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A. INTRODUCTION

IN a previous paper,! the author had shown that for a linear lattice with
p atoms in its unit cell, there are (2p — 1) frequencies for which the group
velocity of the waves traversing along the lattice vanish, and it was further
proved that any arbitrary initial disturbance ultimately settles into a super-
position of these (2p — 1) characteristic vibrations, the amplitudes of
vibrations at any instant being proportional to the square root of the time
elapsed. These results, however are not peculiar to linear lattices alone
and we have reason to believe that for periodic lattices in two and three
dimensions,? there are (8p — 2) and (24p — 3) frequencies respectively for
which the group velocity of the waves associated with them vanish, p in each
case representing the number of atoms in an unit cell of the lattice. It is
the object of the present paper to prove the above statement and extend the
results of the previous paper to the case of a rectangular lattice, which for
simplicity is assumed to consist of one particle in each of its unit cells.

1. THE CHARACTERISTIC FREQUENCIES

We shall denote the lattice distances by d; and d, and let tan A = 22,
The position of any particle is specified by means of the ordered pair olf
integers (I, m) and the components of the displacements of the particles along
the x and y directions are denoted by x; ,, and y; ,. We restrict the inter-
action of any particle to its immediate and diagonal neighbours only and
neglect the effect of the forces caused on it by the displacements of the more
distant neighbours. Since the interacting forces are assumed to be central,
this assumption places a restriction on the magnitudes of d; and d, and
implies that (d;%+ d,?)! is less than both 24, and 2d,. The potential energy
of the lattice now becomes a function of three force constants «, 8, y and
as (x;, cos A +y, , sin A) is the resolved part of the displacement of the
particle (/, m) along the diagonal joining it to the particle (/ -+ 1, m + 1),
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we have the following expressions for the potential and kinetic energies of
the lattice. '

2T = MIE Gzt 7% m) (D

2V =a ]z' (xl, ”;’.— xl+1, 7)1)2 + B 2 (yl, m - y/, ”z+1)2
s M Lm

. . 2
+ '}’zz'(xl,m cos A + Yi,,, SIR A— X7, m41 COS A— Vie1, s SID A)
., m

+vZ2(x;,,, CO8A —y;,, SiNA— X7 04 CO8 A+ Vi, 800 A)%
Lm

the summation extending over all the particles of the lattice.

When the lattice extends indefinitely along both sides, it is necessary
to assume the convergence of the series (1); this, however, would be secured
in the problem which we consider since the total energy of the lattice, which
is due to an initial disturbance imparted to a finite region of the lattice, is a
constant,

The equations of motion of the particles are now given by

— M-il,m =a (le,m—x1+l, m X1, m) (2)

N
"+ ycos A [4x;,, COS A — Xpy 11 COS A — Y3 00 8iD A i

— X[ 1,1 COS A+ Yy puaSiD A — X7, 5 CO8 A ?

+ Vi ma SiDA — X4, 1COSA— Y14, 804 j

—Myp, =8 (2}’1,,,.‘“‘ Vi mar = Vi, per)s

+ysinA |4y, sind—x;, . ,€08 — Yy 080 A
+ X/, 341 COS A — Yy g g SIN A+ X5 5 COS A

— Vi1, m1 sin A — ‘xl—l, m—1 COS A — Yia, mar sin A

We shall assume wave solutions for these equations of the type
Xp g = [1€4(61+ 1914 mbD)
Vim = Joeh(t + 16, + mha), ) 3)
where f; and f; are functions of the two variables 9; and §,.
Substituting equations (3) in (2), we get
Filf (6189 — Mw?] + foh (6,05) = 0
S ¥ (8109 + £3 [$ (6,69) — Mw?] = 0, )
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where
f(6,0,) = 20 (1 — cos 6,) + 4y cos? A (1 — cos 6, -cos 8,)
& (6,0,) = 2B (1 — cos 0,) + 4y sin2 A (1 — cos 08, cos 8,) (5)'
and ¢ (0,0,) = 4y sin A cos A sin 6, sinv 0,.
Eliminating f; and f, from equations (4) we get
M?2wt — Mw? [ f(8,6,) + ¢ (6:0)] + f (6,05) ¢ (6:85) — 42 (6,0,) = 0 (6)

Since from (6),  is a periodic function of 6, and 6,, we shall consider
only the values of 6, and 0, lying inside the intervals 0 < 6,< 27; and
0« 8,<< 2. Also, by a comparison of (3) with the usual form of the wave

function, we get k = 1= 9 '\/ e -+ d —2., where Ais the wavelength of a

wave. More than the md1v1dual waves, greater importance attaches to the
groups of waves and their velocities since it is only these physical entities
that are accessible to any observation and measurement The group velocity

of the waves defined by Zk will vamsh when both and 2 0, areequal to
zero.
We have now from (6)
A g_‘g; — K, sin 6, (Ta)
where
A = Mo [2Mw? — f(6,0,) — ¢ (6,6)]
Ki = a [Mw? — ¢ (6,0,)] + 2y cos 0, [Mw? — f(8,6,) sin® A
— ¢ (6,6,) cos2A]
+4- 16y2 sin2 A cos? A sin2 6, cos 6, : 8)
and A 5 02 = K, sin 8. : " (7b)

where K, is defined in a similar manner as (8).

It can therefore easily be seen that both £~ bw and b -~ vanish for the set
2

" of points (0, 0); (0, n); (=, 0) and (=, =). Excludmg the point (0, 0) which
corresponds to a translation of the entire lattice, we have for the frequencies
associated with the remaining three points the following expressions:
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(1) Mu,? = f(0, ») = 8y cos? A
Mug? = ¢ (0, #) = 4 (B + 2y 6in? )
2) Mv2=f(7,0) =4 (a + 2y cos? A}
Mv,? = ¢ (7, 0) = 8y sin% A
(3) Mw,® = f(mr, ) = 4o and
Mw;? = ¢ (m, m) = 48. ®

It follows now from (7) that the group velocity of the waves associated
with each of these six characteristic frequencies is equal to zero.

The case of a square lattice is particularly simple and interesting. Here

we have a = B and A = 7

] and only three of the six frequencies given above

are distinct.
2. THE EFFECT OF AN INITIAL DISTURBANCE
We shall suppose that initially the particle at the origin receives a small

displacement whose components parallel to the axes are @ afid b respectively
and that all other particles are at rest.

@.e) x;,0)=ad3,, (10)
yl,m (0) = balo Smc and J.CI m (O) = J}l m (0) = 0

for all and m. If the values of £, (r = 1, 2) corresponding t6 the frequencies

+ w (s = 1,2) are denoted by f, ; and f, ,,, following Nagendra Nath,?

we obtam the general expressions for the dlsplacements of the particles at

afty time by superposing wave solutions of the type (3) for all values of 6,
and 6, lying in the interval (0, 27). We get

2T 2w

. 8n2f f (fir €+ frge™twr') exp. i (10, + mby) ddby

27 2%

* g f f (fie €+ fuge *e) exp. i (16, + m) db;db, a1

27 27

YVim = 8—:‘.2 ff (far e+ fos e) exp. i (16, + mb,) db,db,
o O

2T 27

1 : N
+ g f f (fag €+ fogeto) exp. i (16, -+ mb,) db,do, (12)
¢ 9
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With the help of equations (4) and the initial conditions (10), we can
express the values of £, as functions of 6, and 8,. We have from (11)

ar 27

Xy, (0) = 8—,1,5 f f(fn + fis + f1s + f10) exp. i (16, + mby) db, db,

T o7

0 O = g [ [0 afid) 00 (i i} exp. 1 @yt m8) dbrdly

L]

4
By expanding X f;, as a Fourier series in 6, and 6, in the form

r=1

247 fir —__—-S —f’ A;'k et i01+%8y) \ (14)

r=t1 +o0 +00
we get on substituting (14) in (13)

1 400 00
XI,m(O) = g’r—g_i iA,‘k‘I,'[ Im

+90 400
=32 ZA;8,8,,

=} A_,_,, where we write

Iy

I, = f &t t+mAdf
Hence we get s f,=2a (19
. r=%
Similarly we have 5 f,, = 2b (16)
r=1
and 2 o, (fi, —fr,2.,) =2 & (fo, — f3,2:,) =0 an
r=1, 2 r=t,

Now we get from (4), fy, ¢ (6,0,) = f, [Mw,® — f(6,8,)] and hence
from (16) and (17) we have

I wr(h, Fha) =2 P0H (18)
and

Z o f,—hau)=0 (19)

r=1,2
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Solving these equations we get,

fn= fl3 = 4 (1\1\: ‘;::Zf Zo:z—)lpb (20)
Mw®— ) — b
fn’: fu = ? (M (‘:’12“‘ w,’)

and two similar expressions for Sar and foo.

With these values for f;; and f,, equation (17) can now be
rewritten as

2w 2T
Xom = 8’7le f fu (e + emtext) edCoutmt) 4O, db, (21)
o 0

v 27

+ sinzf f fua (ebert + e o) ¢t GO+ mi0 Byl
o o

The asymptotic value of the above integral for large values of ¢ can be
* obtained by means of an extension of Kelvin’s method of stationary phases
for double integrals. We shall consider the integral

I=/, 1y e.iloy) 1+ +my]ddy, (A)

where f(x, y) is integrable in A and ¢ is large compared to / and m (i e.)
t=0(2 4+ m?. We shall assume that the region of integration contains
only one stationary point of w (x, y) at (x,y,). When the region of integra-
tion contains several stationary points of w (x, y), it can be split up into
subregions such that o (x, y) has only one stationary point in each of these
subregions. Since the exponent in the integrand is a very rapidly fluctuating
function when ¢ is large, the most important contribution to the integral
arises only from a region in the neighbourhood of (x,y,) at which o (x, y) is
stationary. We have, if x — x, = ¢ and y — y, = », for small values of
£ and »,

w (X, y) = w (x,Y,) + % (a¢*+2héy + by?), where a, h, b are the values of
2 2
: x‘;, :x:jv gyw at the point (x,y,). Hence (A) can be written as

+do0+m0 1
T~ f (g30) ©Xp. [ (%g¥g) £ + IxyHmy,] f f
—go -—’10

s~ (at24-2hty + bn?)
/]

(22)
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We transform the variables £, 1 to a new sét of variablés o and p given by

ta(§+ ) = ot

(ab — h?)

2 48
2 1t = gt

the limits for o and p can be taken to be + oo without any apprecidble error.
Hence if ab > h2, and a > 0 (22) becomes

+ oo +o0
X y 2y 2
I~ t(ﬁlg_*o% exp. i [w (x,y,) t+lx0+myo]fe~¢ 2 dafe-p 126 dp

2 .
= %—b—% €Xp. 1 [(U (xoyﬁ) t + lx() + myo + 11./2)

If (ab — h?) is negative, then we have

I~3 ?;{(x‘,:g‘ exp. i [w (x,3,) t + bx, + myg). (23)

Tn a similar way, the value of the integral I, = / A f(x, ) exp. i [—e (x, Y}t
+ Ix + my] dx dy for large values of ¢ is given by
2 . 4
I= ; ’;bf(fo;l’g)P exp. i [— w (X,90) t + Ixy + my, — ¢ ;] (249)
where ¢ takes the values 1 or 0'according as ab = h2.
Turning to the integral (21) we note that when 8, and 6; take any of the

values
(0, 7); (m, 0) and (=, ), we have

fir (6,09) = a; foa (By 63) =b
fia (8,85) = fy (6,0,) =

Also at these points,
2w 22 b Wy
2w,
= Q.
and Wl—b-—
Hence if w; > u,, and w, > v, applying the results (23) and (24) to
the integral (21) we get
_2af(=D"cosuyt | (— 1ysinwt | (—1)*" w; cos wit

Xlm = gf [ (wy2— u,®) + " + u (wy3— uf) @




"The Characteristic Vibrations of a Rectangular Lattice 313

Similarly,
_2 [(— 1)+ sin wu,t

t

+ (— 1¥cos vgt | (— 1) w, cos wyt ]

Vi.n Va (we? — w2} Vg (Wl — vp2)t

Two similar expressions can be derived if the initial conditions are
slightly modified. If we have initially x, ,(0)=y,,(0) =0 and x; ,(0)
= ubp8,4; 5, (0)=v8,38,, for all /] and m, we get by an exactly similar
procedure the following expressions for the displacements of the particles
from their equilibrium positions.

an

_2uf(—1y*sinuyr | (— ¥ cos vt | (— 1" sin wl_t]
LT mt Ly — b T uyy uy (W% — Bt
_2v [(- 1)™ cos uyt (— 1¥sinv | (— D)*”sin wzf]
Ponab L Tuyy AR N (AR

When initially, a displacement combined with a small velocity is im-
parted to the particle at the- origin, then the components of the displace-
ments along the x- and y-directions are given by the sum of the x and y
components of the displacements in (I) and (IT); this result follows from the
principle of superposition.

3. PHYSICAL INTERPRETATIONS

The expressions (I) and (II) clearly indicate that the movements of the
particles tend asymptotically to a superposition of the six characteristic
vibrations of the lattice, with a slowly diminishing amplitude which varies
inversely as the time elapsed. It is interesting to note that the x-compo-
nents of the displacements of the particles depend only on three of these
modes which may be pictured as the movements of, (1) the y-lines moving
normally against each other, (2) the x-lines moving tangentially in opposite
directions, and (3) as the oscillations of the diagonal lines against each other
along the x-axis. Similarly, the y-components of the displacements of the
particles depend on three different modes of vibrations which are the tan-
gential oscillation of the y-lines, the normal oscillation of the x-lines against
each other and the movements of the diagonal lines along the y-axis, the
frequencies of vibrations of both the diagonal lines being the same.

The decay of the vibrations according to the law z* can be understood
physically also. Since the initial disturbance is progressively transmitted
to all the atoms around the origin, the amplitudes of the particles in the
region where their movements are represented by (I) should vary approxi-
mately as the inverse square root of the area of this region and hence are
inversely proportional to the time elapsed from the instant of the initial
disturbance.
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All these results were arrived at under the assumption that the lattice
is unbounded. If however, we confine our observations to a time-interval
which is large compared to the individual periods of the eigen-vibrations,
but still small in comparison with the time taken by the fastest wave to
reach the boundary, the above restriction can be removed and the results
of the preceding sections can be seen to hold good for a finite lattice also,
provided its dimensions are very large compared to that of its unit cells.

My sincere thanks are due to Professor Sir C. V. Raman, F.R.S., N.L.,
for the valuable suggestions and encouragement he gave, during the course
of this work.

SUMMARY

For a rectangular lattice with one particle in each unit cell, it is shown
that the group velocity of the waves vanishes for the six characteristic fre-
quencies and that the state of movements of the particles arising out of an
initial disturbance tends to a superposition of these six characteristic vibra-
tions of the lattice. These six frequencies would reduce to three for a square
lattice on account of its symmetry; in all these two cases however, the
amplitudes of vibrations of the particles vary inversely as the time elapsed
from the instant of the initial disturbance. The physical interpretation
of these results and their applicability to the case of a finite lattice are dis-

cussed. :
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