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I. INTRODUCTION

THE subject of the elasticity of crystals has from its very early stages of

- development been approached from two distinct view-points which have
resulted respectively in the phenomenological and the atomistic theories.
The phenomenological theory was initiated by Green and Kelvin, and is
founded on the continuum hypothesis of matter in solids. It is further built
on the basis that the total energy of the solid is obtainable as the sum of
the energies of the individual volume elements into which it can be sub-
divided. Each such volume element is supposed to possess a uniform density
and the forces acting on it are assumed to be conservative, being derivable
from a potential function. These remarks concerning the hypotheses under-
lying the phenomenological theory have been made here, in order to empha-
size the limitations of the theory and to bring out the range of applicability
of its results to any actual crystal composed of discrete atoms. It is obvious
that these conditions can be incorporated for a crystal with a lattice structure
only if the volume elements under consideration are large in comparison
to the interatomic distances in the solid. The range of applicability of the
phenomenological theory is therefore limited for crystals and its results can
be expected to be sustainable only in relation to phenomena involving large

" volume elements, such as the propagation of non-dispersive waves of large
wavelengths and low frequencies in the medium.

A fundamental problem of solid state physics is to interpret the macro-
scopic behaviour of crystals in terms of the constants characterising the
lattice structure and the mutual interactions between pairs of atoms of the
crystal. The importance of such an atomistic theory is mainly three-fold.
Firstly, it enables us to examine the question whether the two theories would -
lead to identical results even in the range wherein the phenomenological
theory is expected to be applicable. Secondly, it elucidates the nature of
the vibrations in a crystal in regions that fall definitely outside the scope of
the ordinary theory of elasticity, as in the case of dispersive waves in the
medium. Finally, it holds out the hope of computing theoretically the
98
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numerical values of the macroscopic constants. This is rendered possible
because every crystal possesses a set of stationary normal modes of vibration
whose frequencies are obtainable from spectroscopic data. The frequencies
of these vibrations are also expressible in terms of the force-constants of the
crystal. By a comparison of these two, the numerical values of at least a
few of the force-constants can be ascertained and thus a possibility is opened
up whereby the numerical values of the elastic constants become accessible
to theoretical calculations as well.

The earliest attempt to provide an atomistic theory of elasticity is due to -
Cauchy. The investigations of Cauchy were however based on a somewhat
outdated model of a solid, in which each atom is a centre of symmetry for
the structure and the interatomic forces are strictly central. A direct con-
sequence of these assumptions is that only fifteen among the twenty-one
elastic constants emerging from Green’s theory are independent, this reduction
being effected by means of six relations that are generally known after
Cauchy’s name. Recent experiments have however proved that the Cauchy -
relations? are violated by a great number of crystals, even by most of the
simplest variety of them, viz., the cubic crystals. The failure of the Cauchy
relations is clearly due to the assumption of central interactions among the
atoms of the crystal, which might be true if each atom is simply an ion
attracting the others in accordance with a law of force of the Coulomb type.
But in any solid, the nucleii are all surrounded by clouds of electronic charges
and any deformation of the substance would tend to change the energy of
the electron cloud as well, thus producing forces that are non-central in
character.

In order to be able to arrive at results that are in agreement with experi-
mental data, it is therefore essential to start with a system of forces more
general than a central force-scheme to represent the interatomic force-field
inside crystals. An atomistic theory of elasticity based on such general
system of forces was first provided by Begbie and Born® 7 and by Kun Huang.®
By comparing the equations of long acoustic waves of low frequencies
obtained from the atomistic theory with the equations of wave-propagation
of the elasticity theory, these authors deduced expressions for the elastic
constants of the crystal in terms of the force-constants. But the process of
identification of the two sets of equations in their theories necessitated the
assumption of a few relations among the force-constants which would be
strictly true for central force systems only. Thus in spite of the formalism
using a general force-scheme, the theories so far provided are reliable only
for central interactions among the atoms of the crystal and do not
adequately take account of the force-field existing inside crystals.
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In this review, an attempt is made to present coherently the facts relating

to the nature of the atomic vibrations inside crystals, and the general character
of elastic deformations and wave-propagation inside crystals. A substantial
part of the review is drawn from material contained in two papers already
published by the author but it is made self-contained as far as possible. The
contents of it are arranged in seven sections. Section one describes the nota-
tion adopted in the paper and introduces the basic concepts regarding wave-
propagation in crystal structures. In Section II, we consider the state of
.movements of the atoms of the crystal arising from a disturbance confined
initially to a small region of it. It is shown here that any arbitrary disturb-
ance resolves itself into a superposition of the (24 p-3) harmonic vibrations
predicted by the thoery of Sir C. V. Ramah, and an elastic wave-motion
that moves away from the region of the initial disturbance. In any region,
the former modes are the only vibrations that possess significant amplitudes
after a long time, and further these are independent of the conditions of
the boundary of the crystal. Section III is devoted to a discussion of the
long waves of low frequency inside the crystal, which are the analogue of
the non-dispefsive waves contemplated in the elasticity theory. Section IV
concerns itself with the evaluation of the strain-energy function in the ato-
mistic theory. An important fact emerging from this section is that the
strain-energy function derived from the atomistic theory differs from the
energy function of Green in that the former contains terms in the three rota-
tional components of the strain also and thus involves forty-five independent
elastic constants. A comparison of the two theories is possible only for
the case of static strains which are strictly homogeneous or strictly irrota-
tional. In these circumstances, expressions for the elastic constants as
defined in the phenomenological theory can be obtained in terms of the
atomic force-constants. Section VI deals again with wave-propagation
inside crystals and it is shown here that except in the case of longitudinal
waves, the equations of wave motion and the velocities of propagation of
the elastic waves would be different in the two theories. Finally, the con-
sequences of the forty-five constant theory as regards the stress-strain relations
inside the crystal are discussed in Section VIIL.

I. PRELIMINARY CONCEPTS

“We shall suppose that an unit cell of the crystal contains p atoms, and
denote the three primitive translational vectors of the lattice by d,, d3 and
d,. If the positions of the p atoms, which we can number as 1, 2, 3,....p,
are all known inside any unit cell, then the structure of the crystal is com-
pletely specified. 'We denote by by, b; and by the three primitive translational
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vectors which generate the reciprocal lattice of the crystal. These are then
determined from the relations

b; - d; = 8;; 1

where 8;; is the Kronecker delta symbol. Any vector a of the reciprocal
lattice is therefore expressible as

a = 0;b; + 6;b, + O5bs | #))

Further, we use in the sequel the letters » and p as general symbols to
represent any of the p atoms in the unit cell, and likewise denote by s and o
a general cell of the crystal lattice.

Taking any three mutually orthogonal axes x, y and z we represent
the components of the displacements of the atom (r, s) from its equilibrium
position by gzrs, gyrs and gzs.  If however the letters x or y occur under a
summation sign in any expression, they should be understood as general
summational indices that cover all the three directions of the co-ordinate
axes of the system.

The expressions for the kinetic and potential energies of the crystal
can now be written down. Denoting by m,, m,,....m;, the masses of the
p different atoms in the unit cell, we can write them as

2T = X mrigPers ‘ 3
and
V=3 Z/: k',,’:f dxrs Qyps O]
ars yPo

The equations of motion of the atoms of the crystal can be derived from
(3) and (4) by means of a Lagrangian formulation. They are given by

— M ars = 5 K gy O]
ypo

The force-constants occurring in the above equations are not all entirely
independent, but are connected to each other by means of a few relations
which express the invariance conditions of the potential energy under pure
translations. If the entire crystal is translated by an amount specified by
the vector u = (uy, Uy, #z), then the left-hand side of the equation 5)
should vanish and one therefore gets

2 uy k4 =0 ©

yPo
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As the vector u is arbitrary it follows that

2 kyzprg =0 (x!y =X, ), Z) (7)

Po

Substituting the relations (7) in (5) we can rewrite the latter as
— My Gurs = = X ke @ype — qyrs) (59

The above equation expresses the fact that the total force acting in the x-
direction on the atom (r, s) is a linear sum of the forces due to the displace-
ments of its neighbours, the force exerted by (p, o) alone being equal to
— X k¢ (qype — qyrs). The force-constant k*? can therefore be inter-

y .
preted as the x-component of the force exerted by (p, o) on the atom (7, s)
per unit relative displacement of these two atoms parallel to the y-direction.

Since the crystal is composed of p different homogeneous lattices, we
shall suppose that a wave of given frequency and wave-length is propagated
with different amplitudes inside the different Bravais lattices and that no
damping of the waves occurs anywhere inside the crystal. The displacement
of any atom caused by the propagation of a wave of frequency » and wave-
length A travelling in the direction of the vector e through it is then expres-
sible in the form

. e.s
q, = A, e 2 (ut— T) ) or

q,, = Are i (wt-a.5) (8)
s
where

W = 27y anda=g§—re

By substituting these wave solutions in the equations of motions of the atoms
of the crystal, we can now obtain a set of 3p linear equations in the 3p ampli-
tudes A%, AY, A (r=1,2,....p). A process of elimination of these
amplitudes from these homogeneous equations then leads to the determinental
equation

A — Mw?)| =0 )

in which the elements of the matrix (A) composed of 3p rows and columns
are the coefficients of the 3p amplitudes in the 3p sets of equations.

Equation (9) can also be rewritten in the form

So P 4 §,08P=2 4 4 sp =0 9"
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The coefficients s, 5,. . . .53 are functions of the wave vector a. The fre-
quencies of the waves in the crystal are therefore dependent-on their wave-
lengths, or the waves are dispersive. Further, there are 3p waves with a

given wavelength, whose frequencies are the roots of (9) which correspond
to this wave-vector.

II. »EFFE,CT OF AN ARBITRARY DISTURBANCE

This section deals with the spreading of a disturbance, initially confined
to a small region of the crystal, into its undisturbed portions at later instants
of time. In view of the interaction among the atoms of the crystals, any
local disturbance will gradually spread into the other regions of the lattice
also, the rate of spreading depending on the strength of coupling between
the various atoms of the crystal. To make the problem specific, we shall
suppose that initially all the atoms in the cell (0, 0, 0) with index zero are
displaced by small amounts and that the velocities of all other atoms are
zero. In other words, the initial state of movements of the atoms is described
by )

1 ; "
6, O = g f U ¢ 95 AV = up 8y, (10)
A

* s (0) =0 (11)

Here dV denotes the element of volume in the reciprocal space. If ay, a, a;
are the components of the wave vector in any three orthogonal directions
and if ¢ denotes the determinant of the transformation a;=3 c¢;59;(i, j=1, 2, 3)

and

where 0,, 0,, 0, are the components of the wave vector along the directions

of the jaxes of the primitive vectors of the reciprocal lattice, then dV =

da, da, da; = c df, db, d8;. Further A denotes the volume of the paral-
lelopiped whose corners are given by 7 (4 by & by == by).

The displacements of the atoms of the crystal from their equilibrium
positions at a later instant can be determined by superposing waves of type (8)
for all possible wavelengths and frequencies so that the final result reduces
to the equations (10) and (11) for the case t = 0. If therefore we denote by
w2, wy?, . ... wyp? the 3p different roots of (9) and their associated ampli-
tudes by Ar, 1 Ar, o ... Ay, 5p (r=1, 2, ... .3p), then by choosing the ampli-
tude functions so as to satisfy the relation

Z’:' Ay = Uy (12)

k=1
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we can represent the state of movements of the atoms of the crystal at any
later instant by

3p
! = 61w3c f Ar, i (e iwkt+e—iwkt) e s gy 13)
A

k=1

A discussion of the above sum of 3p integrals for different values of
t and s would reveal the nature of the disturbance at different instants and
in the different regions of the crystal. We here consider only a simple and
interesting case, namely the value of the above sum for large values of ¢.

This is done with the aid of the method of stationary phases introduced
by Kelvin. The principle of Kelvin asserts that the value of an integral
of the type

I= [f(x)expi{w (x)t — s-x}dV (14
Ay

for large values of ¢ arises only from the neighbourhood of points at which
the function w (x) is stationary. Such points are known as saddle points.
We shall denote the stationary points of the function w in the region of
2w
2, 0

r=Zg

is.denoted by A (x,) and k& denotes the difference between. the number of
positive eigenvalues of A (xo) and the number of its negative eigenvalues,
then the asymptotic value itseif is given by

integration by X, x;....x;. If the matrix whose elements are ars=

277 3i2
[ ~ (}) IAf gog § XD i{e (%) £ — 5 - xo+ knld)  (15)

the summation being over all the stationary points of the function  inside
the region of integration.

The above expression in fact denotes the first term in the asymptotic
expansion of (14) in inverse powers of ¢ and will represent integral (14) very
closely if ¢ is sufficiently large. It can be supposed to provide a fairly good
estimate of (14) for all values of ¢ greater than or equal to K |s |2, where
K is a constant of the dimensions of Time, for in this case w (x) zisa quantity
of second-order in largeness compared to the factor s-x occurring in the
exponential of the integral.

The saddle points for the 3p integrals occurring in equation (13) are
clearly the solution of the equations d—d‘%k =0(k=1,2....3p). In any
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dispersive medium, the expression ‘gz represents the group velocity of the

waves traversing it. Thus the saddle points correspond to waves for which
the group velocity is identically equal to zero. It has now been shown
elsewhere!® that there are eight pointsin the reciprocal space for which the
group velocities of waves traversing the crystal are equal to zero and for
these, the components 8,, 8, and é; of the wave-vcctor a are all equal to
either zero or . Explicitly, these points are given by a' = (0,0,0);
a? = (=,0,0); a3 =(0,7,0); at=(0,0,7); a°=(0,n,7m); a%=(7,0,7);
a’= (m,,0); and a= (=, =, =).

Considering first the vector a'= (0, 0, 0), it is readily observed from (8)
that this corresponds to waves of infinite wave-length inside the lattice. It
can be shown that for this case three of the roots of (9) vanish and that
%’-‘ =+ 0 for these three frequency branches. Long waves associated with
these three branches correspond to the elastic vibrations of the crystal and
will be discussed later. For the remaining (3p — 3) frequencies associated
with this vector, as also for the 21p frequencies that are yielded by the seven

other points listed above, the expression %“ vanishes. Thus we see that
for a crystal containing p atoms in each of its unit cells, there are (24p — 3)

frequencies for which the group velocity of the waves vanishes.

Returning to the evaluation of (13) for large values of ¢, we note that
the functions A,, and wy occurring in the 3p integrals are all periodic func-
tions of the wave-vector a with periods equal to 2= for their components
0,, 8, and 8, in the reciprocal lattice, and the region of integration of the
integrals can therefore be slightly shifted about the origin without affecting
their values so that it completely encloses all these eight saddle points. Then,
denoting by A %k, v’ and A% the values of the functions A k, wi and A,
at the eight saddle points, we can write the asymptotic value of the displace-
- ment of the atom (r,s) as

1 - 1
q. (t) = W 1]%;—(&—) cos (Vi t + kin/4)

k

1 2 = A (a)
+ ot E ' E 185 k%) cos (vat-+as-s+komfd)
2. 3/2 a |3 <
¢ (2mt) (e Lo A% ] ;
(16)
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The above expression can be considered to give a good approximation of
Qrs (9) for all values of ¢ greater than or equal to K |s [ where K is a con-
stant characteristic of the medium having the dimensions of (Time).

Equation (16) suggests that in any region for which the above approxima-
tion is applicable, the vibrations of the atoms are all obtainable as a super-
position of a set of harmonic vibrations which are characteristic of the crystal
and hence may be appropriately called the characteristic vibrations of the
crystal lattice. In the (3p — 3) modes represented by the first sum, equivalent
atoms in successive cells all vibrate with the same phase and amplitude.
In the remaining 21p modes equivalent atoms in successive cells vibrate with
the same amplitude but with opposite phases along one, two or three of the
Bravais axes of the crystal, as each term in the second sum contains a factor
. cos a®.s which is equal to plus or minus unity, Thus these modes are
exactly identical with the stationary normal modes of vibration discussed
in the dynamics of crystal lattices proposed by Sir C. V. Raman.?®® Ouwr
theory therefore shows that the asymptotic nature of the vibrations of the atoms
of the crystal arising from an arbitrary disturbance, confined initially to a small
region of the lattice is a summation of the (24p — 3) normal modes of vibrations
recognised in Raman’s theory. '

With the aid of the above results, it is possible to visualise at least
qualitatively the nature of the vibration of the atoms at different instants
of time and in different regions. In and very near the region of initial
disturbance, the displacements of the atoms are representable by (16) even
for small values of ¢ and the disturbance therefore resolves itself into a super-
position of the (24p — 3) characteristic vibrations of the crystal almost
immediately. In the farther off regions the disturbance spreads in the form
of waves of which the fastest groups correspond to the elastic vibrations of
the crystal. Since no atom can acquire a sensible amplitude until the fastest
group reaches that lattice point, the maximum amplitude of any atom is
attained only after a certain instant of time which depends on the velocity
of propagation of the elastic waves in the medium. The value of the
maximum amplitude can further be estimated to be of the order of -, if we
consider the elastic vibrations as surface waves divulging from a point whose
energy is concentrated in a thin spherical shell only. The amplitudes of
‘the atom thereafter fall away and for sufficiently large values of time com-
parable in magnitude with the square of the distance of any atom in a given
region from the origin, the vibration of the atoms in this region consist of a
superposition of the characteristic vibrations of the crystal with time-
dependent amplitudes. At these instants, the elastic waves would have
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completely moved away from the region under consideration, and their
effects on the vibration of the atoms is therefore negligible, as can otherwise
also be seen from the fact that the contributions of the elastic waves to the
displacements of the atoms are infinitesimals of order higher than #-%2% and
are therefore ignorable. Thus asymptotically in any region the characteristic
modes of the crystal are the only vibrations that possess physically significant
amplitudes, and the elastic waves which form a low frequency residue to
them contribute none other than second order perturbation terms to the
actual displacements of the atoms.

If the characteristic vibrations are assumed to settle in any region after
an interval of time of the order r2 where r is the distance of the region from
the origin, then the rate of spreading of the disturbance % at any point is
inversely proportional to its distance from the centre. The vibrations there-
fore spread rapidly in the regions near the centre of disturbance but their
rate of spreading diminishes for points in the farther off regions of the crystal.
Another significant result that deserves mention is the dependence of the
amplitudes of these vibrations on time, which indicates that these modes
diffuse slowly into the volume of the crystal and do not travel outwards like
elastic wave propagation in a medium. Further by the time these vibrations
take to reach the external boundary of the crystal, their amplitudes would
have become insignificant infinitesimals. Hence the characteristic vibrations
are entirely uninfluenced by the boundary conditions of the crystal, and in
discussing them all reference to its size and shape can be completely left out
of account.

III. THE ELASTIC WAVES IN THE CRYSTAL LATTICE

‘We have already mentioned that three roots of equation (9) tend to zero
in the limiting case of waves of infinite wave-length. Vibrations associated
with these three roots of the secular equation (9) represent the elastic wave-
motions inside the lattice and are propagated without any dispersion. For

Yk

such vibrations, since Lt —* = %’a—k the group and wave velocities become

a->0
identical with the velocity of propagation of the elastic waves inside the

crystal.

As in the classical elasticity theory, there can progress in any direction
three types of elastic waves whose vibration directions are mutually ortho-
gonal. Denoting by y and e the velocity and direction of propagation of
sound waves, it can be shown!! that the velocity of the three different waves

I
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travelling in the direction of the unit vector e are given by the roots of the
cubic equation

720 ayy® + 360 a1y + 30 Gy + a3 =0 an

The coefficients a,, a,, a, and a, in the above equation are functions of
the force-constants and are equal to the derivatives of Sap-3s Sgp—gs Sap— and Szp
with respect to the variable a of orders 0, 2, 4 and 6 respectively. The
velocities of the sound waves in crystals are therefore functions of the force-
constants, which are the roots of the equation (17).

IV. THE DEFORMATION ENERGY FOR CRYSTALS

To obtain an expression for the deformation energy of the crystal, we
first try to calculate the mutual energy between pairs of atoms of the crystal.
The energy stored in any unit cell can then be obtained by summing up the
mutual energy of interactions of the atoms in that cell with all the atoms of
the crystal. We have already shown in Section I that the force exerted on
the atom (r, s) in the x-direction by the displacement of the atom (p, o)
is equal to — X k*37 (qy,c — qyrs).- The mutual energy of this pair (V47)

v
is obtained by multiplying the force by the relative displacement of the atoms,
and dividing the result by two. Hence we have

Vil = — % Z KL (aype — Gyrs) (dzps — Gxrs) (18)
2y

If A denotes the volume of the unit cell, the deformation energy stored in
the cell s is given by
AU=3Z 3V
r po
or '
—4AANU=3 3 k7 (qypa' ~ Qyrs) (_Q:cpa — qxrs) 19)

zr ypo

Now each atom of the crystal should be in equilibrium in the deformed
state also and hence one gets

2 K dype =0 ' (20)
ypo
With the aid of (20) we can rewrite (19) also in the form
- 4AU = 2 %' k’iﬁf 9xpsc 9ypc (21)
o’ ypPo

Any deformation of the crystal can be analysed into two parts: a part
which denotes the mutual displacements with respect to each other of the p
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interpenetrating Bravais lattices and which is thus the same for all the atoms
in the same lattice of the crystal; and another part which corresponds to
the usual elastic deformations, denoting the continuous change in the rela-
tive displacements of the points of the body due to the strain. The former
are generally known as the inner displacements.

Denoting now by kxy, kyr, kzr the components of the inner displace-
ments of the rth lattice, by x,s, ¥rs, Zrs the co-ordinates of the atom (r, s)

in the underformed state and by uyy, (= %Eﬁ) the components of the
v

strain, we can represent displacement components of the atoms due to the
deformation by

U

s Ker + _2 Ugp Xrs (22)

x

Substituting (22) in (21) we can rewrite the energy expression as

—2U=3 3 {45 | kap wyg + Z 2 [X%, y9] txz wyp 23)
xp ¥y . XX ¥y
where
1 E -
{xp'} = Z ky.eg ypo'
and
- - 1 Z;l . o
[xX, yy] = QZ k27 %o Voo (24)

rpo

The inner displacements can now be eliminated from the energy expres-
sion which can thus be expressed as a function of the strain variables only.
The equations determining them are obtained by substituting (22) in (20)
and are given by

I K0 kyy=— 3 wygp (T K Fp0) (25)
Ypo Yy pe

These are a set of 3p equations in the 3p unknowns ky,, etc., of which
only (3p — 3) can be linearly independent since the matrix multiplying them
in the left-hand side is singular and is of rank (3p — 3). Assuming that these
equations are consistent and solvable and denoting by I the matrix that
would multiply the column vector on the right-hand side in the solution of
these equations, we can find the expressions for the inner displacements as

ker=—2 X oy I3 k"f: ' Yo (26)

P &'y P'o’
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Substituting (26) in (23) one gets

2U = Z)}z’ 2 dyz yi Uxz Uyy @n
xx yy
where
. il dxia yg = — [XJ-C, y-}-)] + (XJ-C, yj’) (28)
wit :
. 1 . rpr -
(<%, 39) =+ 2 T 5 5 k53, I kfs 3o, (29)

Equation (27) gives the energy expression in the atomistic theory, and
the constants multiplying the various quadratic terms in it are functions
of the force-constants and the lattice parameters. We note that both the
bracket expressions in (28) are symmetric in the pairs x%, yp. The round
brackets are further invariant under a permutation of the symbols x and %,
or of y and y, while the square brackets do not possess such a symmetry
except in the special case of a central force system.

V. THE ELASTIC CONSTANTS OF CRYSTALS!?

If we write exz= (Uxz + Uzy) for X+~ x and ey, = u,,, then the deforma-
tion energy obtained from the elasticity theory is a general quadratic in the
Six strain components e, €yy, €z, €yz, €z, and e,,. Using the notation
of Voigt in which the numbers (1, 2, 3, 4, 5, 6) replace respectively the sym-
bols (xx, yy, zz, yz, zx, xy) the strain energy function of the elasticity
theory can be written in either of these two forms

W=233crs e & (30)

s =1

=2 X Cais yy Ugd Uyy
xx yy
The second form of the energy expression contains forty-five terms and the
constants ¢z, 4y are therefore subjected to the symmetry relations

CxZ, y¥ = Ca¥, Jy = Cix, ¥Y = CZx, Ty 3D
so that it might become identical with the first one.

The expression (27) for the energy expression obtained from the ato-
mistic theory can also be written in the form (30) provided the constants
dy3, yi also satisfy the same symmetry laws as the elastic constants, i.e., if they
are invariant under a permutation of the letters x and x or y and y. But
this is by no means the case, for these constants are functions of the force-
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constants defined in accordance with the relations (24) and (29), and any
assumption of such symmetry requirements can be shown to be equivalent
to the assumption of a central force scheme for the interactions among the
atoms of the crystal. As a central force interaction is not obeyed by a
number of crystals, there is no justification whatsoever to suppose that these
constants are also governed by relations (31) with the ¢’s replaced by the d’s.

The atomistic theory thus involves 45 independent constants for the
case of a general strain* as had been stressed recently by Laval® and the
present writer.l® In order to derive expressions for the elastic constants
in terms of the force-constants, it is therefore necessary to investigate the
circumstances or conditions of strains under which expression (27) might
reduce to the same mathematical form as that of (30) and which might thus
enable us to identify the two. Obviously both these expressions reduce
to the same form if

Upy = Uy, . (32)

The above relation is clearly satisfied by irrotational strains. There is another
type of strain which is important from the experimental standpoint, and
which conforms to the above condition. These are the infinitesmal homo-
geneous deformations for which all the nine strain components are con-
stants throughout the volume of the crystal. Any small homogeneous strain
can now be analysed into a pure strain followed by a rotation about a suitable
axis. By a proper choice of the co-ordinate axes it is always possible to
make the rotational part of the strain vanish, and thus the relation (32) holds
good for homogeneous strains also. By substituting (32) in (27) and com-
paring it with (30) we can now obtain expressions for the elastic constants
determined by static homogeneous strains in terms of the force-constants,
and they are given by

Cxls yy == i [d:c:_c, yp + da_cx, Yy + d.’l_.‘xs gy + dx:i', 17y] (33)

The constants appearing on the right-hand side of the above equation
reduce to a fewer number than forty-five for crystals possessing symmetry.
We shall consider the explicit relations following from (33) for crystals pos-
sessing the symmetry of the cubic class. If, as before, we introduce the
convention of replacing the letter pairs (xx, yy, zz, yz, zy, zx, Xz, Xy, yX)

* Cases in which the energy function is a quadratic expression in the nine strain components
have been considered in the phenomenological theory also, as can be inferred from a reference to
a paper by Macdonald (London Math. Soc. Proc., 1900, 32, 311) given in Chapter VII of Love’s
book. Since this paper is not available to the author, it has not been possible to discuss the results
contained therein in this article. :
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wherever they occur into the numbers (1, 2, 3, 4, 5, 6, 7, 8, 9), it can be
shown that there are only four independent constants d,;, dy,, dss and dy;
for cubic crystals. The relations (33) reduce in this case to

ey =dy;
C1p = dyy;

Cya =% (dyy + dg)

VI. 'WAVE-PROPAGATION INSIDE CRYSTALS

349

In this section we consider the nature of wave-propagation inside the
crystal assuming that the strain produced by the propagation of a wave-
front inside the crystal is very general and that the energy of the wave motion
involves all the nine components of strain being given by the function (27).
We shall assume all the nine strain components u,, = %" are linearly
independent functions of variables x, y and z. Then the equations of motions
of the various elements of the crystal can be derived from the variational
principle

3 /(T —Udt+ [3Wdt=0 (3%

in which U stands for the potential energy function (27) and T and W denote
respectively the total kinetic energy of the solid and the work done by the
external forces on the solid.

In the absence of body forces, W is given by
SW= 5 [ (Ty, Suy) dS (36)

if T,, denotes the normal component of the surface traction of the body,
and the kinetic energy T is given by the expression

T= [ p (i® + diy® + 1;®) dV (37
where p is the density of the medium.

The variational equations of (35) can now be written down and they
are given by .

22 -
p 2 = Z’ 2 () x=x9) (38)
X
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for interior points of the solid, and

To= D) e 5009 (39)

¥y

for points on the surface of the crystal.

We now seek to find out solutions of the above equations which are in
the form of plane waves of the type

2
up =A%exp. S (r—en (x—>x, 9 2) (40)

Substituting (40) in (38) one gets

AT = 3 5 dyz, 4y ez ey AY x—>x,32 (@)
x yy

If we write A= (A%, AY, A?) and D, = X d,z, yi ez ey then the above
xy

equations can be rewritten as (D — pv2) A= 0. The matrix D= (D,,) is
symmetric and hence its eigenvalues are real. If they are distinct, the cor-
responding eigenvectors are mutually orthogonal. Thus there are three
types of elastic waves progressing in any direction of the crystal. Their
vibrations directions are mutually perpendicular to each other, but they may
be obliquely inclined to their direction of propagation.

Equations (41) are the equations of wave-propagation inside a crystal
lattice and were first deduced by Begbie and Born. They had subsequently
been used by several authors to obtain expressions for the elastic constants
in terms of the force-constants. The first set of expressions were given by
Begbie and Born, who obtained the relations

Cxtr yi = Ay yf 42)

This relation is clearly untenable in a general force-scheme, for it amounts
to assuming a central force-scheme, and would lead to the Cauchy relations
for crystals possessing a centre of symmetry. For such crystals, the round
brackets vanish and therefore d,z, y5 = — [xX, y¥]. If further the relation
(42) is satisfied, then the suffixes x and y are interchangeable in the expres-
sion for dyy, 4y, and similarly x and y or z are interchangeable in d,,, ...
Therefore it follows from (33) that

C1o= Cgg; Cag= Cq4;, Cg1™= Cp5;

C147= Cpg; Co5== Cyg; Cyg5= Cgs 43)
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which are the Cauchy relations. Thus the expressions of Begbie and Born
are true in a central force scheme only and are not valid for the case of a
general force system. A second set of relations for the elastic constants
were later obtained by Kun Huang whose method also consists in identifying
the lattice wave equations with the wave equations of the elasticity theory.
But such an identification could be done only with the aid of a few additional
relations such as [xx, yp]= [%x, y] which were assumed in Kun Huang’s
theory, and these were interpreted as the conditions for the vanishing of the
initial stresses in an infinite lattice. 'We may mention that there is no justifica-
tion for the assumption of these relations in a general force scheme which
would hold good for central interactions between the atoms only. The expres-
sions of Kun Huang are also not reliable in a general force scheme and can
be expected to hold good for the case of central force systems only.

The real difficulty or source of error in identifying the lattice wave
equations with those of the elasticity theory lies in the fact that they owe
their origin to different potential functions in the variational method of
deriving them. The former are derived from a potential function that con-
tains the rotational part of the strain as well thus involving 45 independent
constants, whereas the latter are derived from an energy expression involving
21 constants only. These two are not in general mathematically equivalent
and are therefore not identifiable. For those cases of wave-propagation
in which longitudinal waves moving in a certain direction alone are excited,
the energy of the solid due to the wave motion will not involve the three
rotational components of the strain, and in such cases both the theories would
lead to identical results. But in general the equations of wave-motion and
hence velocities of propagation of the waves are different in the two theories
that involve twenty-one and forty-five constants respectively.

VII. THr STRESS-STRAIN RELATIONS

A natural question that arises in a forty-five constant theory is as regards
the nature of the stress-strain relations in the solid. Since the potential
energy of deformation in this case is a function of the nine strain variables,
b—zg— obtained by differentiating the

XY
energy expression partially with respect to the strain variables u,,. If these
are called the stresses acting on the body, then a striking property of the
forty-five constant theory is that the stress tensor does not satisfy the sym-
metry ‘property

one can form nine quantities T,y =

T:cy = Tya: ' (44)
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If the surface tractions are the only forces acting on any volume element
of the body, the result T, = T, holds good at every point inside an elastic
body which is under a state of stress. This is easily shown by considering .
the equilibrium of any small cube of volume I® with its centre at the origin
and edges parallel to the axes and equating the total angular momentum
parallel to the three axes to zero. In order to reconcile ourselves to the
circumstance in which the nine stresses do not form a symmetric tensor,
we shall assume that each volume element is being acted upon by a couple
which tends to rotate it relative to its neighbouring elements in the solid,
in addition to the surface tractions acting on it. Denoting by IW, IW,, IW,
the components of the moment of the couple parallel to the three co-ordinate
axes, we can obtain the equilibrium conditions of this element by equating
the total angular momentum of the system to zero. This leads to
(Tye — Tay) + W2 =0 45)

¢

We shall now write

exy = % (Uyy + uyz)
and
[ ]
Wy = wpy = — ayy =} (Ugy — tyy).

Then obviously 4
W 1 73U U

Toy= iy =3 (5, +- doo, and T, =

(U uy

Hence

WU
(Tyy — Tyy) + Yoy 0 (46)

Comparing (45) and (46) we see that the quantities 22U ,—by R U denote
dw,, bwy dwy

respectively the components of the couple W, W, W, acting on any small
element of unit volume in the body.

We have already shown in Section IV that the quantities d;,, d,, and
3 (das + dys5) denote respectively the three elastic constants of cubic crystals
for static homogeneous strains. A physical interpretation of the four con-
stants occurring in the general theory will therefore be complete if it is possible
to give a meaning to the quantity (d,, — d,;) which is independent of the
above three. It then follows as a consequence of (45) applied to the case
of cubic crystal that the constant 2 (d,, — d,;) is equal to the ratio of the
magnitude of the couple acting on any volume element of the crystal to the
magnitude of the rotation suffered by it due to the strain,
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Finally, the author expresses his indebtedness to Professor Sir C. V.
Raman for many of the ideas contained in this paper and for the useful dis-
cussions he had with him. :
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