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3.1 Introduction

Experimental studies on Tricritical Points(TCP)[1] are of great current interest
in not only liquid crystalline systems, but for understanding the critical plie-
nomena associated with the condensed matter systems as a whole. 1n fact, the
syinmetry of tlie phases involved make some of the liquid crystalline transi-
tions potential candidates to observe the TCP. However, the phase transitions
in wliicli it had been experimentally observed were the nematic-smectic A(N-
A) transition|2], tlie cliolesteric-smectic A (Cli-A) transition[3,4] etc. In these
systems TCP was ohtained eitlier in the temperature-concentration[2] plane or
in the temperature-pressure plane[3,4]. But, despite considerable efforts, the
observation of such a point on a smectic A-smectic C(A-C) or smectic A-srnectc
C* (A-C*) transition line had eluded experimenters. In this chapter, we describe

the first observation o a TCP on the A-C* boundary.

As early as in 1937, Landau realised[5] that in a phase diagram, the point
where a line of first order transitions meets another line of second order tran-
sitions is a specia point. This problem was treated in a rigorous way by
Griffiths[1,6] who termed tlie meeting point as a tricritial point (TCP). As the
name suggests, TCP, by definition, is a meeting point of three critical lines. In
order to discuss the TCP, let us follow the notations set forth by Griffiths for
the case of He®-He* mixtures. Consider the three set of conjugate variables:
(i)entropy S and temperature T (ii) ordering density ¥ (suyerfluid order pa-
rameter) and the ordering field  (conjugate to the order parameter). (iii) non

ordering density X (mole fraction of He®) and the non ordering field A (differ-
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ence in chemical potentials between He® and He*). The generic phase diagram
in the T-n-A plane has the form shown schematically in Figure 3.1. The surface
A in the =0 plane is a first order (or coexistence) surface. For T>T* (T*is
the temperature corresponding to the TCP) this surface terminates on aline of
critical points denoted by L. For T<T* the coexistence surface A terminates on
afirst order line. Further, the surface A, which lies initially in the =0 plane,
bifurcates into two surfaces ('tricritical wings) extending out into the regions
7 < 0 and 7 > 0, terminate on the critical lines L; and L;. The meeting point
of the tliree critical lines L, L; and L, occurs at the point P, which is called the
tricritical point(TCP). Tlie coordinates of P are P = P(T=T"*, A=A*, 5=0).
In order to obtain a TCP experimentally, one has to observe three critical lines
meeting in this special manner. But in most of the systems tlie field which is
conjugate to the order parameter, is a 'fictitious field not realisable in the lab-
oratory. (For eg., in metamagnets 7 is tlie staggered field ). Therefore from a

practical point of view, TCP in the =0 plane can he defined as a point where

a line of first order transitions changes over to a line of second order transi-
tions (Figure 3.2). Examples of Cricritical points have been found in He*-He*

mixtures[7], metamagnets{8], ammonium halides[9], ferroelectrics[10,11,12] etc.

One o the main reasons for not observing the TCP on the A-C* boundary
was that no concrete proof of a first order A-C/A-C* transition was obtained.
Experimentally, the A-C/A-C* transition was almost always found to be second
order. Not surprisingly, therefore, the first unambiguous observation of a first
order transition, described in the Chapter 2, triggered the search for a TCP

on tlie A-C* boundary. Another important associated problem is concerned
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Figure 3.1 Hypothetical phase diagram for helium mixtures. Difference in
chemical potentials for He? and He! is denoted by A wiliile 5 is tlie fictitious
ordering field. L;, L, and L are tlie critical lines which meet at the point P

caled the tricritical point (TCP).
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Figure 3.2: Tricritical phase diagram in the =0 plane. Dashed line is a line of
second order transitions and solid line is a line o first order transitions.
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with the exact nature of tlie critical behaviour of this transition, i.e., to which
universality classit belongs to. de Gennes proposed[13] that, owing to the com-
plex order parameter, tlie transition might exliibit helium-like (or XY class)
beliaviour. Earlier experiments[14]-[18] reported the critical exponents for tlie
A-C transitions, in particular tlie one for tlie temperature variation of tlie order
parameter, t0 have a value anywhere from mean-field(MF) to XY class values.
But high resolutioii studies[19] clearly demonstrated that this transition is MF

like by showing tliat tlie temperature variation of the tilt angle obeys a simple

Tac - T
AC

tion temperature and 3 is tlie critical exponent for tlie temperature variation of

power law of the type 8 = 6,t” (wheret = , T ac being the A-C transi-
tlie tilt angle ) and gives 7 = 0.474+0.04. (Note that the MF value is 0.5). The
Ginzburg criterion[20] was used to calculate the width of the critical region — if
it exists - over which a system sliould show tlie XY class behavior. Tlie width

of the critical region is given by

[T = Tac| _ ks

Tac  32m(ACY (§op)*(Gor)! (3.1)

where T 4¢ is the transition temperature, kp iS the Boltzmann constant, AC is
the MF heat capacity jump at tlie transition, £, and &, are tlie bare correlation
lengths along and perpendicular to tlie director. For 8S5, the estimated XY-like
region turns out to be narrower than 1075, i.e., |T — Tac| =~ 3 mK, provided
L =660 > 134,

In atypical material &, is found to be of the order of 70A[21]. Thismeans tliat
T-T 4c would be much smaller and therefore to observe the XY-like behaviour

one has to go extremely close to Ta¢. Tlie value of 3 = 0.5, mentioned above,
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is obtained as follows. The free energy density near the A-C transition can be
written as,

F=F,+ %aw? + ibm (3.2)
wliere F, is the non singular part o the free energy and @ is the order parameter
for the transition (tilt angle in present case) aand b are positive constants for a
second order transition. At the transition, since t = 0, the second term goes to

zero. Minimising the free energy we get 0 o< t°°.

Anotlier important contribution in understanding this transition came from
Huang and Viner[22]. Tliey realised that the generally observed heat capacity
anomaly in the vicinity of the A-C* transition cannot be explained either in the
frame work of the XY model or the simple mean-field model mentioned above.
However, the introduction of a sixth order term[22] in the free energy expression
describes the data well implying that the A-C or A-C* transition in most of
the materials lies close to a mean-field TCP with a concomitant existence of a
cross-over beliaviour from a mean-field-like region to a tricritical-like region[23].
This extended mean-field free energy expression is written as follows:

1 1 1
F=F, + —atf? + ~b0* + =c6° )
+2a +4b0 +60 (3.3)

where the new coefficient ¢ is also a positive constant. From Equation 3.3,
depending on the relative values of b and c different regions can be identified, a
graphical representation of which isshown in Figure 3.3. Some important points
to be noted here are,

Region (1)5>0 and b > ¢ = 3=0.5 i.c., a MF behaviour.

Region (2) O and b~ ¢ = 0.25 <3<0.5, a value lying between MF and TCP
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Figure 3.3: Tricritical phase diagram in the b vs at plane.
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values. This region is termed as tlie MF - TCP cross-over region.

Tlie domain wliere b<O and ¢>0, shows afirst order transition.

The point wliere b=O but ¢>0 is tlie tricritical point.

Thus depending on the path of approach of tlie experiment and the proximity

to TCP, one can obtain different values for tlie exponent j3.

The influence of tlie TCP can be quantified as follows:

Minimising Equation 3.3 witli respect to tilt angle 6 we get,

92 =0 for T > Tac (3.4)
2 b 1/2
0 = é‘;[(l + 3t/to) — 1] for T< Tac (35)
_ 2
where ¢ = M and t, = b—
TAC ac

The second derivative of tlie free energy witli respect to temperature gives tlie

heat capacity jump AC

AC =0 f07‘ T> TAC (36)
3/2T Tm -T -1/2
ac =41 /)2 for T < Tuc (3.7)
2(3¢)1/2 T4

wliere T,,, = Tac(14+t,/3).

From Equation 3.5, we see that, if t < ¢, then 8 o« t°° wiliicli, as seen ear-
lier, represents a MF transition witliout any cross-over effects. If t )= t,, then
8 « t°% which signifies a TCP. Thus, {, is a temperature cliaracterising the
MF to tricritical cross-over behaviour. A more physical definition for ¢, can be
given in terms Of tlie specific heat curve. It is considered as the full width at
lialf maximum of tlie heat capacity peak[23]. Thus tlie magnitude of ¢, (wliicli

in turn depends on coefficients b and c in tlie free energy expression) decides
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how close the system is to the TCP and whether the concomitant existence of
the mean-field to tricritical cross-over behaviour can be observed. Another im-
portant outcome of tliis analysis is tliat as the TCP is approached the range of

the MF region decreases and shrinks to zero at the TCP.

After obtaining clear evidence of afirst order A-C* transition in MCP70B,
(experimental characterisation of this feature have been described in Chapter 2)
the next logical step was to search for a TCP. This problem reduces to the ques-
tion of whether the nature of the transition can be changed to second order,
for e.g., by adding a suitable second substance, with a known second order A-C
transition. In tliis chapter, we present results of high precision X-ray measure-
ments of the tilt angle on a binary liquid crystalline system which led to the
first observation of a A-C* tricritical point. Detailed analysis of the associated

MF to tricritical cross-over phenomena is also presented.

3.2 Experimental

The compounds used are 4-(3-methyl-2-chloropentanoyloxy)-4'- heptyloxy biphenyl
(MCP70B) and 4-heptyloxy-4'- decyloxybenzoate(TOPDOB) whose structural

formulae and transition temperatures are given Table 3.1.

Note tliat MCP7OB has a cliiral C phase while the C phase of 7TOPDOB is
achiral. But as mentioned in Chapter 2, this does not change the physics of the

topic under consideration.
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Table 3.1 Structural formulae and transition temperatures (°C) of MCP70OB
and TOPDOB

MCP70B
cl:l <|:H3
C7H1SOOOC——CH—CH—CH2—CH3
»* »
7TOPDOB

C1OH21O—@—COO—@~OC7H15

MCP70B Iso A c* G*

63 . 54 . 422

70PDOB Iso N A C

8 . . 8.1 . 805

Iso = isotropic phase, N = nematic,
A = smectic A, C = smectic C,

C* = chiral smectic C, G* = chiral sinectic G phase.
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3.2.1 X-ray studies

The X-ray diffraction experiments have been conducted using a computer con-
trolled Guinier diffractometer. The details of the set up are given in Chapter 2
and will not be repeated here. As the purpose of the experiment was to ob-
tain critical exponents the layer spacing data were collected at close intervals of
temperature (~ a few mK) both in the A and C* phases. The tilt angle § was

calculated using the expression
0 = cos™'(dc-/dA) (3.8)

wliere d¢- and d 4 are the layer spacings in C* and A phases respectively. The
value of @ was cross checked by getting four spot' pattern,details of which are

also described in Chapter 2.

3.2.2 Sample preparation

The required amounts o MCP70B and TOPDOB were weighed on a clean glass
coverslip using a micro balance (Perkin-Elmer AD2). The sample with the cov-
erslip was later transferred (o a preheated oven. The materials were mixed thor-
oughly at a temperature much above the melting point of either of the materials.
A small amount o sample was taken on a clean glass slide and was covered with
a coverslip. This was kept inside a programumable hot stage (Mettler FP82) in
conjunction with a polarising optical microscope (Leitz—Orthoplan). The tem-
perature was varied very sowly (0.1°C/min) and the transition temperature was
determined by observing the textural changes. The sharpness of the transition

temperatures determined the purity and the homogeneity of the mixture.
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3.3 Resaults and Discussion

The temperature-concentration(T-X) (where X is tlie mol% of TOPDOB in the
mixture) phase diagram for MCP7OB-7TOPDOB system, obtained using optical

microscopic studies, is shown in Figure 3.4.

We liave carried out X-ray diffraction experiments on several mixtures of
SOPDOB in MCP70B. Preliminary measurements were carried out on four of

tliese mixtures. They are X=5.15, 9.68, 15.0 and 19.4.

As we liave already seen in Chapter 2, tlie pure MCPTOB has a first order
A-C* transition. Figures 3.5(a) and (b) show the temperature variation of layer
spacing and tlie intensity peak for MCP70OB. Near the transition, a two-phase
region IS observed wherein tlielayer spacing has two values corresponding to both
A and C* phases. Also note, the cross-over of intensities of X-ray diffraction
peaks. Both these features are the hallmark of a first order A-C* transition.
Qualitatively, similar features obtained for X=5.15 and 9.68 indicate that the
transition in tliese mixtures is also first order. Figures 3.6 (a) and (b) show the
plot of layer spacing and intensity as a function of temperaturefor X=5.15. Here
we see that the jump in the layer spacing at the transition is smaller compared
to pure MCP70B. For X=9.68, it is further reduced. Thus tlie strength of tlie
first order transition decreases with increasing concentration of 7OPDOB so
much SO that for both X=15.0 and X=19.4 mixtures, tlie layer spacing varies
continuously across the transition without any jump. Also the intensity shows
a monotonic variation witli temperature. In other words, there is no two-phase

coexistence region for either of these mixtures. Evidently, the transition for these
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Figure 3.4: The temperature-concentration (T-X) diagram for MCP70OB-
SOPDOB binary system.
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mixtures is second order. Plot of tlie temperature variation of layer spacing
and intensity for X=15.0 is given in Figure 3.7. Tlie temperature variation
of tilt angle § determined using Equation 3.8, in the four mixtures and also
in pure MCPTOB are given in Figure 3.8. It is clear that, with increasing
concentration of TOPDOB, the jumpin 0 at the transition decreases and finally
for X > 15.0, it goes continuously to zero, indicating a change in the order
of the transition from first to second order. We can therefore surmise that

a TCP exists in the concentration range between X=10.0 and X=15.0.

In order to study tlie nature of tlie TCP and tlie concomitant cross-over
phenomena, we have carried out high resolution X-ray diffraction experiments
on five different mixtures, all of which lie on tlie second order side of tlie TCP.
Tlie concentrations of tlie mixtures used are X=16.92, 15.49, 14.02, 13.6 and

13.3.

As tlie Ginzburg temperatures for these materials were not known (since
tlie specific heat or the correlation length data were not available), to ascertain
tlie true nature of tlie TCP, we liad to collect tlie data at very close intervals
of temperature. During the experiment, the sample temperature was varied
very slowly (100 mIS/hour) and tlie data were collected at temperature intervals
of ~5mkK, tlie temperature being kept constant to about 2 mK during each
measurement. The high precision of the data is evident from Figure 3.9 which
is a representative plot of the layer spacing variation across the transition. The
relative accuracy in tlie determination of the wave vector is reckoned to be

2 x 1071 A~
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Figure 3.7: (@) Thermal variation of d for X=15.0. The layer spacing varies
continuously with temperature across the transition.
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3.3.1 Power law analysis

Asdiscussed already, the thermal variation of 8 in the C* phase can be described

by a simple power law of the type,

0 =0,t° (3.9)

TAC‘ - T
Tace
an amplitude term. f is the critical exponent for tlie thermal variation of the

where t = , Tac* being the A-C* transition temperature and 8, is
order parameter. The power law fitting was carried out using a non linear |east
square fit program with 6,, T 4¢* and 3 being left as free parameters. When tlie
fitting was done by taking tlie dataover tlieentire temperaturerange (i.e., about
1K from Tue+) in tlie case of each mixture tlie value of the critical exponent
obtained was much lower compared to the MF exponent, 0.5. For e.g., in the case
of X=14.02 mixture, as shown in Figure 3.10 when the data upto 1K from tlie
transition was fitted to the power law, tlie value of 3 obtained was 0.33 (wliicli
is close to XY class exponent). It was tliis kind of analysis wliicli led tlie earlier
experimenters to believe that this transition belongs to XY class. Therefore we
have carried out the power law fitting analysis in a non trivial manner. For
this a ‘variable range' procedure was adopted, i.e., different limiting values of
temperature (T;) in tlie C* pliase were chosen arbitrarily and in each case tlie
data between T; and T a¢* were fitted to Equation 3.9 and the exponent § was
calculated. For each concentration, about 15 limiting ranges, varying from as
low as 40 mK to 1 K were chosen and tlie corresponding 3 was calculated for
each range. The fitting carried out on the X=14.02 mixture data at four typical
ranges, viz., 103, 250, 490 and 930 mI is shown in Figure 3.11. The vertical
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0 0.01 0.02

Figure 3.10: A single powerlaw fit to the entire data over a temperature range
of 1K from the transition temperature for X=14.02 gives the exponent 3 as 0.33
(close to XY class exponent).
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Figure 3.11: Tilt angle 6 VS temperature plot in the C* phase for X=14.02. Solid
lines are power law fit to the data, carried out for different temperture ranges
viz., (2) 103 mK (b) 240 mK (c¢) 490 mK and (d) 930 mK. The corresponding
are marked in the figure. The vertical lines represent 3-standard deviation error

to the tilt angle data.
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lines represent the 3-standard deviation error on the tilt angle data. In each
case the fitting is seen to be very good. Tlie g values calculated for different
ranges are plotted against tlie fitting range in Figure 3.12. With decreasing
range, 3 increases monotonically and for ranges < 103 mK, it saturates at the
MF value of 0.5, signifying a cross-over to asymptotic MF region. The observed
trend in 3 isin agreement witli the predictions of tlie extended MF model. The
theoretical plot[23] of the effectiveexponent (Or cross-over exponent) Sy Versus
reduced temperature given in Figure 3.13 100ks similar to the experimental plot

in Figure 3.12.

For all the mixtures, the analysis was carried out in a similar fashion by
evaluating 3 over different T, values (Figure 3.14). The figure shows that for
the highest concentration, i.e., X=16.92, tlie temperature range (T ) Over
which 3 lias tlie true MF value of 0.5is ~ 350 mK. With decreasing X, i.e., as
the TCP is approached, T),;r aso gets progressively smaller, until, finally for
X=13.3 there appears to be, with in 30 mK, no MF region at all. Thissignifies
that this concentration is at or extremely close to TCP. This is confirmed when
[ is evaluated over a wide range of temperature (T c* - Ty > 10K ) in the C*
phase. As the range of fitting is increased 3 indeed gets saturated at a value of

0.25 wliicli is the tricritical value[24] (seeinset of Figure 3.14)

From Equation 3.9 we see that when 8 versus ¢ data is plotted on a double
logarithmic scale, the data would fall on astraight line. Also, tlie slope of sucli
a straiglit line directly gives the exponent 3. Such a plot for X=15.49 (over

Tac*-T =1 K temperature range) is shown in Figure 3.15. A straight line fits
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Figure 3.12: 3 versus temperature range plot for X=14.02. As the temperature

range decreases, 3 increases monotonically and for ranges < 103 mK it saturates
at the MF value of 0.5.
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Figure 3.13: The theoretical plot of the effective exponent versus the reduced
temperature (from ref[23]) looks very similar to Figure 3.12.
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EXPONENT B

Figure 3.14: Variation of 3 with temperature range for different mixtures of
tie MCP7OB - TOPDOB binary system. The concentrations are 16.92 (filled
triangles), 15.49 (squares), 14.02 (open circles), 13.6 ( open triangles), and 13.3(
filled circles). The MF region is seen to shrink with decreasing X. The mixture
with X=13.3 for which no MF region is seen by power law fit is at or very
close to the TCP. Inset: Plot of 3 vs range for this mixture over an extended
temperature range (~ 10 K) shows the saturation of J at the tricritical value of

0.25.
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Figure 3.15: Double logarithmic plot of § vst for X=15.49. The straight line is
the power law fit to the dataand tlie slope of the straight line gives the exponent
directly. 5 = 0.388+0.003. Tlie vertical lines are the 3-standard deviation error
to the tilt angle.
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tlle data well giving aslope = 0.388. But due to tlle inherent cross-over problem,
this slope does not give the critical exponent 3, but ouly its cross-over value.
However, a similar plot for X=13.3, data upto T 4¢*-T ~ 10 K range, gives

B = 0.252 + 0.002, tlle tricritical exponent (Figure 3.16).

3.3.2 Mean-field analysis

We have also analysed tlle data in tlle frame work of tlie extended mean-field
model. An advantage of this method is that one can, not only get the value of
tlle cross-over temperature ¢,, but also obtain tlie different ratios of the Landau
parameter, viz., b/c, b/a and a/c. Note that, by tlie very definition, tlle value

2

of b and hence ¢,(= go to zero at the TCP.

)
From Equation 3.5

0 = [R(1+3t/t,)'/* — 1]/2 (3.10)

wliere R = (b/3c).

We have fitted the datafor the different mixtures to Equation 3.10 by floating
R, Tac* and ¢, as free parameters. Tlie fits obtained in each case are plotted
in Figures (3.17-3.21). It is seen that Equation 3.10 describes the data well in
all the cases. For X=16.92 tlie value of ¢, is 2.17 x10~* (Figure 3.17) and as
X decreases its value also decreases. For X=13.3 (Figure 3.21), the very small
value of {, =5 x10=° (at TCP ¢, = 0 ) supports tlie results of the power law
analysis from which we identified this concentration to be at or very close to
TCP. (A very similar kind of a mean-field TCP has been found[25] in tlie case

of achiral - racemic system at the racemate concentration).
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Figure 3.16: The plot of  vs. f in double logarithmic scale for X=13.3. The
slope o the straight line gives the tricritical exponent.(0.252+0.002)
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Figure 3.17: Fit of the tilt angle data for X=16.92 to Equation 3.10. The ¢,
obtained is 2.17x1073
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Figure 3.18: Extended mean-field fit for X=15.49. ¢, = 1.41 x 1073,
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Figure 3.19: Extended mean-fied fit for X=14.02. ¢, = 0.71 x 10~°
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Figure 3.20: Extended mean-field fit for X=13.6. ¢, = 0.39 x 107°.
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Figure 3.21: Extended mean-field fit for X=13.3. t, =5x 107°
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The vaues of ¢, obtained for different concentrations are tabulated in Ta-
T

ble 3.2 along with typ (= ) got from power law fits. As observed earlier,

Tacr
both ¢, and t;r decrease with decreasing concentration and vanish at TCP.

In Figure 3.22, we have plotted the partial T-X diagram, by also including
a line representing the locus of the MF-TCP cross-over points. This plot, in
fact is qualitatively similar to tlle theoretical ‘catchment area’ plot shown in
Figure 3.3 (For ease of comparison the relevant portion of Figure 3.3 is shown

in Figure 3.23).

As mentioned earlier, fitting done to Equation 3.10 also provides a way to

calculate tlle ratio of Landau coefficients.

Now for asecond order transition, from Equation 3.10,

R = (b/3c)
or
b
-=3R (3.11)
C
We also have,
b2
to = — (3.12) .
ac

Equation 3.11 gives tlle ratio b/c. Dividing Equation 3.12 by Equation 3.11 we
get the ratio b/a. Also dividing Equation 3.11 by b/a yields a/c. The values of
the different ratios of Landau parameters for different mixtures on the second

order side of the TCP are given in Table 3.3.

If the transition is first order, then b<0. In such a case from Equation 3.3

one gets, tlle jump in the tilt angle A ¢ to be
3b

2—-____
Av = 4c
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Table 3.2: The mean-field range(tar), cross-over temperature (t,) and tlie
range of tlie A phase for different mixtures of C7-TOPDOB system (T4 is tlie
isotropic-A transition temperature)

Mole percent | 10%t3 7 | 10%, | T7a - Tac+ (°C)

16.92 1.03 2.17 15.5
15.49 0.72 141 14.8
14.02 0.31 0.71 14.1
13.60 0.13 0.39 13.7

13.30 0.05 13.4
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Figure 3.22: Partial T-X diagram for MCP70OB-7TOPDODB system showing tlic
MF to tricritical cross over beliaviour near tlie A-C* TCP. The points on the
phase boundary on the first order (triangles) as well as on the second order
(circles) side of TCP liave been obtained from oytical microscopic studies. The
dashed line representing the MF to tricritical cross-over temperature has been
identified by power law fits. Notice that the MF region shrinks to zero at the

TCP.
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Figure 3.23: Tricritical pliase diagram shown in Figure 3.3. is plotted in order to
compare with the experimental phase diagram shown in Figure 3.22. The dashed
line represents the MF to cross over region. Notice the similarity between the

experimental and the tlieoretical curves.
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Table 3.3: Theratio of Landau parameters for different mixtures of C7-7TOPDOB
system

Mole percent | p/c b/a afc
rad’ | rad=? K | rad* K™!

16.92 0.087 | 0.025 0.284

15.49 0.084 | 0.017 0.199

14.02 0.042 | 0.017 0.406

13.60 0.035| 0.011 0.318

13.30 0.010 | 0.005 0.491
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g = —§A02 (3.13)

Using Equation 3.13 the g ratio was calculated for mixtures on the first order
side of tlie TCP. Figure 3.24 diows tlie plot of g Versus concentration (X). In
conformity with the ¢, and t,,r data tlied/c ratio also goes to zeroat X=13.3, tlie
T CP concentration. It iS interesting t0 note here tliat asimilar curve (shown in

Figure 3.25) has been seen in the case of aferroelectric semiconductor alloy[26).

Thus, the results of our high resolution X-ray measurements of the tilt angle
in tie MCPSOB - SOPDOB binary System establish tlie existence of a TCP
on tlie A-C* transition line. Detailed analysis has brought out many associated

features:

1. Mean-field to tricritical cross-over beliaviour.

2. The Mean-field range shrinking to zero at the TCP.

Tlie analysis demonstrates tlie power of tlie range shrinking method in obtaining
the true value of tlie order parameter critical exponent. Further, the conclusions
drawn are found to bein good agreement with tliose obtained from the extended

mean-field model.
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Figure 3.24: Plot of the ratio b/c against the concentration X. b goes to zero at
the TCP. The solid line is just a guide to the eye.
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Figure 3.25: A plot,b/c us X in the case of a semiconducter aloy ref.[26]. The
plot looks very similar to the plot shown in Figure 3.24.
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