.

Reprinted from “The Proceedings of the Indian Academy of 'Sciences”,
Vol. XXXVII, No. 3, Sec. A, 1953 ’

THE CHARACTERISTIC VIBRATIONS OF CRYSTAL
‘ LATTICES—PART 11

By K. S. VISWANATHAN
(From the Raman Research Institute, Bangalore)

Received March 9, 1953
(Communicated by Sir C. V. Raman, N.L.)

1. INTRODUCTORY REMARKS

THE transference of a particular state from one part of a medium to another,
without any bodily movement of the medium itself, is well known as wave
motion in a material substance. For a discrete structure, such as a crystal,
the disturbance arising from a wave progressing through the medium is
defined only at the set of lattice points which are the mean positions of the
atoms of the crystal. Wave propagation in crystal lattices should further
be consistent with the constraints imposed by the dynamical equations of
motion of the system and this in general makes the waves dispersive. By
assuming waves through atoms of the same type in the crystal architecture,
it was shown in a preceding paper that there are (24 p — 3) frequencies for
the system which have the remarkable property of making the group velocity
of the waves associated with them, equal to zero. These frequencies, in
their turn, correspond to eight wave vectors in the reciprocal lattice.

To assign the direction of propagation of these eight types of wave fronts,
we first note that an equation of the form » = r cos (wt — a.s) denotes a
wave front progressing in the direction of the vector a and that at any instant,
the displacement is a constant for all points on the plane a.s = constani.
The vector (0, 0, #) now indicates the direction by of the reciprocal lattice
and thus at any instant the displacements arising out of a plane wave of this
wave-vector should be the same for all the atoms in a plane defined by the
d,, d, axes of the crystal. This vector, in effect, denotes modes in which
alternate such layers of the crystal vibrate with opposite phases at any instant
and with the same amplitudes. As the displacements of a wave in a crystal
are defined only at its lattice points, the concept of a wave motion here ceases
to have meaning except in a formal sense and the 3p modes associated with
this vector are strictly stationary modes of vibrations; and a similar argu-
ment applies to each of the (24 p — 3) modes mentioned above. Again,
three of the frequency branches w, (k =1, 2, 3) of the secular equation
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(1, 8) tend to zero with a and as Li 9% = 9

’
a—>0 a d

that the group and wave Veloc1t1es of the elastic waves are identical.

we get the interesting result

It was further shown in Part I that any arbitrary initial disturbance inside
the crystal tends asymptotically to a superposition of these characteristic
vibrations. The object of the present paper is to discuss the reduction of
the distinct number of terms of the asymptotic expression in the case of
degeneracy in these modes and to consider some interesting corollaries result-
ing from it.

2. DEGENERACY

We adopt throughout the notation of Part I, except with slight modifica-
tions. Writing q, = (qlr.r oy, q3r.r) A (A ! A 2 A 3) and - A (aa)
= A, (a), the asymptotic expression (I, 20) for the dlsplacements of the
atoms from their equilibritm positions becomes

3p
1 5 A0
qu‘ = c———h(zﬂtism ———l Arflﬁ COSs (Vklt + kl 77/4)
k=4

‘ S (@
+ ZW(Z?lt)W Z Z léA’—'k%F cos (v,2t + a*'s + k%=/4) (1)
a=2 k=1

For crystals possessing symmetry, degeneracies may arise and the
number of distinct terms contained in (1) could be considerably reduced.
It has been shown by E. V. Chelam® that if under a symmetry operation
of the crystal two vectors a* and a* go over into each other, the set of 3p
frequencies associated with each of them are the same for both the vectors.
The set of all vectors which are transforms of each other under the symmetry
group of the crystal constitutes an equivalent set. The 3p frequencies asso-
ciated with all the vectors in an equivalent set are the same and differ only
in their order of arrangement. The vector a' = (0, 0, 0) representing the
unit element of the translational group forms always a set by itself. A
further degeneracy among the 3p frequencies associated with any of the
eight vectors (a%) is also possible depending on the crystal symmetry. We

now prove an interesting result that if,

Ve =%, then Ap = A, )
Differentiating the equation (I, 10)

s, 2% =0 A3)

=0
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twice with respect to ¢ and making use of the results %“-v—’ =0; % = 0 at

the eight points a=g° ( £x0ata=0for k=1, 2, 3) we get

3” d St ¢
? (a) 2% (a)
d2w oy da?
20 (0) g (@) = — = lt )
da T 51 (@) (p - ) 25 @

Here functions of the vector a® are denoted simply by its suffix a in the argu-
ment, for example s; (a%) = s, (a). It is obvious from (4) that if w, (a)=w; (o),
then 4;—2—;& () = ‘i;—;;“" («), the numerators and denominators in both the
functions being equal to each other. For the case w,(a) = w,(a’), if we
could prove that - ds‘ : (0 =7 a S’( "), then from (4) it would follow that

d? d?w, .,
wk (o) = dazx ().
To show this result, we note that the coefficients s, (1 =1,2....3p)
are symmetric functions of the roots of (3) and hence are invariants for all

the vectors of an equivalent set. Thus, if a® and a*’ are two vectors belong-
ing to an equivalent set, then

5 (0) = s, (o) (t=1,2....3p) )

Now the coefficients s,, 5,53, of the various powers of z in (3) can
be considered to be the components of a vector s in a 3p-dimensional space
N. This process sets a homomorphism between the vectors of the reci-
procal space R and the corresponding vectors s = (sy, S° *S34) in N; all
equivalent vectors in R map the same Vector in N. Starting from a vector

s (p) in N, another one whose components are the derivatives ;’ at the poznt

a = ar of s, could be obtained by means of the operator D, i.e., Ds (p) == El?z (p).

To a linear transformation f:a-»a’ = ta in R corresponds in N the trans-
formation T:Ts(a) =s(a’). All linear correspondences in R which trans-
form into themselves the vectors of an equivalent set, go over into the
identity matrix I in R, in view of the relations (5). If a* and a* are two
vectors of an equivalent set in R such that a® = t'a%, this correspondence
in N is given by s (a') = Is (a) = s (a). (6)

As the identity matrix commutes with all matrices in N, we have now
D32 (a') = DZs (a) = ID?% (a) = D2 (o)
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so that we get

d’s , . d%

da? (@)= da? (). ®
Thus, if w;(a) = w,(a'), we get from (4)

d? d*w; , ,

Gt @ =22 @) : M
In a similar way we could show that

w, _ Vwy

apa; @ = a0, ) 7a

and from this, result (2) follows.

Let now the distinct frequencies in (1) be denoted by ¢;, ¢;..c,. Then
if v, = v® = c,, we can write A, = A* = A, and k* = k,. The equation
(1) now reduces to the form

p
. 1 cos (c,t + k,m/4) )

WO= cmn ), a g (F Asacosats) ()
the summation inside the brackets being over all values of a and k& such that
v =c,. . ' |

¢ 3. EFFECT OF A TRANSLATION

We shall suppose that initially all the cells of the crystal bounded by
the parallelopiped (D) whose edges are I,d,, l,d,, /,d, undergo a small
translation specified by the vector u = (i, s, #;). Then the initial condi-
tions are described by

q,,(0) = g:_% f Z goti-0) JV )
L g

*

-

the summation extending over all the cells contained in D and q,, (0) = 0.
At a later instant, the displacements of the atoms about their equilibrium
positions are given by
1 7w Zw la-(s—
G0 = joue ), [ Aul@ t ) (g e av o)

k=1 FA

3p

where we have from the initial conditions '(9) the following relation

SA, ,=u o

k=1
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If we write A, , (3 e =B,, then the asymptotic value of (10)
is given by ’

3p
1 B .M
q, (1) = ¢ Qnt)? Z ’lﬁﬁ:llz cos (vt + k'n/4)
k=4 :

1 : : Br k(a) ). a. a
© a=2 k=1

Now .
. e—m-a' — 2 e—i(a'191+029,ﬁ o:0s)
o
_ Q= e":':’)
r=1( — € ')
so that
1 — e"/'Gr)

B, [/ = A, ® ,Hl =y’ (13

where the 6's have any one of the values 0 or 7.

If I, l,, I are all even or if the region that underg‘oes a translation
contains an integral number of supercells of the lattice, then

B, ;* =0 from (13) (for a =2, 3-+++8),

so that the asymptotic state of movements of the atoms consists only of the
(3p — 3) modes of vibrations in which equivalent atoms in successive cells
vibrate with the same phases and amplitudes. If two of these numbers are

even and the other odd (say, /, and /, are even and /; is odd), then B, @ =0
" for the set of points (0, =, w); (=, 0, 0); (=, 0, #); (=, =, 0) and (=, =, =).
At the point (0, 0, 7), B, ;@=I/, A_ @ = 0. Thus in this case, in addition
to the (3p — 3) modes, the state of vibrations of the atoms of the crystal
consists of 3p other modes in which equivalent atoms in consecutive cells
along the direction of the axis d; vibrate with opposite phases. Similarly,
when the region undergoing the translation contains an even number of cells
along only one of the axes of the crystal, it can be seen that the amplitudes
of 12p vibrations are equal to zero and when ll, Iy, I3 are all odd, all the
(24p — 3) modes will be active. N

It should be mentioned that the above statements are true only to a first
order of approximation, as we have in deriving (1) neglected infinitesimals
of order higher than /~3'2. We note that a translation of an unit cell of the
crystal results in exciting all the (24p — 3) vibrations. The same translation
applied to an adjacent cell along one of the-crystal axes causes displacements

" in which the amplitudes of the vibrations of the planes intersecting this axis

—
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against each other, occur with opposite signs to the corresponding vibrations
excited by its neighbour. The physical explanation of the above results
now follows from the fact that in any bodily movement of two adjacent cells,
such vibrations annul each other leaving only (12p — 3) vibrations intact.
By the same reasoning, we can show that an initial disturbance consisting
of translations by the same amount, but in opposite directions of two super-
cells excites none of these vibrations and the displacements of any atom aris-
ing out of such a disturbance tends asymptotically to zero. Applied to an
actual crystal, say the diamond2? in which degeneracies are present, these
results show that a translation of one of its supercells excites only the 1332
vibration, while in a disturbance arising out of a translation of an unit con-
sisting of an even number of cells along only one of its axes, all the eight
distinct modes of oséillation of the crystal will be active.

The author’s grateful thanks are due to Professor Sir C. V. Raman for
suggesting the problem and for his guidance during thc course of this work.

SUMMARY

It is shown that the wave and group velocities of the elastic waves are
identical: An initial disturbance consisting of a translation of a supercell
excites asymptotically the (3p — 3) characteristic vibrations only, the ampli-
tudes of the remaining 21p modes being zero to a first order of approxima-
tion. A translation of a single unit cell results in exciting all the (24p — 3)
modes of vibrations of the crystal. The question of reduction of the asympto-
tic expression for the displacements of the atoms about their mean positions
to its simplest form, when degeneracies are present in these vibrations, is
also considered.
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