CHAPTER III
COMPARISON OF THE DYNAMICAL THEORY AND THE
RGOROUS ELECTROMAGNETIC THEORY OF LIGHT
PROPAGATION ALONG THE HELICAL AXIS OF A CHOLESTERIOC
LIQUID CRYSTAL

1. Introduction

\'¢ have so far considered the optical
properties of a cholesterie liquid erystal of
pitch much larger than the wavelength of light.
| n this Chapter and i n the following one we shall
be conaerned with the situation in whioh the
piteh is comparable to the wavelength of |ight.
It isinthie region that a cholesterie exhibits
some Of its distinctive properties. In a plane
textured cholesterio, fCr normal !necidence,
eircularly polarised light having handedness
name a8 that of the helix undergoes selective
reflection over a small rezisn Of the apectrum.
The sense of the reflected light remains the
same as that of the incident light. Along the
helix the medium has an optical. rotation of the
order of thousands of degree per mm. and the
rotation shows an anomaly i n the neighbourhood



of the reflection band. Also, at the refleotion

band the medium exhibits circular dichroism.

The general eleotromagnetic theory of
light propagation along the optic axis of a
cholesteric wes formulated by Mauguin (1911),
Oseen (1933) and de Vries (1951). Exaoct solutions
based on the spiralling dielectric ellipsoid
model have been worked out. This theory haa
sinoe been presented i n various forms by other
authors (Joly 1972, Aihara and Inaba 1971,
Marathay 1971), the most recent treatment being
that derived by Kats (1971) and independently by
Nityananda (1973). Though these rigorous treat~
ments are valid for any arbitrary thickness of
the sample and for the entire range of wavelengthe,
calculations for any practical situation are
rather tedious and require the use of a oomputer.
An extremely elegant approach to this problem
which leads to simple analytical expressions for
the reflection coefficient, rotatory power and
circular dichroism wasg proposed by Chandraeekhar
and Srinivasa Bao (1968), based on an analogy
with Darwin's dynamical theory of X-ray diffraction



(1914, 1922). It is the aim of this Chapter to
present this theory i n complete detail (avoiding
certain inconsistencies that were present i n the
original formulation) and to compare its
predictions with those of the exact electromagnetic
treatment. Theoretical curves will be presented
for the reflection coefficient, anomalous rotatory
power, etc. for thick and thin samples ard it will
be shown that the simple dynamiecal approach i s
sufficient for most practical problems.

2. Dynamical theory of cholesteric liquid crystals

It has been shown i n Chapter 1 that when

BY t (iee., ELE (1), the cholesteric 1iquia

crystal can be considered as a pure rotator. I N
suoh a case, right and |eft eireuwlar vibrations
travel without change of form but at slightly
different velocities. ¥ow, in a pure rotator which
rotates linearly polarised light through an angle

a per unit thickness, the right- axd left-circularly
polarised waves undergo phase changes Of P, +a

and ¢, — a respectively, where



g and py are the refractive indioes for
right and left; circularly polarised wave i n the
medium.

(a) Kinematical theory of reflection

In this approximation one ignores multiple
reflections from the layers. Let the principal
axes of the first layer be along 0X, OX Of  a
Cartesian ooordinate system and let; the structure
be right handed, i.e., B is positive. Right
circularly pelarised light given by B = E]_
referred to OX, 0% is incident; along L The
incident light vector is resolved along the
principal axes of the () + 'i)th layer which are
inolined at an angle (V¢ 1) Wwth respect to OX
0¥.  The resolved oomponents are

= exp[1{(V + 1) - g, 4 }]

2% uR(')D + 1)p
A

where P41



th g

At the boundary between (7 + 1)
(¥ + 2)th layers, the { vibration emerges from
a medium of refractive index Wy and n vibration
from a medium oOf refractive index Boo It T;'
and n' refer to the principal axes of the
(v + 2)® layer, then the refleoted components

are

U= B2 Daxp[a{(v+ 18 -9,,,}]

= -dq |explif(V+ 1B - g4} ]
-1

where lql = ﬁﬁ%ﬁ is the reflectlion coefficient

o one layer. Since § = g%]? (b ~ 10 K
P ~ 5000 3) IS small, 8in g =~ B « Onreflection
there oecurs a slight ellipticity in the beam which

I S neglected.

Transforming back to OX, OX the reflected

wave on reaching the surfaoe of the liquid crystal



will be

- —

= - iq exp[1 i(29+ 3)8 - 2%“ }]
Y -1

which represents a right circular vibration
travelling i n the negative direction of 0Z. ZThe
phase difference between this wave and that
reflected at the boundary between first an8
second layer is [2(vp ~ ¢,)].

When A= | the phase
2rp b
(p_l o= 7~£»’-- = -2%‘- > B
and
9y = VP .

Henoe the phase factor exp[2i(yp ~ cp,},)]

becomes unity irrespective of the value of ¥V |
and there results a strong interferenoe maximum.
O the other hand, for a left-handed structure,

B is negative and (¥ ~ @;) # 0 when A = P .



Therefore the waves from the different layers
will not be i n phaee and reeultsin total
transmission. ‘Thus when the wavelength of

light in the medium is equal to the pitch of

the sample, reflection of one of the eircular
component whieh hos the same sense as that of
the helix takes place and contrary to reflection
from a dielectric medium, the reflected wave
has the same sense Of eircular polarisation as
that of the incident wave.

| N the kinematical approximation the
reflection ooeffioient per turn of the helix

e

~1Q = =-4ng = - ix = (2)

b) Dynamical theory of refleotion

S far only one refleotion from eaoh
layer has been considered and secondary reflections
have been neglected. In the kinematical



approximation considered above, multiple
reflections from the repetitive units consti-

tuting the structure hare been ignored, but
the complete solution of the problem has
to take this into acoount. This is the
essence of the dynamical theory.

Bor thie purpose, | et us regard the
liquid orystal as consisting of a set of parallel
planes spaced P apart. Each plane therefore
replaces the 'n' birefringent layers per turn
of the helix of piten P. Let the reflection
coefficient per plane be ~1q for right
circular light at norma incidence. Assuming
the kinematical approximation for the n layers,
Q is given by (2).

Let 2, and 8, be the complex amplitudes
of the primary and refleoted waves st a point
just above the r*® plane, the topmest plane
being designated by the serial number zero
(Pigure 1). Neglecting absorption, the difference
equation may be written as



Tr Sr
| |
TI’+I| Asf"'l

Zhaure 1s Heflectiones from a set of rarallsl
plenes spooced abt a dletance P apart. s: and
Sp Pepresent the ocomplex amplitudes of bhe
primy and reflsoted waves reopectively at
& point jJust above the rh plenc.



Yo
-,

8, = =-iQr, + exp(~i9)s, , (3)

Tpet = ©3p(- 19)T, - 1Q exp(-21p)S, , (4)

28 py, P
where 9 = -——}\-E-— = The reflection

coefficient here IS taken to be the same oOn

both sides of the plane. Replaeing r by (r ™ 1)
in (3) and (4), substituting and simplifying, it

leads to
Tr+1 + mr~1 = X Tr (3)
Sevt * Speg = Y5 (6)
where

Y = exp(ip) + exp(~ip) + Qze;tp(—isp) (1)

Supposing the film to consist of m planes and if

8, = 0, then from (6)

S

n=2 = Y §

Sm'-?: = 150



S

and

g = [y ,.i%;gl il

0

+ (E"i‘..%gw Im“5 - e ']sm-’i

= 1,(Ns,_, (say) (e)

Similarly from (4), (5) and (7)
m-1 = exp(i¢)Tm

Twm2 = [y exp(ig) - 1]T

Tm~3 = [(Yz - 1)axp(i¢)wy]mm, eta.
and
Ty = [f,(¥)exp(ig) - £, (¥, (9)

Since from (3),

Spe1 = —AQ I, = - 4Q exp(iw)wm .

the ratio of the reflected to incident amplitude is



S, - 1Q £,(y) exp(iy)
= = (10)
o fa(y)exp(ip) - £ _,(¥)

A relation in the form trm_qI = x‘.’Er is assumed

80 that x satisfies

= y = exp(i9) + exp(-ig) + Q?exp(-i¢) (10")

4
+
B e

The reflection condition iSugP =), o g = 2x.

Accordingly one may writa

21 A
¢ a ..--—;—2 o po + £ ’
where
2 -
. A= N, ’
A

which ie a small quantity i n the neighbourhood of
the reflection band. Therefore,

= exp(ie) + exp(~ie) + Q2exp(-1t-:) (11)

=] QS

x +

This suggests that in the neighbourhood oOf the



refleotion band one may put

x = exp(-%)exp(-ip ) = exp(-%) (12)

where % is smal)l and may be complex. Fram {(11)
and (12)

5 = i(Qz'ez)i-

kWhen
¥y = e x%) + exp(~%) = 2c08h § ,

the series in (8) i s given by

£ (5) sinh m % (13)
Y sinh % 3

Substituting in (10) and simplifying

2 = - (14)
Tc ice + % coth m %
or
2
2
I R e (15)
o £ +5° coth”“ m %




Fan (9) and (13)

=1

Iy . ) . sinh m} _sinh (m-1)%
ﬁ; exp(ic) siont sinhﬁg
. % ooeeuh m % e
ie +§coth m¥%
Thue
FRETA,
EAE \T\ -

S Q
0
- (17)
-T_o e + 4%
When -Q (e {Q, i s real
2
S
R = |g2 =
2|

The reflection is total within this range. The

epectral width of the total refleution AA = QE)-‘-
~ Qg
4

agreement with the de Vries theory (1951).

. Using (2) one gets Ax=Pap, in



¢) The anomalous rotatory dispersion

If multiple reflections are neglected,
the optical rotation per pitch » of the liquid

crystal is %(?R = rpL) and the rotatory power
is given by {1). Near the region of refleotion,

the right ciroular component suffers anomalous
phase retardation and under certain circumstances
attenuation as it travels through the mediunm.
Left ciroular light on the other hand exhibits
normal behaviour throughout and as a consequence
the rotatory disperaion i s anomaous around the

refleotion region.

Thick specimen:
From (10') and (12)

where
x = exp(~%) exp(-1g,)

€ = 4 (Qz-ea)i



Inside the totally reflecting range, %
is real and therefore the medium becomes highly
eircularly diochroie. |If very thin films are
employed, the emergent light is elliptically
polarised. It is readily seen that the
ellipticity *' preduced per thickness P is

given by
tan’X = - emwl=%) tanh /2
1 + exp(-%)
or
Kowy 5/2

The azimuth of magor axis of the ellipee after

passing through a thickness ? is

Rl A= A,)
© = Fog-ep) = B lag-wy) + ——%

x)

.2 w( X -
2 —%g——+ >\

Here Y = M—(ﬁé_&l

renil Therefore the rotatory power

¢ x( 4 p2)P 5 A= Ag)

= - —'—-—-—2-""—- o+ (18
4N P A ‘




which i s valid within the range
(hg = ¥2x) X < (A + V2n)

Outside the totally reflecting range
E = 1(e® - Qz)é'. and may be positive or negative

depending on whether ¢ is positive or negative.

Therefore,
11 (o2 _ o243
““‘5[(5‘0) ""PO"PI,]
2 2 %
n - -
= - EBI— - %[1 (1 '3?) ] *
Hence the rotatory power

A(sw)%e (A= D) M”J
E ew - 1"' 19
e o7t T 1= f‘g) (19)

[Here we follow the aign convention that a clock=-
wise rotation as seen by an observer looking in

the direction of propagation of light to be positive.
This is opposite to the sign convention followed
usually i n experiments where a clockwise rotation

as seen by an observer looking at the source is

taken to be positive.]



Thin film

For a thin £ilm the phase of the right
circular wave after passing through 'm' planes
can be evaluated from (16)

T
'ff."ﬂ = A exp[-im(p  +V)] (20)
o

where

€
t = 21
an ey £ cothmg (21)

The optical rotation for thickness P is
%(rpo +Y -9y) = -%[(@R - g) + b - )]
and the rotatory power

2 - -—
®( Ap)°P . (4 - €) (22)

? E -4 - "
45° 2P

Ore can see that the dynamical theory
explains all the optieal properties (within and
i n the neighbourhood of ) o) of a plane texture
cholesteric liquid crystal. This theory is elegant



and leads to simple formulae for optical rotatory
power, intensity of the reflected wave, intensity
of the transmitted wave in the case of thin as
well as semi-infinite eholesteriec samples. A
brief review of the exact elsciromagnetie theory
ag treated by Nityananda (1973) is presented below
and then the dynamical theory iS compared with it.

3. Exaet electromagnetic theory

This IS based On Ogeen's (1911) model
wherein the 1iguid erystal i S treated a8 conti-
naously twisted anisotropic dielectrie. Locally
this can be desoxribed by a dielectric tensor with
principal axes ea ad ob and principal values ¢,
and g, . 48 one moves along the z-axis (say), oa
and db rotate i n the x-y plans through an angle
4%Z. The pitch P is the aistance along the Z-axis
corresponding to a rotation of 2%, se¢ that: P = 2u/q0.

The wave equation for light propagation along
the Z-axis ocan be derived from Maxwell's equations
and it is of the form

o
n
1]

2
'-;'"5” [w..&;-‘\ﬁj (23)

QU
=]
L



[Rere a parsmeter with a bar represents a
veotor and that with & tilde represents a
tensor.]

where £ 1ies i n the XX plane and it i s assumed
to have a time dependence exp(-iwt).

T is atensor and is given by

i, —

Trensforming it %e¢ oab axes, which is rotated
through an zngle q,2 with respect to OXY,

-

( € + B oos ZQOZ B ain 2%3

(24)
B sin 29,2 e - B cos 2q,%
where . . €a + & .

B = ""—‘g‘""‘a ' = %(ua )y = uy)



Here wg» ¥y Ore tho principal refractive
indices i N the X-Y plane (u° = ¢ u2 =g )
_ refrac:tiga i.ng‘i&‘ at "%

p is the average/and op iS the birefringence.
Let ue introduce tWO NEw variables E, and E,

defined by
(E. + {E )
E w
! (2)f ’

(

E, - 1E,) J
E » » 25
2 "‘"‘T‘x“(z) (25)

Ore oan see the phyaiaal significance of E, by
putting Z, » 0. Then E, = i’Ey, i.0., E_ lags
E, by $0° in phase with the exp™"% convention
for time dependence. Therefore E» with B, = 0,
represanta right eircular wave for propagation
glong +%2. Thia wae is referred re 'i' wave
Similarly with E, = 0, EQ represents left
ciroular wave fOr propagatiom along ~Z. This is

referred re '2' wae

Substituting equation (25) in (23) gives



—

¥8,/52° ¢ Bexp(12q,3) E,

B
'
%o

V2B /2T Bexp(-12¢,2) e E,

oes(26)

Kere it is not possible to remove the space
dependence by assuming a variation of the form
e %% for B since s also depends on z, However,

ikz  4) one

using a trial solution of the type (e
can show that the effect of the dependence of ‘e
on Z is to convert a wave of the '1' polarisation
into '2' with & shift of wave vector down by 2g.
Similarly using a trial solution of the type

(o, eik’*) one finds that it converts a '2' wave
into *1' wave with an upward shift of the wave
vector by 2q . Thus It is obvious that a

superposition of the type
La expii(k + qo}z'} , b exp{i(k - qo)zﬂ (27)

IS closed in the sense that each of the waves

appearing init i s converted into the other, and
can therefore satisfy (26) with proper choice Of



» SN

aand b. The mixing of the two wave vectors
differing by 2q, is a oonsequenoe of Bragg
reflectlon. Substituting (27) into (26) gives

c [+
= 0 (28)
w2 2 2
AN S IR

Here the condition to find We ratio a/m is given

by
2 _ .2 2 _ 227 _ a24
[(x + qo) Km][(k - q,) Km] BK 0 (29)
where K = w/e is the wave veector in free space
and X = E%w/c is the wave vector corresponding to

frequency W i N a medium of dielectric constant ¢.

(29) is a guadratic equation in K2 having roots
2, 2 22 2 442 (30)
Ky ky, = [KD + qg & (4KZqS + BK")¥]

The value of a/b ocorresponding to each of these
can be obtained from (28)



& 51

Equations (30) and (31) completely determine the
exaot solutions of equation (23).

The solutions are interpreted physically
i n the following way.

W B = 0, then the wave vectors of '1!
wave and '2' wave reduses to X, and hence the two
eircular waves travel with the same velooity in
the medium. When B # 0, from (30), k1.2 and
K, * 4, differ by quantities of the order of B,
Fom (31), one gets for the k, solution
a/b ~ Bz/B ~ B and for k, solution, b/a . B,
Thus they are no longer pure oiraular waves, still
one oan continue to refer the x, solution as *'1*
dominant (u1) and k, solution & '2' dominant (“2)'
Each normal wave consiets of a combination of the
two ecirecularly polariaed light with one dominating

over the other and differing i n wave vector by
2q0.

Therefore equations (27), (30) ad (31) can



be written aa

wy = [exp(iK.,Z). d exp {i(ﬁ - 2%)2}]

U, [ £ exp{i(Kz + ZQO)Z"\ , exp(ixzz)] (32)

where the wave vectors of the dominant components

are

2 3. %
K.1 = k1 t 4, =4, ¢+ [Km+q§-(4xiq§+321€4)%]

¥
X, = k,-q, =-q,+ [Kegfr(ax2emiet)?]
ees (33)
and
2 2 2 2
KY - K K, ~
T A )

The dominantly right eireular and dominantly left
circular waves travel with different wave vectors

and result i n optical rotation.

The optical rotation per unit length is



6y

¥ - = ,
f = L2 . % lj i + qg - (4K§q§ + BZK4)ﬂ%
- ixﬁ + q§ + (4K§q§ + BZK"J'&F + 2q0}

..+ (35)

The expreesions (32}, {33), (34) and (35)
are exaot and explain total reflection as well as
anomalous rotatory dispersion in a spiral dielectric
medium Of semi-infinite thickness. The rigorous
electromagnetic theory has been extended to finite
thickness by Nityananda and Kini (1973). For
finite thickness the theory leads to complicated
oet of formulae and it is very difficult to
extract measurable parameters.

4. Comparison Of the dynamical theory with the

electromagnetic theory

To oompare the dynamical theory with the
exaot theory quantitatively, one requires calcu-
lations of the valuers of important optical
parameters, viz., (a) refleotion coefficient R,
(b) the wave vectors X, and X, and (c) rotatory



powser € as functions of wavelength both for
samples Of finite and semi-infinite thioknese.

The parameters chosen fOr the salculation are

p =15 4Ap = 007 and P = 0.3333 ym. The
caleculations were made on an IBM~%60 computer

using Fortran IV language. Figure 2 shows R as

a function of wavelength. The semi~infinite sample
gives the wdl.-known fl at topped esurve of the
dynanical theory, while the thin sample gives a
principal madimum accompanied by subsidiary fringes,
which have been observed experimentally (Dreher,
Meler and Saupe 1971, Chandrasekhar and Prasad
1971). More recently, on the basis of dynamical
theory, Mazkedian et gl. (1976) have reinterpreted
these fringes i N analogy with '"Pendelld%sung fringes?
that oceur in X-ray refleation by perfeet crystals.
Figure 2 also presents the walues computed from
the exact theory of Nityananda. |Nn the exaot
theory, the external isotropie medium (external

to the eholesteric specimen) IS assumed to have a
refractive index of 1.5, so that the contribution
of the ordinary PFresnel reflection coefficient at
the cholerterie/isotropic interface is eliminated.

Figure 3 gives the wave vectors Ko and Ky (fie.,



Figure 2: Reflection coefficient R vexrsus
wavelength A in the non-absorbing
case: (a) semi-infinite medium,

(b) film of thickness 25 P. Curves
are derived from the dynamical theoxry;
circles represent values computed

from the exact theory.
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phase retardation per pitch) of the norma waves as
functions of wavelength in the semi-infinite mediunm.
It also gives the values computed from the exact
theory. |n Pigure 4, the optical rotatory power ¢

I n the semi-infinite and finite samples caloulated
from the dynamieal theory and exaet theory are
presented. (I an grateful to R. Nityananda and UD.
Kini for providing numerical resulte oomputed from
the exact theory.) As in the long pitoh regime (see
Chapter |, Figure 3), the rotatory power is again a
function of the thickness of the sample. This has
been confirmed experimentally (Martin & cano 1974)
(see Figure 5).

Ore can see that the results obtained from the
dynamical mode are in conformity with those from the
detailed electromagnetic theory. However, the simple
dynamical appreach presented here has certain limitations
viz., (1) it is developed for small c and therefore
does not hold good for wavelengths far away from the
reflection band, (2) it is strictly valid for integral
values of the pitch, (3) it fails when the £ilm
thickness is very small (or when the extinetion length
is of the order of pitch) as the assumption that the

normal waves are circularly polarised is than
no longer justified. These limitations can be

removed by including the effect of multiple
reflections within the n layers per turn of the
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Figure 4: Rotatory power § versus A in the non-absorbing
casey (a) semi-infinite medium, (b) £ilm Of thiockness

25 P. Curves are derived from tho dynamical theory;
oircles represent values computed from tho exact theory.
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Figure St Optical rotatory dispersion in cholesteryl
benzoate containing 50 per cent by weight
p-agoxyanisole for various sample thicknesses:
(I) 1.7 pm, (IX) 4 pm end (III} 7 pm.
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helix, which has been neglected i n the discussion.
The simple difference equations then become

matrix differenoe equations and the resulting
solutions can be shown t 0 be fully equivalent

to those of the rigorous treatment. However, the
calculations presented earlier indicate that this
more elaborate formulation of the theory i s
probably not neoessary for most practical problems.
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