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Introduction 

1.1 Classification o f  Phase Transitions 

The study of phase transitions is one of the well developed branches of condensed 

matter physics [I]. A phase transition'.occurs when the properties of a material 

undergo a change due to changes in temperature or pressure. Examples of phase 

transitions are melting of a solid and boiling of a liquid. Transitions can also occur 

between phases in the solid state. An example of such a transition is the transfor- 

mation of a ferromagnetic substance like Iron or Nickel into a paramagnetic state. 

Elements like Iron and Nickel, possess permanent magnetic moments, which align 

spontaneously, below the transition temperature known as the Curie temperature. 

As the temperature of the material is increased, the degree of this alignment de- 

creases continuously until at  the Curie temperature it becomes zero. 

The stability of a phase is discusied in terms of the Gibbs free energy (G) of 

the system. 

Where U = Internal energy of the system 

T = Temperature 

S = Entropy 

P = Pressure 

V = Volume 

In the presence of a magnetic field, a term MH is added to the Gibbs free 

energy . 
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For an infinitesimal , reversible transition, 

dG = dU - TdS - SdT + PdV + VdP (1.2)  

Using the first law of thermodynamics 

TdS = dU + PdV (1.3) 

Therefore 

dG = -SdT + VdP 

Since at the transition point the system is in thermodynamic equilibrium, d T  = d P  

= 0 Hence dG = 0 or G = constant a t  the transition. 

Even though the Gibbs free energy is a constant during a phase transition the 

derivatives of the free energy like volume, entropy, specific heat, compressibility or 

susceptibility can show a discontinuity a t  the transition point. 

The discontinuities in the various thermodynamic quantities is the basis for a 

system of classifying phase transitions. According to this system of classification, 

propounded by Ehrenfest [2], phase transitions are classified according to the lowest 

derivative of the free energy which shows a discontinuity. If the first derivative of 

the free energy i.e, either the volume or the entropy shows a discontinuity a t  the 

transition temperature , then it  is known as a first order transition. Examples of 

first order transitions are melting of a solid and boiling of a liquid. 

If the second derivative of thy free energy i.e, one of the response functions like 

specific heat, susceptibility etc show a discontinuity, it is known as a second order 

transition. An example of a second order transition is the transition from the normal 

metallic state to  the superconducting state in zero magnetic field. 

This system of classification fails for certain transitions , like the case of the 

Curie point transition in uniaxial ferromagnets, where the second derivatives of 

the free energy diverge to  infinity. Hence it is difficult to see whether there is a 

discontinuity or not. The modern classification of phase transitions due to Fisher, 

takes this into account and broadly classifies phase transitions into discontinuous or 

continuous transitions. 

1.2 Theories of Phase Transitions 

In this thesis we will concentrate on magnetic transitions. The earliest theory for 

the ferromagnetic to paramagnetic transition was given by Weiss in 1908. According 
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to  this theory each atom is assumed to  have a localized magnetic moment which 

interacts with an average 'molecular' magnetic field due to  all the other moments. 

L.D.Landau, in 1944, generalized all the previous theories of phase transitions 

and gave a general formulation which is known as Landau's Mean field theory. Lan- 

dau used a concept known as the order parameter, first introduced by Felix Bloch. 

The order parameter has a non-zero value below the transition temperature and is 

zero above the transition temperature. The order parameter varies discontinuously 

in a first order transition and goes continuously to zero for a continuous transition. 

The main idea in Landau theory is that the free energy of the system can be 

expanded as a series in the order parameter [3]. 

Where Go is a constant. Eq. 1.5 is written under the assumption that the value 

of the order parameter is small near the transition temperature. Hence it should 

be valid for continuous phase transitions. The most general expression for the free 

energy would involve all possible powers of M .  However it  can be proved from simple 

symmetry considerations that most of them should be absent. Since the free energy 

is a minimum at  equilibrium, dG/dM = 0. From this condition it  is seen that the 

coefficient of the linear term is zero. For magnetic systems, there are additional 

constraints on Free energy from the symmetry consideration that  G(M)  = G(-M). 

This is because the free energy should be the same , irrespective of the direction of 

magnetization. Therefore terms containing odd powers of M are absent from the 

expression for the free energy. In case the symmetry permits the presence of a term 

containing M3, it  can be shown that  this leads to a first order transition. A first 

order transition is also possible without the M3 term, if 'b' becomes negative. To 

ensure stability, a term containing M6 has to  be included in Eq. 1.5. For such a 

system, the transition is first order when b < 0, and second order when b > 0. The 

point where a = b = 0 is known as a 'tricritical point'. This shows that  magnetic 

transitions can also be first order under certain circumstances 

The following form is usually assumed for the constant 'a' 

It  is obvious from the above equation that 'a' has a negative sign for T < T, 

and a positive sign for T > T,. A and b are constants independent of temperature, 

except under the circumstances discussed earlier. 
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Figure 1.1: The Landau free energy as a function of the order parameter a t  different 
temperatures 

The equilibrium configuration of a system is found by minimizing the free en- 

ergy with respect to  variations in the order parameter. Therefore the condition for 

equilibrium is that  dG/dM = 0, i.e, .. 

This equation has the solution M = 0 or 

Therefore according to Landau theory the order parameter varies as (T -T,)'/'. 

The free energy has been plotted as a function of the order parameter for different 

values of temperature in Fig. 1.1. 

Below T,, the free energy has two minima, corresponding to  the two equivalent 

directions of magnetization, -M and M. Above T,, there is only one minima a t  

M = 0. As T approaches Tc from the low temperature side, the two minima ap- 

proach each other and coalesce to a single point for T = Tc. Near T,, the free energy 

curve is almost flat around the minima (M = 0). This brings into focus why fluctu- 
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ations in the order parameter are important especially near T,. All thermodynamic 

quantities are usually macroscopic quantities which are obtained by averaging over 

macroscopic dimensions. There could be fluctuations on a microscopic length scale. 

These fluctuations in the order parameter cost energy which depends on the size of 

the fluctuation. The energy for the fluctuations are supplied by the Auctuations in 

the thermal energy of the system. The effect of fluctuations are neglected in the 

Landau theory based on Eq. 1.5. 

To illustrate the effects of these fluctuations consider the free energy curve for 

a temperature T slightly above T,. The average value of the order parameter is 0, 

however fluctuations about this average value do not cost much energy as the curve 

is almost flat. Hence the energy of the system is almost the same for a range of 

M values about the average.   his situation is no longer true far away from the 

transition point, where the curvature ab,the minima of the energy is quite large, 

leading to a large energy change for the same amount of fluctuation in the order 

parameter. 
\ 

From the above discussion it emerges that a large number of states have the 

same energy, when the system is near the transition point. This in turn means that 

a long time is required for the system to  attain equilibrium, as it  has to  sample all 

the available states. This phenomenon is known as 'critical slowing7 down of the 

system near the transition point. The 'critical slowing down' of the system creates 

some experimental problems when a thermodynamic property has to  be measured, 

as the experimental time-scales diverge near the transition point. 

The Landau theory ,like the Weiss theory of ferromagnetism, predicts a discon- 

tinuity (AC,) in the specific heat 

Experimental studies on ferromagnetic materials showed that while the mean field 

theories were successful in predicting the behaviour far from the transition temper- 

ature, it fails quite dramatically in its prediction near the transition temperature. 

While the mean field theories predict only a discontinuity in the specific heat, fer- 

romagnetic materials like Iron and Nickel show a finite cusp and some fluids show 

an infinite divergence. The experimentally observed specific heat variation can be 

fitted to a power-law of the form 

Where Tc is the transition temperature and a is known as the critical exponent. 
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The failure of the mean field theories to predict the behaviour near the transition 

point is related to the fact that the theory assumes an average field throughout the 

sample and neglects short-range interactions. The Ginzburg-Landau formulation 

tries to rectify this defect by taking fluctuations into account. 

The Ginzburg - Landau free energy is given by 

The renormalization group theory of K.G.Wilson [4] uses this free energy to calculate 

the variation of thermodynamic quantities near the critical temperature. It  gives 

values for the critical exponents which agree quite well with the experimentally 

observed values of the critical exponents. 

An important triumph of the renor~alizat ion group theory is the expIanation 

of the phenomenon of 'universality', i.e, the explanation of the fact that many di- 

verse systems give rise to the same critical exponents, even though their critical 

temperatures maybe different. 

Critical exponents can be defined for the various thermodynamic quantities as 

shown in the table given below: 

Table 1.1: Definition of critical exponents 

where t = (T - Tc)/Tc for T > T, and t = (T, - T)/T, for T < T,. The 

exponents are identical for T < T, and T > T,, but the amplitudes may be different. 

The behaviour of the systems may not follow the single exponent behaviour, as 

defined in the table given above. Due to the presence of some irrelevant variables 

the critical behaviour is modified to [5]: 

Where A depends upon the universality class of the system. For exarnple 

Definition 
C' = (A/a) t fa  
M = Btp 
x = rt-7 
< = tpt-" 
M ( t  = 0) N Hd 
G(')(T) & 

Quantity 
Specific Heat (C) 
Order Parameter(M) 
Susceptibility(~) 
Correlation length(<) 
Critical Isotherm(M(t = 0)) 
Correlation function(G(')(r) 

Exponent 
a 
P 
Y 
v 
S 
77 
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A N 0.55 for the 3d Heisenberg model. An example for an irrelevant variable is the 

anisotropy in magnetic systems. 

1.3 Theoretical models for Ferromagnetic systems 

One of the simplest microscopic Hamiltonians to describe magnetic interactions is 

the Ising model Hamiltonian. The Ising model describes the interactions between 

spins localized on a lattice. The spins are allowed to be either parallel or anti-parallel 

to each other. The Hamiltonian for the magnetic interaction is given by 

Where Jij is the strength of the interaction between the spins Si and Sj  . The spins 

are assumed to be localized a t  the lattice sites i and j respectively. In the case of 

the Ising model, the spins a t  each lattice site can only assume the values -1 or + I  

,i.e, there are only two permitted directions for the spins. This corresponds to the 

behaviour of a spin 112 particle. If the spins can orient along any direction in a 

plane, the corresponding model is known as the XY model. If the spin can orient in 

any direction in 3 dimensions, then it  is described by the Heisenberg model. 

It  is found that the critical behaviour of the ferromagnetic metals like Iron and 

Nickel are adequately described by the Heisenberg model even though the model 

assumes the spins to be localized on the lattice sites. As is well known [6 ] ,  the 

electrons contributing to the magnetic moment in the case of Nickel are itinerant 

in character. This is an example of the phenomenon of universality, i.e, the insen- 

sitivity of the critical behaviour to the details of the interaction Hamiltonian. The 

critical exponents seem to depend only on the spatial dimension and the number of 

components of the order parameter. 

The values of the critical exponents and the amplitude ratios A+/A-for different 

space and spin dimensions are given in table 1.1 and table 1.3 respectively. Where 

A+ and A- are the amplitudes for the various thermodynamic quantities above and 

below T,. 

The tricritical point mentioned in table. 1.2 is the point a t  which a transition 

changes over from a first order to a second order transition. In the above table, 

the exponents for 2d XY and Heisenberg models are not given since it has been 

proved that a 2 dimensional system having an order parameter with more t,han one 

component does not have a transition a t  a finite temperature [7]. 

Since the determination of the exponent for specific heat will be dealt with in 
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Table 1.2: Values of Critical exponents for different universality classes 

- - - - 

I 3d Heisenbere 1 -0.12 0.36 1 1.39 1 0.71 
I I I 

1 Model I Q 14 Ir Y 

0.63 

1 I ' I 

later chapters, a few remarks on the Val& of this exponent for different models are 

" 
tricriticalpt 
Mean Field 
Ex~er iment  

in order. In the case of the 2d Ising model, the specific heat diverges as 

1.24 
2d Ising 
3d Ising 

C, = A log t (1.14) 

0.5 
0 

From Fig. 1.2, it is seen that the specific heat rises symmetrically on each side 

of the critical temperature T, in the case of the 2-d Ising model. What we see in 

three dimensions is more characteristic of the real Lambda transition: there is more 

specific heat on the low-temperature side than on the high temperature side of T,. 

This asymmetry seems to be a characteristic change on going from two dimensions 

to three dimensions [8]. 

Where t is the reduced temperature given by t = I(T - T,)/T,I. This result 

means that the specific heat diverges a t  the transition temperature. This was pre- 

dicted by Onsager [9], who gave an analytical solution for the 2-d Ising model. In 

the case of the 3d Ising model, the specific heat still diverges near the transition 

point, but with an exponent of 0.11. The specific heat behaviour for the 2d Ising 

and the 3d Ising models are plotted in Fig. 1.2 for a transition a t  300 K. In both 

cases, the specific heat diverges to infinity. However the specific heat starts diverging 

farther away from Tc in the case of 2d Ising model than in the case of the 3d Ising 

model. This indicates that the mean field approximation is valid over a wider range 

in the case of the 3d Ising model than in the case of the 2d Ising model. This can 

be understood on the basis of the Ginzburg criterion to be discussed below. In the 

case of the 3d Heisenberg model, the negative value of a implies that the specific 

heat iricreases near Tc, but remains finite a t  T, (Fig. 1.3). 

0 (log) 
0.11 0.32 

I 1 

0.5 1 0.5 
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Figure 1.2: Specific heat near Tc for the 2d and the 3d Ising models. Key:- Thin 
line-3d Ising , Thick line- 2d Ising model 

Figure 1.3: The specific heat near Tc for the 3d Heisenberg model 
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The difference in the behaviour of the Ising and the Heisenberg models can 

be understood in a qualitative way. In the case of the Ising model, the internal 

energy changes by 4NJS2 for the reversal of each spin [lo]. N is the number of spins 

with which each spin interacts. If 'x' spins reverse direction for unit temperature 

rise, then the change in the internal energy per unit temperature rise (which is the 

specific heat) is 

Now N diverges near Tc, since the correlation length J, diverges. N will roughly 

go as Jd (where d is the space dimension). From the above argument it  is obvious 

that the specific heat will diverge in this case because of the divergence in the 

correlation length. 

In the case of the Heisenberg model, the above argument gets slightly modified 

as the spins can point in any direction, unlike the case of the Ising model where 

they can only be either parallel or anti-parallel to each other. Therefore Eq. 1.15 is 

modified to 

Where cos(0) is the angle between the interacting spins. As Tc is approached, 

N goes to  infinity, but cos(0) goes to  zero (as on the average no two spins will be 

aligned in the same direction), hence the product of the two can be a finite quantity. 

Experimentally, it is very difficult to  distinguish between the Ising and Heisen- 

berg models. This is because of the fact that,  even though theoretically, the specific 

heat goes to infinity a t  Tc in the case of the Ising model, the experimentally measured 

specific heat remains finite. The experimentally measured specific heat remains fi- 

nite as we cannot approach arbitrarily close to T, 

The values of the various critical exponents are not all independent since they 

are related by so-called scaling relations. It turns out that there are only two inde- 

pendent critical exponents. Historically, it was shown by Rushbrooke [ll], Griffiths 

[12], Josephson [13] and Fisher [14]that basic thermodynamics together with a few 

reasonable assumptions oblige the six exponents to satisfy four inequalities. For es- 

ample, Rushbrooke derived an inequality connecting a,  ,Dandy using the fact that the 

specific heat has to be positive. Similarly another inequality can be derived from the 

fact that the compressibility is always positive. Gradually, experimental evidence 

accunlulated that these inequalities were in fact equalities and in 1965 Widom [l5] 
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showed two of them would indeed be equalities if the Helmholtz free energy were not 

any odd function of two variables( eg: temperature and magnetic field), but could 

be approximated by a function $ of one variable. For a magnetic system, Widom 

suggested that  near T,, f (Helmholtz free energy), can be approximated by 

f ( t ,  B) = t l l y$ (~ / tx ly )  (1.17) 

JT-Tc 1 Where t = Tc . 

From this hypothesis we can derive the scaling laws mentioned earlier. They 

are: 

Rushbrooke's law: 

Griffith's law: 

Fisher's Law: 

Josephson's hyperscaling law: 

All these laws are valid for all continuous phase transitions and have been 

experimentally verified. In the case of a mean field transition the hyperscaling law 

is valid only for one particular dimension known as the 'upper critical dimension'. 

This is so since the mean field exponents are independent of the spatial dimension. 

The concept of 'Upper critical dimension' will be introduced in the next section. 

The values of experimentally determined critical exponents could be useful to 

assign a given system to a particular universality class (Model). However as is 

noticeable from the table, the values of critical exponents for different universality 

classes are quite close to each other. Hence a better way to  study critical phenomena 

would be to determine the amplitude ratios, which are listed below for various 

systems. 
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Table 1.3: Values of amnlitude ratios - -. - - - - - -. - - - - - - -. - - - r -- 

I 3d Theory I A+IA- 1 ILK- 1 €+/<!- 1 

I Heisenberg 
I I I 

I Heisenberg 
I 1 I 

1 0.84 - 1.6 1 1 1.8 

1 1.52 
3d Experiment 
Ising 
XY 

Mean field theories are valid for d > 4. This can be proved using a simple 

criterion given by Ginzburg [3]. ' 

Basically the criterion says that  mean field theories are valid if the square of 

the fluctuations is much less than the square of the order parameter. As can be seen 

intuitively , the effect of fluctuations is less in higher dimensions. This is because 

each spin has more number of neighbours in higher dimensions and therefore the 

energy required to cause a fluctuation is much greater in higher dimensions (crudely 

speaking, more bonds have to be broken in higher dimensions). For d < 4 , the 

Ginzburg criterion gives the range of temperature from T, beyond which mean field 

theory is valid. The dimension above which mean field theory is valid is known as the 

upper critical dimension. The upper critical dimension depends on the Hamiltonian 

chosen to describe the system. For example if the Hamiltonian has only the M 6  and 

h12 terms, the upper critical dimension is 3. Hence mean field theories are quite 

suitable for a system described by such a Hamiltonian in 3 dimensions. 

1 0.38 

For d < d,, where d, is the upper critical dimension, mean field theory is valid 

for temperatures sufficiently far from T,. As T approaches T, (either from above 

or from below), fluctuations become more important and the inequality is violated. 

The temperature TG at  which fluctuations become important is called the Ginzburg 

temperature and is given by 

0.5 - 0.63 
0.49 - 0.74 

Where Ad is a constant for a fixed dimension d. to = is the bare 

coherence length and AC, = % is the mean-field specific heat jump per unit 

volume. 

Thus? mean field theory will be valid even very close to a critical point for 

4.5 - 5.0 
5.0 

2.0 
1.7 - 2.0 
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d < d,, if the bare coherence length J, is large. This is the case for systems with 

long range forces. When ITG - T,I is not small, one can expect a crossover from 
T-T mean field behaviour to critical behaviour when the reduced temperature t = 

becomes of order tG. 

In 3-d, a careful evaluation of Ad yields [3] 

1.4 Phase Transitions under High Pressure 

In most of the discussion about phase transitions given above, temperature seems 

to  play the predominant role as far as the free energy of the system is concerned. 

However the free energy of the system is also dependent on the pressure to which 

the system is subjected to. The application of pressure changes the interatomic 

interactions, leading to the appearance of new phases. In some cases, phases which 

are not seen a t  atmospheric pressures, make their appearance a t  higher pressures. 

There have been a few instances of re-entrant phase transitions a t  high pressures. 

This phenomenon has been observed in the case of metallic glasses and also in the 

case of liquids [16] and liquid crystals. 

Since ,the later chapters will deal with phase diagrams quite extensively, a gen- 

eral introduction to the concepts involved, is given in this section. Fig. 1.4 shows a 

general phase diagram for a material, showing the three states of matter -solid, liq- 

uid and gas. In the solid state some materials have a ferromagnetic phase, which is 

demarcated from the paramagnetic phase by the dashed line in Fig. 1.4. The ferro- 

magnetic phase has a spontaneous magnetization, which is destroyed by an increase 

in temperature. With a further increase in temperature, the positional order which 

is characteristic of the solids is destroyed when there is a transition to  the liquid 

state. In the case of some organic systems, there is an intermediate state between 

the solid and the liquid phases, where the orientational order of the molecules is 

retained, but the positional order maybe partially (in some directions) destroyed. 

This phase is known as the liquid-crystalline phase, since it has properties of both 

the liquid and the crystalline phases. The liquid state transforms to the gaseous 

phase when the temperature is increased beyond the boiling point. 

The liquid-gas phase boundary terminates a t  a critical point (T,, PC) beyond 

which there is no distinction between the liquid and the gas. At temperatures and 

pressures greater than the Tc and PC, the liquid can transform continuously into the 
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Figure 1.4: A typical Phase diagram showing the various possible phases 
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Figure 1.5: Phase diagram for a ferromagnetic system showing the critical point 

gaseous phase. This is possible as there is no symmetry difference between the liquid 

and the gaseous phase. Both the solid-liquid transition and the liquid-gas transition 

(except a t  the critical point), are first order transitions. 

The phase boundaries (in the case of first order transitions) are described by 

the Clausius-Clayperon relation [2]: 

A positive slope for the phase boundary means that both A S  and A V  are 

positive o r b o t h  of them are negative (which is more unlikely). A negative slope 

usually implies that A V  is negative . The only example for a negative AS is the 

liquid-solid transition in Helium where the liquid phase is more ordered [2]. A V  is 

negative in the case of the melting transition in water. 

The liquid-gas transition has many analogies with the ferromagnetic to para- 
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magnetic transition. In the case of the ferro-para transition, the magnetization is 

analogous to  volume, while the magnetic field is analogous to  the pressure. The 

phase diagram for the ferro-para transition is shown in Fig. 1.5. The critical be- 

haviour around this critical point fits the 3d Ising model. 

In the case of a continuous phase transition, the R.H.S of Eq. 1.24 becomes 

indeterminate as both A S  and AV become zero for a continuous transition. In that 

case the R.H.S of Eq. 1.24 is evaluated'using L'Hospital's rule. Differentiating the 

numerator and the denominator of the indeterminate expression with respect to  T, 
we have, 

Where AC, is the discontin~li t~ in specific heat and A n ,  the discontinuity in 

the coefficient of volume expansion. , 

Differentiating Eq. 1.24 with respect to  P one obtains the other Ehrenfest re- 

lation for a second-order transition [2]: 

Where A,i3 is the discontinuity in compressibility a t  the transition. 

High pressure studies are also undertaken to investigate various multicritical 

points [17] which occur in some systems. 

1.5 Amorphous Magnetic systems 

While critical phenomena in crystalline magnetic systems have been receiving quite 

a bit of attention over a very long time, the critical behaviour of amorphous magnetic 

systems has been studied only quite recently. The number of experimental studies 

have been somewhat limited. The present study on amorphous magnetic systems 

was motivated by a number of fundamental questions regarding the behaviour of 

amorphous systems: 

What is the nature of the critical behaviour in amorphous magnetic systems? 

Is there a marked departure with respect to the corresponding crystalline systems? 

Gubanov [18] showed that Ferromagnetism could exist in the amorphous state. 

Harris [19] gave a physical estimate of the effect of fluctuations in T, due to the 

presence of non-magnetic components in the sample as well as the fluctuations in 

Ji, due to variations in the nearest neighbour distance. 

The argument of Harris is as follows: 
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Divide the magnetic system into cells of dimension L. L is chosen to be of the 

order of the correlation length I, so that the cells are sufficiently large to have a well 

defined average concentration of impurities but are weakly correlated. Let T, be the 

average transition temperature and the fluctuations in T, are estimated from cell to 

cell. 

From central limit theorem, we expect that 

where n is the number of impurities in each cell. 

Rewriting the above equation, we have, 

As long as AT, < IT, - TI, the fluctuations in T, will not round the transition 

and this requires that d v / 2  > 1 or using the scaling relation d v  = 2 - a, we find 

a < 0 as the condition for a sharp T,. Only the 3d Ising model is thought to 

have a < 0.  Luther and Grinstein [20] and Lubensky [21] have studied magnetic 

systems near d = 4 with small fluctuations in the exchange parameters using the 

renormalization group and concluded that  when the Harris criterion is satisfied, the 

fluctuations due to  a small amount of randomness are irrelevant. For a > 0 ,  they 

found a new fixed point with different critical exponents. 

According to  this argument, the systems obeying the Heisenberg model should 

not be affected by positional disorder as a < 0 for these systems. The Harris 

criterion only says whether the transition will be sharp or not i.e, whether the 

system has a single transition temperature or the transition occurs over a range of 

temperatures. It  does not tell anything about the nature of the critical behaviour. 

Grinstein and Luther [20] proved that  the critical exponents also do not change 

if the Harris criterion is satisfied. However they proved this result for the case of 

weak disorder. The theoretical situation has not been clarified for the case of strong 

disorder as in the case of metallic glasses. 

There are only a few experimental results [22] to  show that disorder has no 

discerneble effect on the critical exponents. 
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Chapter 2 

High Pressure Instrumentation 

2.1 Introduction 

The Piston-cylinder apparatus is a well known device in the field of high pressure 

research. The piston-cylinder device use'd in the present work can attain pressures 

of the order of 50 kbars. The maximum pressure which can be attained is set by the 

strength of the tungsten carbide plates which are used to  contain the sample. While 

higher pressures are obtained in the Diamond anvil technique, the piston-cylinder 

technique has the advantages of a large sample size and a true hydrostatic pressure. 

The piston-cylinder apparatus is discussed in detail in this chapter. The cell- 

assemblies used in the present experimental work, as well as the techniques used for 

the measurement of resistivity and thermopower are also described. 

2.2 Piston-Cylinder Apparatus 

The high pressure apparatus used in the present investigation is a piston-cylinder 

device and very high pressures can be generated by the advance of a one inch or 

half inch diameter piston into a cylinder, both made of tungsten carbide (WC). The 

entire arrangement (Fig. 2.1) consists of a ten inch diameter master ram of 1000 

ton capacity. The entire arrangment of the pistion-cylinder apparatus together with 

the pressure controls is shown in the photograph appearing in the next page. The 

piston assembly is advanced by operating this master ram. Since WC is strong 

in compression and weak in tension or shear, precautions have to be taken to see 

that it is always under compressive load. When high pressure is generated in the 

cylindrical WC core there will be a tensile lateral force acting along the asis of the 

cylinder. To compensate for this, the cylinder is supported axially by an end load 

ram of 750 ton capacity. The pressure plate assembly and the end load plate are 
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shown in Fig. 2.2 and Fig. 2.3, respectively. The WC core (with a cylindrical hole) 

is fitted into binding rings of hardened EN24 steel. The purpose of the binding rings 

and the end load is to provide support for the WC core. If the core is not inside the 

binding ring when high pressure is generated inside the cylinder , compressive radial 

stresses and tensile hoop stresses will be created. This causes a shear along which 

the carbide may fail. Since the binding rings are interference fitted to  the WC 

core, both these stresses become compressive so that the shear in the X-Y plane 

perpendicular to the ram movement along Z is minimized. However, if there is no 

stress along Z axis, there would be no shear in the vertical plane, which the end 

load ram counteracts. This arrangement vastly enhances the normal operational 

capability of an unsupported WC core. The minimization of the unsupported part 

of the piston is a major requirement to attain pressures of the order of 50 kbars. 

High Pressure Cells 

2.3.1 Teflon cell technique for measurement of  Resistivity and Ther- 
mopower of Metals 

The advantage of this technique is that  measurements of these properties can be 

made under truly hydrostatic pressures of the order of 50 kbar [I]. We have used a 

teflon cell container described by Jayaraman et a1 [2] for generating high pressure 

in situ over the sample. To create a steady temperature difference between the ends 

of the sample, which is essential for T E P  measurements it  is necessary to partition 

the Teflon container in such a way that  the convection mixing of the Silicon oil used 

as pressure transmitting medium, is minimized. This has been achieved by piercing 

the sample through the teflon disc (3mm thick and 19 mm diameter) as shown in 

Fig. 2.4. The disc when inserted into the Teflon container, effectively partitions the 

pressure transmitting medium and helps maintain a steady temperature difference. 

The Silicone oil on either side of the disc is heated to  different temperatures using 

two Nichrome heaters of different resistances threaded through mica discs. They are 

either connected in parallel or can be taken out separately through the teflon cap. 

Two pairs of Chrome1 and Alumel thermocouple wires are spot-welded to  either end 

of the sample and brought out through the cap of the teflon cell container as shown 

in Fig. 2.4 The specimen holder is machined from a solid teflon rod so that the disc 

and the cylindrical projection on either side form an integral part. The thermocouple 

wires are inserted through the pyrophyllite plug and brought out through the cap of 

the teflon container. The thermocouple probes and heater leads are taken out from 
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Figure 2.2: Pressure Plate Assembly 
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Figure 2.3: Pressure Plate With End load Plate 
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the high pressure region to the atmospheric pressure region in a manner described 

by Jayaraman et a1 [2]. The thermocouple leads are taken out through four hole 

ceramic tubings and connected to  the appropriate wires coming out of the cap of 

the teflon cell by spot-welding the junction. By this the generation of thermo- 

electric noise voltages due to temperature fluctuations is completely avoided as no 

new metal is used for bonding. The pyrophyllite disc and the stainless steel piece 

with a pyrophyllite ring assembly, through which the ceramic tubing is inserted 

helps in holding the ceramic tube in position under pressure. At low pressures the 

stainless steel disc flows and grips the ceramic whereas a t  high pressures the lower 

pyrophyllite disc provides the necessary grip for the ceramic. One of the heater 

leads which passes through the hole in the pyrophyllite disc makes contact with 

the stainless steel piece which in turn will be touching the end load plate of the 

pressure chamber. The other heater wire touches the pressure plate directly. The 

pressure plate and the end load plate which are insulated from each other acts as 

the terminals for current to be passed. The teflon cell assembly is positioned inside 

the pressure chamber. The pressure chamber made out of the WC core fitted with 

steel binding rings described earlier is the one used in the piston-cylinder device. 

In any pressure experiment, there will always be a small length of the wire that 

suffers a large pressure gradient while it is brought from the high pressure to the 

atmospheric pressure region. This small region is inhomogeneous in its properties 

and for T E P  measurements it is essential that in these portions of the wire there are 

no temperature gradients. The cell we are using almost satisfies this requirement be- 

cause of the internal heating arrangement and smaller diameter of wires used which 

reduces thermal conduction through the wires. The cell provides a temperature 

gradient varying from 0.25" C to 1 5 O  C in the temperature range 0-250" C. 

The same cell can also be used for 4-probe resistivity measurement. The only 

modification required would be to see that no temperature gradient exists across 

the sample. This is achieved by positioning the sample horizontally in the cell and 

removing the partitioning disc. 

The teflon cell has been used for measuring the resistivity and thermopower of 

Chromium alloys. These are dealt with in chapter 6. 

2.3.2 High Temperature High Pressure Cell 

The teflon cell technique has a major limitation in that the temperature of the in- 

vestigation is limited to around 250' C. The development of a talc-graphite-boron 

nitride assembly [3] permits measurement of absolute T E P  and resistivity of solids 
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and liquids in the temperature range 0 - 1000" C and 50 kbar pressure. The tem- 

perature profile in a graphite heater will in general have a non-uniform temperature 

zone near the ends and a constant temperature zone in the region away from the 

ends of the heater. The constant temperature zone is normally located-in the vicin- 

ity of the geometric center of the furnace and is usually of one quarter of the length 

in its spread. Since for the measurement of T E P  the specimen has to be subjected 

to  a temperature gradient, the natural temperature profile of the furnace can be 

exploited by proper positioning of the specimen in the furnace. 

Talc and pyrophyllite are good solid pressure transmitters and can also stand 

high temperatures which has made them suitable for our use. These materials, 

unlike the fluid (Silicone oil) used in the teflon cell technique, cannot produce a 

truly hydrostatic pressure over the sample. Although the distribution of pressure is 

not uniform over a wide region, by using small samples (0.5 x 0.5 x 0.2 mm3) it is 

possible to  subject it to nearly hydrostatic pressure conditions. 

The thermocouple leads are either spot-welded or embedded in to  the specimen 

and are taken out through the side holes in the sleeve along the grooves made on its 

surface which are 90" apart. The sleeve-specimen assembly is inserted into a Boron 

Nitride cup and the four leads were threaded through the boron nitride cap. These 

four leads are brought out from the high pressure to  the atmospheric pressure region 

in a way similar to that in teflon cell technique. As boron nitride which is a good 

thermal conductor is used to contain the sample, the temperature gradients in the 

regions where the leads suffer a large pressure gradient is minimized. 

The graphite heater is powered from a high current (500 Amps) low voltage (10 

V) transformer. The current through the heater can be increased gradually by a 

continuous scan of the voltage on the primary side of the transformer with the help 

of a motor-gear arrangement coupled to the transformer. This facility allows one to  

select a convenient heating rate. 

The cell for resistivity measurement is the same as above except for the posi- 

tioning of the sample. For resistivity measurements the important requirement is 

that the temperature gradient across the sample length should be minimized. This 

is achieved by keeping the sample horizontaIly inside the boron nitride container 

which is a good thermal conductor and also by placing the sample in the constant 

temperature zone of the graphite furnace. The effects of non-hydrostatic pressure 

distribution can be further minimized if the distance between the two voltage leads 

in the four probe method of measuring the resistivity is made smaller. Then one 

would be measuring that part of the resistance between these two voltage leads 
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Figure 2.6: Resistance versus Pressure for Bismuth in a 112" Teflon cell 

which is subjected to nearly hydrostatic pressure conditions, although the rest of 

the sample is in the non uniform pressure region. 

2.3.3 Pressure Calibration 

There has been an extensive survey on the problem of high pressure calibration in 

different pressure and temperature ranges [4]. This problem will not be dwelt with 

in detail except to  give the pressure calibration procedures which were carried out 

for the present system [ 5 ] ,  using the high pressure cells described in the previous 

sections. 

The pressure calibration a t  room temperature was done by the standard fixed 

point method resulting from polymorphic phase transitions in some well known 

metals. In the pressure range 0-40 kbar, the Bismuth 1-11 and 11-111 transitions were 

utilized to  calibrate the ram pressure against the true pressure seen by the specimen 

in different cells. Electrical resistance measurements were done to monitor these 

phase transitions. Fig. 2.6 and Fig. 2.7 give the relative resistance versus pressure 

graph for high purity (99.99%) bismuth a t  25' C in the 112" teflon cell and 1/2" 

high temperature high pressure cell. Similar runs were carried out in the 1" teflon 

and 1" high temperature high pressure cells. Table. 2.1 summarizes the pressure 
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Figure 2.7: Resistance versus Pressure for Bismuth in a 112" High temperature cell 

calibration data. I t  is clear from Fig. 2.6 that the bismuth transition in the solid 

pressure transmitting medium is as sharp as in the truly hydrostatic medium (112" 

teflon cell). This provides direct evidence for the contention that close to  hydrostatic 

conditions can be achieved by making the distance between voltage leads smaller. 

The resistance variation of manganin wire with pressure was also measured up to 

30 kbars Using the established pressure coefficient of resistance for manganin, the 

ram pressures can be calibrated. This agrees very well with the pressures calculated 

using the 'fixed' point data. 

The problem of pressure calibration a t  high temperatures is fraught with serious 

problems. High temperature affects the pressure in a number of ways. 1) It tends 

to increase the pressure due to the restraint of thermal expansion of the heated 

parts of the cell by the surrounding cooler parts of the cell and the pressure cell. 

2) It  tends to decrease pressure when it causes phase transformation to  more dense 

structures to occur in the sample holder or its contents, and 3) i t  may decrease 

pressure by accelerating the relaxation of the tension in the high pressure chamber. 

It  is pretty difficult to estimate the net effect of these pressure modifying factors 

and further even temperature measurements a t  high pressures is not too straight 

forward in view of the modified calibration characteristics. Strong and Bundy [6] 

have considered this problem in depth and shown that Iron and Gold can be used as 
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pressure calibrants a t  high temperatures. The a - y (BCC --+ FCC) phase boundary 

in Iron has a good pressure sensitivity of about -4" C/kbar in the pressure region 

20-60 kbar. Further this transformation can be easily monitored by either electrical 

resistance or T E P  measurements. Since the a - y boundary has been accurately 

established due to  the painstaking efforts of several workers in this field, pressure 

calibration up to  800" C can be easily carried out. Table. 2.2 summarizes .the 

calibration data for our high pressure , obtained through a number of experiments 

on the a - y transition in Iron using both resistivity and TEP as tools. Chromel- 

Alumel thermocouple which has a small pressure calibration error [7] was used for 

temperature measurement in this work. 

Table 2.1: 
Description of the cell ,i 

1" Teflon cell 
1" High temperature cell 
112" Teflon cell 
112" High temperature cell 

AC Resistivity Technique 

Scale Factor to  convert line 
pressure to true pressure 
0.914 
0.796 
0.937 
0.817 

Table 2.2: 

The .4C resistivity technique used here has been described earlier in the literature. 

Only a brief description will be given below. 

Four leads are spot-welded a t  the ends of the sample, which is in the form of a 

thin foil, 20-40 microns in thickness. Two for passing a sinusoidal current through 

the sample and the other two for measuring the resultant voltage across the sample. 

Usually two more leads are required to measure the sample temperature. However 

a novel technique developed by V.Shubha and T.G.Ramesh [8] enables the sample 

temperature to be measured from these four leads only, without the necessity for 

Sale factor 

1.26 
1.10 

Temperature 
of transition 
690" C 
720" C 

True pressure 
of transition 
26.8 kbar 
25.6 kbar 

Observed 
pressure 
34kbar 
28 kbar 
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two extra leads. The standard technique which requires six leads to  be taken out 

from the high pressure cell of diameter less than 12 mm is quite difficult. 

The two wires attached a t  each end of the sample are actually Chromel-Alumel 

thermocouple wires. The AC current is passed through Chrome1 wires, while the 

voltage across the sample is measured using the Alumel wires. 

Fig. 2.8 gives the block diagram of the AC resistivity set-up. The system 

consists of a quadrature oscillator, a high output impedance AC constant current 

source and a lock-in amplifier coupled to a P C  using the IEEE 488.2 interface. The 

quadrature oscillator constructed out of two analog multipliers features two sine 

wave outputs a t  quadrature whose frequency can be varied from 10 Hz to  1 kHz. 

One of the sine wave outputs forms the reference signal for the lock-in amplifier. 

while the other output drives a constant current source. The design of the constant 

current source is centered around the wk.11 known Howland circuit. I t  would suffice 

here to  mention that  the current could be varied continuously from 0-50 mA and 

the high output impedance ( N  several megaohms) ensures that  the current through 

the metallic sample is constant( - 0.01%) irrespective of its impedance. The AC 
' voltage developed across the sample which is proportional to the sample resistance 

is measured with a lock-in amplifier. The frequency of the AC signal is chosen to 

be around 400 Hz to  minimize line frequency noise. The output voltage from the 

lock-in amplifier is accessed in the PC. 

Simultaneous measurement of temperature is achieved by measuring the DC 

component of the differential voltage developed across the current and voltage leads 

which are in close proximity. The contribution to the DC voltage from the small 

portion of the sample between these two leads is negligible by the law of intermediate 

metals. A low pass active filter removes the AC component and the DC output forms 

the input to  a temperature linearizer. In this setup it is possible to  detect changes 

of resistivity of the order of 1 part in a 1000. 

2.5 TEP measuring system 

For measuring the T E P  , the sample is placed along the axis of the cell described 

earlier. The arrangement of the sample in the cell is identical to  the cell arrangement 

for the resistivity studies, except for the fact that the sample is placed vertically in 

order to  take advantage of the natural temperature gradient which exists in the 

furnace. The entire T E P  system is shown in Fig.2.9. The design of the T E P  

measuring system is centered round the temperature controller. 
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The temperature control is implemented using a PID algorithm integrated into 

the software. The D/A (16 bit) of a DSP lock-in amplifier (SRS 830) was used for 

this purpose. The output of the D/A is fed to the power amplifier which supplies 

the requisite power to the heater. 

An important requisite for T E P  measurement is the control of the temperature 

gradient. The control of the temperature gradient is such that,  while the mean 

temperature T is held constant, the magnitude of the temperature difference AT 
across the ends of the sample can be altered a t  will. 

To calculate the thermo-emf ,S, of the sample, the voltages VchT-sam-chT and 

VAlu-sam-Alu were measured using a Keithley digital multimeter (DMM). The DMICI 

(model 2001) was interfaced to  a personal computer using IEEE 488.2 interface card. 

The programmes for the interfacing were written in the VIEWDAC environment 

supplied by Keithley. The VIEWDAC environment allows for real-time plotting of 

the data. 

The absolute TEP, S , of the sample , in the differential mode of measurement 

,is given by [9], 

Where Schr and Schr-alu are the absolute thermopower of Chromel and the 

thermopower of the Chromel-Alumel thermocouples respectively. VchT-sam-chr and 

Valu-sam-alu are the differential voltages developed across the thermocouples formed 

out of the reference probes and the specimen, when a small temperature difference 

is maintained across the length of the sample. In order t o  evaluate S as a function 

of temperature, it is necessary to simulate the temperature dependence of both SchT 

and Schr-alu. 

Since T E P  in the differential mode of measurement is related to  the limiting 

value of the quantity in the square bracket in the expression for S as A T  -+ 0, the 

system should have the provision to evaluate this quantity for different A T  holding 

the mean temperature T constant. These requirements have been met by employing 

two separate controllers for the variables T and AT. 

The non-linear variations with temperature of the physical quantities like the 

absolute T E P  of Chromel (Schr) and the relative T E P  of Chromel-Alumel thermo- 

couple (SchT-alu) are simulated by employing a sixth-order polynomial curve fit 
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Where b,.. . .b6 and c,. . .. .c6 are constants. These constants can be evaluated from 

computer fit of the NBS data [lo]. 

An algorithm based on the above expressions forms the basis for simulating SchT 

and Schr-alu- 

In order to  obtain a higher precision in the fit, the temperature range was 

divided into two blocks namely 0"-200" C and 200" - 1000" C. The fitting error for 

SchT-alu in the two ranges are &O.O04"pV/" C and *O.O3pV/O C. 

For Schr the fitting errors are f O.OO1pVIO C and &O.lpV/" C on the two ranges. 

The overall accuracy of TEP measurement is - 0.5% and the resolution is 

around *O.OlpV/" C. 
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