF at
its regular PN order hardly leads to any improvement in
PE. However, as remarked earlier in Table III, had it
appeared at 0.5PN its impact would have been substantial.
We have verified these trends for another angle and for a
lower mass system of �105; 106�M�; for the sake of brevity
we leave out the details.

Our last comment relates to the decoupling between the
fast variables pfast and the slow variables pslow in the case
of the FWF. We have checked that in the case of the FWF
the correlation coefficients are very small (of the order of
0.1–0.3) between these two subsets of parameters (see
Tables VI and VII). There exists, however, a high correla-
tion among different parameters of the same type as in the

case of RWF (see, e.g., Ref. [6]). Specifically, as in the
RWF case [6], the distance estimation could be improved if
the source is better localized in the sky.

It is worth recalling that in the parameter estimation
problem we are not only limited by statistical errors due
to noise but also by theoretical or systematic errors arising
at any PN order due to the limited accuracy of the wave-
forms. Recently, Cutler and Vallisneri [45] have looked
into this issue more critically. In the context of the present
work, we would like to stress that, despite the fact that the
largest improvement in PE arises from the third harmonic
at 0.5PN, the need to limit systematic errors mandates the
use of the best available waveform, i.e., the one at 2.5PN in
amplitude and 3.5PN in phase.
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