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§ 1. INTRODUCTION

Two -beams in different states of polarisation are said to be incoherent when
they cannot be made to interfere even after being resolved into the same state
of vibration by the use of an analyser. Thus, if unpolarised light be incident
on a transparent wedge of quartz the fact that the two oppositely polarised
beams into which it is split are incoherent is experimentally demonstrated
by the complete absence of interference effects using an analyser alone.
Similarly we can speak of two polarised beams as being completely coherent
only when, by the use of a suitable analyser, interference effects of maximum
clarity can be produced—the interference minimum having zero intensity.

As was remarked in Part I (Pancharatnam, 1956) if 2an extended source
of light be viewed through a plate of an absorbing biaxial crystal cut normal
to an optic axis, faint interference rings can be seen by the use of an analyser
alone behind the crystal plate—even with the incident light unpolarised.
It follows that when a pencil of unpolarised light falls on such a medium, the
two non-orthogonally polarised pencils into which it is split must be regarded
as partially coherent—since they satisfy neither the test for incoherence
nor that for coherence, given in the previous paragraph. Hence, a discus-
sion of the interference phenomena presented with an analyser alone involves
really the analysis of the interference of two partially coherent beams which
are resolved to the same state of elliptic vibration by the use of an analyser
(§ 4). Even when both polariser and analyser are absent, rudimentary traces
of an interference pattern may be seen. This requires the analysis of the
following problems: the direct interference of two partially coherent beams
in different states of polarisation (§ 6); the composition of two such partially
coherent beams to form a partially polarised beam—at the second face of the
crystal (§6); and the converse process—occurring at the first face of the
plate—of decomposing unpolarised light (or, more generally, incompletely
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polarised light) into two completely polarised vibrations which, we shall
find, are partially coherent (§ 7). In §8 we shall consider the addition of n
partially coherent beams which are all completely polarised.

We may mention that without resort to the use of absorbing biaxial
crystals, it is easily possible to produce two partially coherent polarised
beams. For example, we will have two such completely polarised and phy-
sically separate pencils of light emerging from a rhomb of calcite if we allow
a single narrow pencil of partially polarised light to fall on the first face.
The test of their partial coherence is as before the fact that even after being
resolved into the same state of vibration by the use of an analyser, their
interference is only partial—as may be seen in a conoscopic arrangement.
[Our study of such partially coherent beams in opposite states of polarisa-
tion (§ 5) has an interesting theoretical consequence: it reveals in a direct
manner the equivalence of the Poincaré and the Stokes representation of
an arbitrarily polarised light beam.]

The mutual interference characteristics of two incompletely coherent
polarised beams which have been derived by the splitting of an incomplete-
ly polarised beam can no doubt be described using only the extreme concepts
of coherence and incoherence. For example, at the end of § 7 we shall show
that when unpolarised light is split into two non-orthogonally polarised
elliptic vibrations, the partially coherent components obtained will behave
as if a certain independent fraction f of the intensity of one beam were com-
pletely coherent with the whole of the second beam—having a definite phase
advance over it; this result is obtained by regarding the original unpolarised
beam as the sum of two incoherent beams in specific orthogonally polarised
states. Similarly, if we consider the example of partial coherence quoted
in' the previous paragraph, the partially polarised pencil (falling on the
calcite rhomb) may be regarded as composed of a polarised and an unpolar-
ised portion which are incoherent: the calcite splits the former into two
coherent and the latter into two incoherent orthogonal vibrations. Thus,
the two orthogonally polarised pencils emerging from the calcite will behave
as if an independent fraction f; of one pencil were completely coherent with
an independent fraction f, of the second (having a definite phase advance
over it), the remaining fractions being incoherent with one another. An
unsatisfactory feature of such methods of analysis is that the result depends
essentially on regarding the given incompletely polarised beam as the sum
of two other incoherent beams (whose decomposition characteristics -are
known in terms of the ideas of coherence and incoherence alone). For
example, we would have arrived at a completely different picture of the state
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of affairs existing between the partially coherent pencils emerging from the
calcite thomb, -if we had regarded the incident partially polarised beam as
the sum of two incoherent orthogonally polarised pencils of different inten-
sity. A second unsatisfactory feature is that though we may be sure that
these different pictures of the same state of affairs must lead to identical
results, the reason why in fact they do so—i.e., the invariant character under-
lying these and other possible representations of two partially coherent beams
—becomes veiled in obscurity.

In order to effect a deeper analysis of the problem it becomes necessary
to have (a) a method of defining directly the state of partial polarisation of
any beam—without having to regard it as the sum of two other beams;
and (b) a method of defining directly the mutual parameters (the degree
of coherence and the effective phase difference) which will determine the
consequence of the superposition of any two polarised beams—without
having to regard each beam as the sum of several independent fractions.
These two problems will accordingly be discussed in the two subsequent
articles.

§2. THE REPRESENTATION OF PARTIALLY POLARISED LIGHT

Since, as has already been remarked, the addition of two partially
coherent beams in different states of elliptic polarisation results in a beam
which is necessarily incompletely polarised, we shall in this section digress
on a method of extending the Poincaré method so that it may also be used
to represent the state of a partially polarised beam. This extension (and its
relation to the representation introduced by Stokes) has already been indi-
cated by Fano (1949) and discussed in more detail by Ramachandran (1952)
—but we shall introduce it in a somewhat different fashion which is more
suited to our present requirement. The present section also constitutes in
itself a presentation of the subject of the Stokes parameters of partially
polarised radiation by a new procedure—through the Poincaré represen-

tation itself. The conventional presentation of the subject of Stokes para-
meters may be found in Chandrasekhar (1949) and Rayleigh (1902).

Hitherto (see Fig. 1) we have represented the state of polarisation of

an elliptic vibration by a corresponding point P on a Poincaré sphere of unit

" radius whose centre is O. (The longitude 2A gives the azimuth A of the
major axis, and the latitude 2w gives the ellipticity tan w.,) Instead, if we

draw in the direction OP a vector s whose length s is made equal to the

intensity i/ of the elliptic vibration, then this vector represents not only the

state of polarisation but also the intensity of the elliptic vibration, We
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shall refer to s as the ° Stokes vector’ defining the ideal elliptic vibration -
(see next paragraph).

We shall now describe in an explicit manner the picture—assumed
implicitly in the usual presentation of Stokes parameters—of the vibration
in an actual beam of sensibly monochromatic radiation. It is known that
the existence of incompletely polarised beams and of beams not coherent
with one another can be reconciled with the wave theory of light when the

extremely short period of light vibrations is taken into account. The
phenomena depending on the interference of light merely show that for a
duration very long compared with the period of the light wave, the vibration
of the light cannot depart sensibly from an ideal periodic vibration de-
scribed in two dimensions—i.e., an elliptic vibration constant in form, in-
tensity and absolute phase. During this interval the vibration can be charac-
terised by a definite temporary ‘ Stokes vector’ s. In a light beam of the
most general type we can conceive, with constant macroscopic properties,
the vector s which specifies the temporary intensity and polarisation may yet
fluctuate millions of times a second. The optical characteristics of the beam
observed in usual experiments depend only on certain average quantities.
These, we find, are the intensity I (which is the average of the temporary
intensity i) and a vector S which is the average of the temporary ¢ Stokes
vector’ s. Thus

I=Ci%8=Cs> (1)

where the bent brackets denote * the average value of . The vector S may be
called the three-component part of the Stokes vector of the actual light beam,
but we shall merely refer to it as the Stokes vector. The Stokes vector may be
“spetified by its components with respect to any co-ordinate system with origin
at the centre of the sphere. In the particular case when we choose a right-
handed co-ordinate system OX,Y,Z, with the X,Y, plane coinciding with the
equatorial plane, the components of S will be denoted by Q, U, V. The
. four quantities I, Q, U, V will be called the Stokes parameters of the beam
(with reference to co-ordinate axes on the wave-front of the beam given by
X, and X,). In presenting the subject in this fashion we are anticipating the
fact (to be proved in § 5) that the parameters defined in this geometrical
manner in the Poincaré representation are identical with those introduced
by Stokes analytically in an entirely different manner.

In the special case of a completely polarised beam there are no fluctua-
tions in the temporary polarisation but only in the temporary intensity i;
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hence the temporary Stokes vector s does not fluctuate in direction but only
in its length i. In this case we have obviously I = S, or

I=Q*+ U2+ V? 2 a)

When there are also fluctuations in the temporary polarisation (i.e., in
the direction of s) the beam is partially polarised (or, in special cases, un-
polarised). In such cases the specification of the intensity I in addition to
the Stokes vector S is no longer redundant. 1If f; denotes the fraction of the
time for which the vibration is in the state s; then the Stokes vector S is by
definition the sum» of the vectors fjs;. Now it is an obvious geometrical
fact that the resultant of a number of vectors not all in the same line must
have a length S which is less than the sum of the lengths fi; of the individual
vectors. Hence for any beam not completely polarised, 1 > S or

I>Q%+ U4 V2 b

One may compare the simplicity of the above proof with that used in the
usual treatment of Stokes parameters (Chandrasekhar, Rayleigh, loc. cit.).

‘We shall now show that I and S together completely determine the
appearance presented when the beam is passed through any transparent
double refracting crystal followed by a linear analyser—i.e., when the beam
is passed through any elliptic analyser which transmits completely light of
some particular polarisation C (see Part I, § 8). The state of polarisation
transmitted by the analyser, instead of being specified by the point C on the
Poincare sphere may equally well be specified by a unit vector C drawn from
the centre of the sphere to the point C. The C-component of the beam will
then have a temporary intensity iz which, according to a fundamental pro-
perty of the Poincaré sphere, is equal to i cos? 4 6, where 6 is the angle between
C and s(see Part I, §2). Since i = s, we have

ic=%@{+C-s)

where s is the temporary Stokes vector of length equal to the temporary
intensity i of the beam. The intensity transmitted by an analyser C

is obtained by averaging as:

I.=30+C.S) 3)
and is hence determined by I and S. This expression will also be of use
later.

For unpolarised light we should expect [from our definition of the
Stokes vector in (1)] that the Stokes vector should become a zero vector
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coinciding with the centre of the sphere. From (3) we see that this is
necessarily so since unpolarised light has the property that any elliptic
analyser C transmits always half the intensity of the beam. (See also
Hurwitz, 1945.)

One of the most important properties of the Stokes parameters is the
following. When a number of incoherent beams are mixed, the Stokes vector
S of the resultant beam is the vectorial sum of the individual Stokes vectors S;
of the separate beams (the intensity I of the resultant beam being naturally
the sum of the individual intensities I;). This readily follows from the fact
that the total intensity I transmitted by any analyser should be the sum of
the transmitted portions of the separate beams—this being the experimental
test of their incoherence. Or,

Io =32 + C.ZS;)

Since I is also given by (3) the required result is obtained. We may also
express the result by the statement that when a number of incoherent beams
are combined, each Stokes parameter of the resultant beam is the sum of the
corresponding Stokes parameters of the individual beams.

A particular consequence of the above result is that any partially
polarised beam (I, S) may be looked upon as an incoherent combination of
a completely polarised beam (S, S) and an unpolarised beam (I-S, O). This
gives a second physical interpretation of the Stokes vector S of a partially
polarised beam: it is a vector whose length is equal to the intensity of the
polarised portion of the beam, and whose orientation (i.e., point of intersection
with the Poincare sphere) gives the state of polarisation of this polarised
portion.

‘We shall not require any further properties of the Stokes representation
than have been derived above.

§3. THE DEGREE OF COHERENCE AND THE EFFECTIVE PHASE
DIFFERENCE BETWEEN TwO POLARISED BEAMS

We have already noted that in any beam which (for practical purposes)
is completely polarised and monochromatic, the form of the elliptic vibration
remains constant in time but the temporary intensity fluctuates. In order to
explain the fact that it is possible for two polarised beams to be completely
incoherent with one another, we must also add that the absolute phase of
the elliptic vibration though remaining sensibly constant over successive
durations very long compared with the period of light, also fluctuates very
rapidly from a macroscopic standpoint (Stokes, 1852). Thus, any two beams



404 . : S. PANCHARATNAM

of polarisation A and B travelling along the same direction may be charac-
terised -not only by temporary intensities i, and-i,; but also by the temporary
phase:advance' 8; which the vibration in one beam A has over that in the
other. The phase difference between two ideal elliptic vibrations not in the
same state of polarisation has already been defined in Part I, §§ 3 and 7. (The
two vibrations are said to have zero phase difference, when the state of
polarisation C obtained by their composition is represented by a point which
lies on the great circular arc joining the points representing the states A and B
on the Poincare sphere ; for oppositely polarised vibrations a special arc AYB
is chosen as the great circular arc of zero phase.)

‘We shall find that the observable characteristics (I, S) of the beam
obtained on compounding the two beams depend on the following average
quantities correlating the fluctuations in the two beams. These may be called
the effective phase advance 8 of one beam A over the other, and their mutual
degree of coherence y (defined to be a positive quantity). These are defined—
in the same manner as is done in ordinary diffraction theory (Zernike, 1938),
where a scalar wave theory of light is used—by the relation:

Vi 8y = VI T,y et @
Qhere ‘the sharp brackets are used to indicate the average value.

The above relation (in which i represents v/ —1) is equivalent to the two
relations

2 /I T,y cos 8 = 2 4/iji, cos 8 > = U, say, (%)

2 VLI, y sin 8 = 2{+/ijj; sin &) = V', say, ©)
so that
1 11738 L V’2
7-—+2—\‘/—-ﬁ—1’ VUi + V72
v )
tan 8 =
UI

From (4) we see that 8 has the properties of a phase difference: if the
instantaneous phase difference is altered by a constant amount, the effective
phase difference alters by the same value; while, if the instantaneous
intensities are respectively multiplied by constant factors, the effective phase
difference is unaltered.

Regarding the degree of coherence y (defined to be a positive quantity)
it may be shown that it lies between the limits zero and unity. The proof is
given in Linfoot (1955); it may also be obtained by representing the
momentary * mutual intensity ’ v 1}_1, exp id; as a vector in an Argand diagram,
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applying the argument used in proving (24), and using the inequality
VLI, = { /i, >. The beams will be said to be coherent when y =1,
which occurs if there is complete correlation between the fluctuations in the
two beams—the temporary phase difference as well as the ratio of the tempo-
rary intensities being absolutely constant in time. On the other hand when
y = 0 the beams will be said to be incoherent.

Instead of y and &, we shall sometimes find it more convenient to use
the correlation parameters U’ and V’ defined in (5) and (6); or alternatively
a single complex quantity I,, which has been termed the mutual intensity
(Zernike, 1938).

‘ L= VLLyed =3 (U +iV)
§4. INTERFERENCE OF THE COMPONENTS OF TWO PARTIALLY
COHERENT BEAMS TRANSMITTED BY AN ANALYSER

It is possible to experimentally determine the degree of coherence y
and the effective phase difference & between two polarised beams of intensities
I, and I, in states of polarisation A and B respectively. This can be done
by observing the interference effects after resolving them to the same state of
vibration by the use of an elliptic analyser which transmits light of polarisa-
tion C. Representing the states of polarisation A, B and C by corresponding
points on the Poincaré sphere (see Part I, Fig. 1), the instantaneous intensity
ic transmitted by an analyser C can be expressed in terms of the sides g, b, ¢
of the spherical triangle ABC, and its area E. According to the results of
§ 8, VII of Part I of this paper, the instantaneous intensities of the resolved
components transmitted by the analyser will be i; cos®3b and i;cos®%a
respectively, their instantaneous phase difference being (8; — % E).

Hence

ic=i1c082% b + iycos® ¥ a + 24/iji,cos (8t — $ E)cos tacos 4 b
(It is to be remembered that this expression holds also in the limiting case
when A and B represent orthogonal states of polarisation—see Part I, § 8.)

The intensity I transmitted by the analyser C is obtained by taking the
average of the above expression using (4).

Io=1I;cos2%b + Izcos? % a -+ 2yyII,costacostbcos (3 —3E) (8)
This expression will be of much use later.

If we denote the intensities of the resolved components of the two beams
by I’ and I’ the above result may be written:

lo = I+ I + 2yvITy cos (3 — 3 ) ®
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The interference effects will be most pronounced when the intensities of the
resolved components (transmitted by the analyser) are equal in magnitude—
this being secured by using any analyser C for which I, cos24 b = I, cos? % a.
Under these conditions it can be easily shown that the visibility of fringes
(as defined by Michelson) is equal to the degree of coherence y. To experi-
mentally determine & we choose an analyser C for which the area E is zero,
so that the point C lies on the great circular arc of zero phase joining A and B
(see Part I, §§4 and 7). The effective phase advance 8 of one beam over the
other can then be measured by the amount by which its path must be retarded
in order that the intensity resulting from the interference of the resolved coni-
ponents becomes a maximum.

From.the expression (8) for the intensity transmitted by an analyser C
when two partially coherent polarised beams are incident on it, we may
deduce the following theorem.

Suppose a  number of independent streams of intensities a;, a,....ay
all in the state of polarisatiorf A are combined with a number of independent
streams of intensities by, b,. .. .by all in the state of polarisation B: Let y;
and 9; denote the degree of coherence and the effective phase relation between
the corresponding pairs of beams a; and b;. Then the degree of coherence
and the effective phase advance of the resultant beam of polarisation A over
that of polarisation B will be given by

V1T, Iz,,'ye6 Z'\/a,b,'y,esf 9)

The above result follows from the fact that the intensity I transmitted by any
analyser C given by (8), will also be the sum of the intensities (Ic);, where (I);
denotes the intensity transmitted due to the pair of beams a; and b;—this
result being true for any value of E. The result may also be expressed by
the statement that the mutual intensity between the resultant beams is the sum
of the mutual intensities of the individual pairs.

As a particular case of the above theorem we note that if an independent
fraction f; of the intensity of one beam is completely coherent with an inde-
pendent fraction f, of the intensity of the second, having a phase advance 8
over it, the remaining portions of the two beams being incoherent, then &
is also the effective phase advance of the first beam over the second, while
/ff2 is their mutual degree of coherence. From the above result we obtain
a still simpler method of regarding any two partially coherent beams; an
independent fraction y® of the intensity of one beam may be regarded as
coherent with the whole of the second beam, having a phase advance 8 over it,
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§ 5. ADDITION OF TwoO PARTIALLY COHERENT BEAMS
OF OPPOSITE POLARISATION

Let i, and i, be the temporary intensities of two vibrations in the oppo-
site states of polarisation X and X’, and let 8; be the temporary phase advance
of the first vibration over the second (Part I,§7). Let s be the immediate
value of the Stokes vector of the resultant vibration obtained, whose state
of polarisation is represented by the point P (see Fig. 1).

2

Fic. 1.
P- Momentary state of polarisation of partially polarised beam.
s- Momentary Stokes vector of length equal to the temporary intensity.
§;-Instantaneous phase difference between the X and X’ components.

We shall refer the temporary Stokes vector s to a right-handed system
of co-ordinate axes OX, OY, OZ chosen such that the point Y represents the
vibration whose X and X’ components are defined to be in the same phase
(Part I, §6). A fundamental property of the Poincare sphere (Part I, § 2, I)
is that when a vibration of intensity s in the state of polarisation P is resolved
into two oppositely polarised vibrations in the states of polarisation X and X’,
the intensities of these components (which are equal to 7, and i,) are given by ;

~ ~
i = s cos® 3 PX;; i2=ssin2%PX_
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or

iy — iy = scos Ps(; 24/iiy = s sin PX.
But s cos PX is the projection of the temporary Stokes vector in the OX
direction; and s sin PX is the projection of the temporary Stokes vector on

the YZ plane. Now according to Part I, § 6, VI, we have PXY = 8¢. Hence
the temporary intensity i and the temporary Stokes vector of the resultant

vibration are given by:
I =i+ 3 Se=(h— iy }
Sy = 2 4/Ti, cos 8¢; Sz = 2 +/iji,sin &

(10)

We now take the average of the above expressions using (1), (5) and (6).
We thus see that on compounding two oppositely polarised beams of intensities
I, and I, (for which the mutual degree of coherence and the effective phase
advance of the first beam over the second are y and 8 respectively), the resultant
partially polarised beam (1, S) is given by

=L+1L s Se=L—1I, » }
Sy = 2y VI, co88; §; = 2y /I, sin

It may be noted that™ S, and S; are equal to the correlation parameters
U’ and V' respectively.

1n

We shall now consider the converse problem, viz., of resolving a given
beam (I, S) into two oppositely polarised beams X and X'—a decomposition
which occurs when the beam falls on any transparent crystalline plate. Obvi-
ously when the instantaneous vibration s of this beam is resolved into vibra-
tions in the states of polarisation X and X', these component vibrations will
have intensities i, and i,, and a phase relation 8; which satisfy (10). Since
the momentary vibration s fluctuates for an incompletely polarised beam,
it is clear that i;, i, and 8; will also fluctuate—so that the component beams
will, in general, be partially coherent. The intensities I, and I, of the compo-
nent beams, their degree of coherence y and the effective phase advance 3
of the first beam over the second can be obtained from (11).

L=1% A+ 8y ; Iz=%(I—Sx)} ,
1 I S, 12)
» 7=+2'\/“Il“r2°\/sy2+szz,tans_g];
It may be noted that the expression for the effective phase difference 8
between the component beams does not involve the degree of polarisation
of the given beam.
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- The first Stokes pérameter of a beam is its intensity. 'We may now easily
sce tkat our method of defining the remaining Stokes parameters (as compo-
nents of the average Stokes vector S with respect to a special co-ordinate
system) is entirely equivalent to the usual method. To show this we consi-
der the resolution of an arbitrarily polarised beam into two orthogonal
linearly polarised beams. In this case the states X and X’ in Fig. 1 lie on
the equator. The four Stokes parameters of the beam (with respect to axes
cn tke wave-front given by X and X’) are then customarily defined as the
average values of the expressions on the righr-hand side of each of the four
relations in (10). In our presentation (see § 2), the average values assumed
by the quantities i, sy, 5y, sz, in the particular case when the XY plane of the
co-ordinate system lies on the equatorial plane, are the Stokes parameters of
the beam (with reference to axes on the wavefront given by X and X’). The
relations (10) show that both methods of definition are equivalent. Our
method of introducing the Stokes parameters (given in § 2) is more general,
in that it does not at all involve the representation of an arbitrarily polarised
beam as the sum of two other (partially coherent) linearly polarised beams.
In fact such a decomposition is clearly seen to be merely a particular case
of the problem which we shall discuss in § 7, viz., the decomposition of any
partially polarised beam into two beams in non-orthogonal states of polar-
isation.

§ 6. ADDITION OF TWO PARTIALLY COHERENT BEAMS
"IN NON-ORTHOGONAL STATES OF POLARISATION

When any two beams travelling along the same direction are combined,
the instantaneous intensity of the resultant beam is obtained from Part I,
§ 3, III as

i =iy -+ iy + 2 4/ii, COs % ¢ cos 8

where the similarity factor cos? ¢ will be absolutely constant in time if the
two beams are completely polarised. Averaging the above equation using
(5) we obtain the generalized formula for the interference of two polarised
beams of intensities I, and I, degree of coherence y and effective phase differ-
ence 8

I=1,+ I, 4+ 2y 4/LI,cos % c cos & (13)

Thus y and & may be determined by direct interference experiments, though
the method of using an analyser given in § 4, is to be preferred—to increase
the visibility of interference effects. In relation (13), ¢ is the angular sepa-
ration between the states of polarisation on the Poincaré sphere, The abovg
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relation can also be easily obtained by regarding a fraction y? of the first
beam as coherent with the second beam, having a phase advance 3 over it.

It remains to find the Stokes vector of the resultant beam. Let the
states of polarisation of the two beams be given by the points A and B on
the Poincaré sphere, or alternatively by unit vectors A and B joining the
centre of the sphere to the points in question. The Stokes vectors of the
two beams are then S; =LA and S, = I,B. When the beams are not
completely coherent it is clear that there will be fluctuations in the temporary
state of polarisation and intensity of the resultant vibration—so that the
resultant beam will be incompletely polarised. We shall in this section
prove that the Stokes vector S of the resultant beam may be obtained by the
following procedure (see Fig. 2). It is obtained by adding to the sum of the
given Stokes vector S; and S, (directed towards points A and B), a third
vector S,, (directed towards a point C”"). This last vector which arises be-
cause of the interference of the beams, may be specified in terms of the angles
of the triangle ABC” which is isoscles: the base angles A and B are both
equal to the effective phase difference 8 between the beams, and the length of
vector Sy, is 2y 4/I 1, sin % c.

The components of the Stokes vector of the resultant beam may be
found by using the following proposition which follows from (3): the compo-
nent of the Stokes vector along any direction C is equal to the intensity trans-
mitted by an analyser C, minus the intensity transmitted by the orthogonal
analyser (— C).
ie.,

Ic—1.=8.C (19

Since we have already (in eq. 8) derived the intensity-transmitted by any
analyser when it is introduced in the path of two partially coherent polarised
beams, we may find the Stokes vector S of the resultant beam. (It may be
remembered that in equation 8, the quantities a, b, ¢ are the sides of the
spherical triangle ABC, while E is the area of the triangle—measured with
the usual sign convention.) The intensity I . transmitted by the orthogonal
«nalyser (—C) may be obtained from (8) by changing @ and b to their supple-
ments, and E to E’, where E’ is the area of the triangle ABC’ columnar to
ABC. 'We then have

Ic—Ic=1Icosb+I,cosa+ 2y I,
X {cos $acos 3 bcos (5 — 3 E) —sin{asinibcos (s — 3 E)}

S nce the two beams which are being combined are completely polarised,
we have according to (2 @), I, = S, and I,= S,, where S, and S, are the Stokes
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- vectors of these beams. The first two terms of the above expression are
- accordingly equal to S;.C and S,.C respectively. Comparing with (14)
we see that the Stokes vector S of the resultant beam may be written as

S=8,+8;+ 8 (15)
where the term S,, which may be considered as arising from the mutual
interference of the beams, may be determined from the relation

S12-C = 2y /I, {cos $ acos b cos (8§ — 3 E)
—sinf asin4bcos (8 — 1 E’)} (16)

It may be noted that S, is ¢ times the value which it would have if the beams
were completely coherent.

Since the last relation gives the component of S,, along any direction
C, we may determine the vector S;, by finding its components with respect
to the special co-ordinate system OX, OY, OZ given in Fig. 2. The positive
x-axis is taken along the direction of the vector (A — B); the positive y-axis
“along the direction of the vector (A + B); and the positive z-axis along the
direction of the vector (AxB). (The definitions of the y and z directions
would have to be slightly modified if we wish also to cover the limiting case,
discussed in the previous section, when A and B are oppositely polarised.)

Fig. 2

Composition of non-orthogonally polarised beams S, and S,. The vector for the resultart
partially polarised beam is the sum of the three vectors drawn in the Figure; S, has an orientation

determined by A = B = 8, and a length equal to 2y v/I}]; sind c.
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When the unit vector C is taken along the x direction (see Fig. 2) we
will have in (16), cos 3 acos 4 b =sintasin4 b and E = E' = 0. When the
unit vector C coincides with the y-axis we have E =0, E' =wanda=b =} c.
Lastly when the direction of C coincides with OZ we will have a = b = #/2

and E = — E’' = ¢. Making these substitutions in (16) we obtain the

components of S;, as -
(Sl?.).'x: =0 } (17)
(S12)y = 2y VLT, €08 8; (S12); = 2y /LT, sin dsin % ¢

" 'We see that the vector S, lies in the yz plane, and hence that the triangle
ABC” is isoscles. Also the inclination of this vector to the y-axis is equal
to the arc YC” and is given by

tan YC = 5,;/Sy = tan 3 sin % c

-. Since the spherical triangle AYC” is right angled at Y, itis seen from
-..sphencal trigonometry that the above relation implies that the angle at A is
- equal to 8. This locates the position of C or the orientation of the vector
Sm Its length is given by

‘ Si2 = VSt + S22 =2y VLI, . /(1 — sin2? 8 cos? § ¢)
=2y 4/II,sin 4 C”
These are the relations for determining the vector S;, which were stated at
the beginning of this section, and which we wished to prove. The super-

position of oppositely polarised beams, discussed in the previous section,
may be considered as a limiting case of the present discussion.

The result may also be expressed concisely in vector notation, the result
being then independent of any co-ordinate system. Using the correlation
parameters U’ and V’ introduced in (5) and (6) instead of y and 3, we can
then write (17) as

S;; =3%sectc{U (A +B)+ V' (AxB)} (18
or

S, = Real part of 1,,S;,"sec 3 ¢ (19)
where

S’ = (A +B) — i(AxB)

Hence when two non-orthogonally polarised beams with Stokes vectors
S, and S, are combined, the Stokes vectors S of the resultant beam is given
by (15) where S, is given by (18), or (19) The intensity I of the resultant

beam is given by (13).
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The components of the Stokes vector of the resultant beam (with respect

o the special co-ordinate axes chosen) may now be written down from (15)

nd (17) by noting that the x-components of S, and S, will be I, sin 4 ¢ and

— I sin % ¢ respectively, while the y-components will beé I;cosc and

. ¢ €08 % ¢ respectively. Hence the Stokes vector of the resultant beam is
;iven by:

Se=@—Iysinic
Sy = (I; + I cos % ¢ + 2y +/I,T, cos & (20)
S; =2y +/II,sindsinc

§ 7. DECOMPOSITION OF ANY BEAM INTO TWO NON-ORTHOGONALLY
POLARISED PENCILS

'We now consider a problem which is the converse of that treated in the
previous section, viz., the resolution of a given arbitrarily polarised beam
(I, S) into two non-orthogonally polarised beams in given states of polar-
isation A and B. Such a process occurs for example when the beam falls
on a plate of an absorbing biaxial crystal.

If S denotes the instantaneous Stokes vector of the given beam, then
according to the results proved in Part I, §4, IV, the temporary intensities
i, and i, of the component beams will be given by »

L Sn%6 . _ .sin?}o,
17 "sin?f¢c * ?7 “sin?ic

where 6, and 6, are the the (momentary) angles that the vector s makes with
the vectors A and B respectively.

Now, since i = s, this may be re-written thus:
iy =3%(@ —s.B)cosec®}c; iy =4 (i —s-A)cosec?} c

The average intensities of the non-orthogonally polarised component beams
will therefore be

I, =40 —S.B)cosectdc; I, =3 (L—S.A)cosecthc (21)

It remains to determine the degree of coherence and the effective phase
difference between the component beams, or alternatively the correlation
parameters U’ and V’ defined in (5) and (6). The first parameter is obtained
by eliminating (I; + I,) from the expression for S in (20) by using (13). We
thus obtain
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U’ = (Sy —Icosc)cosec?}c : (22-a)
=31{S.(A+B) —21cos?{c}cosec®4csectc (22-b)
The parameter V' is given by the last relation in (17)
V' = S,cosec}c - (23-0)
=}8.(AXB)cosec®}csec e (23-b)

or
21, =%(S.Sy'— 21cos*§c}cosec?dcsec ¢

As a particular example of much interest we may consider the de-
composition of unpolarised light into two non-orthogonally polarised beams.
Since for unpolarised light S = 0, the intensities I, and I, of the component
beams are, according to (21), both equal to 4 Icosec?4c. The effective

' phase difference and the degree of coherence could be determined by finding
the parameters U’ and V' from (22) and (23). But it is more instructive
to go back to relation (15) from which it may be noted that for S to be a zero
vector, S,, must be coplanar with S; and S,. Since S;, must also be in the
yz plane, it is clear that the point C” towards which it points must be the

-mid-point of the greater segment of the great circular arc through A and B.
The length of the vector S,, being equal to that of (S, + S,) will be given by
(I; +I) cos 3 c. The effective phase difference between the component
beams is = (being equal to the angle A of the isoscles triangle ABC”). The
degree of coherence between the two beams is cos 4 ¢ (since the length of
the vector Sy, is also given by 2y /1,1, sin =/2).

FiG. 3.

Decomposition of unpolarised light into two non-orthogonally polarised beams with vibra-
tion-directions along A and B. The resultant beams have a degree of coherence cos 4 ¢ and an
effective phase difference of .

The decomposition of unpolarised light into two non-orthogonal
vibrations in.the states of polarisation A and B (separated by an angle ¢
on the Poincaré sphere) may be more simply analysed by replacing the un-
polarised light by two incoherent beams each of intensity 4 I in the ortho-
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gonally polarised states A and A’. (In order that the general method may be
perfectly clear, the particular case when A and B are linear vibrations in-
clined at the angle 1 ¢ is drawn in Fig. 3 and may be followed simultaneously.)
The beam of polarisation A’ may now be replaced by two coherent beams
in the non-orthogonal states of polarisation B and A. These latter two
vibrations will have a phase difference of =, since A’ lies on the greater seg-
ment of the great circle through A and B (Part I, § 4, V). Their intensities
will be respectively 4 I cosec? 4 ¢ and % I cot® ¢ (as is given by the parallelo-
gram law in the case of Fig. 3, and in the general case by substituting b ==
and a = 7 — c in the results of Part I, § 4, IV). Thus in the state of polarisa-
tion B we have a beam of intensity 4 I cosec? i c; while in the state of
polarisation A we have two incoherent vibrations which add to give a beam
of the same intensity 4 I cosec?4c. Of the latter beam, however, an inde-
pendent fraction comprising an intensity 4 I cot? % ¢ is completely coherent
with the other beam and is opposed in phase to it. In other words, the
degree of coherence between the beams is cos 4 ¢ and the effective phase
difference is 7 (according to the result proved at the end of § 4).

§ 8. THE ADDITION OF n PARTIALLY COHERENT BEAMS

'We shall now consider the addition of n polarised beams whose states of
polarisation are represented by the points P,. P,....P, on the Poincaré
sphere, or alternatively by the unit vectors P;. P, Pg. .. .P,, joining the centre
of the sphere to these points. The instantaneous intensity i of the resultant
beam will be given by equation (14) of Part I, § 9

i=2Xij+ X ijxcos
ik

where i; denotes the temporary ‘intensity of the jth beam, i;;, the temporary
mutual intensity of the jth beam with respect to the kth and cji is the angle
between the vectors P; and P,. Averaging the above equation we obtain
the following expression for the intensity I of the resultant beam:

I= Z'Ij + X Ijg cos 1 Cik 24)
ik

where Ij, is the mutual intensity of the jth beam with respect to the kth.
The second term in (24) arises from the mutual interference of the different
pairs of beams.

The form of (24) suggests that the Stokes vector S of the resultant beam
may be obtained by a similar generalisation of relation (15) obtained for two
beams :

S=28;+ %Hé’: Sk (25)
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or alternatively

S =28; 4+ 1 XLk Sji’ sec  cjic
where (26)
Sik’ = P; +Pr) —i(P; X Py)

That the relations (25 and 26) do indeed give the Stokes vector of the
resultant beam may be verified by taking recourse to the intensity transmitted
by any analyser C when the » beams are incident on it. This intensity I
will be the average of the instantaneous transmitted intensity [which may be
obtained by using equation (13) of Part I, §9]:

Ic = Z'1; cos? 05 + Z yjx. v/IjIk cos 0; cos By cos (3 — 3 Ej1)

where 20; denotes the angle between P; and C, and E;y the area of the spherical
triangle CP;P,. The component of the Stokes vector of the resultant beam
along any direction C is obtained by writing the value of (I — I_). Since
the S;j satisfy relations of the type of (16) it may be easily shown that (26)
gives the Stokes vector of the resultant beam.

It is a pleasure to acknowledge the encouragement given by Prof. Sir C. V.
Raman, F.RS., N.L., and the keen interest he took in this investigation.

§9. SUMMARY

The superposition of two partially coherent but completely polarised
beams is discussed. The formula for the intensity of the resultant beam is
obtained from the interference formula for coherent beams by multiplying
the third interference term by the degree of coherence y (defined statistically).
The states of the two given polarised beams and that of the resultant incom-
pletely polarised beam may be characterised by respective vectors drawn
from the centre of the Poincaré sphere: the length of each vector and its
orientation (i.e., point of intersection with the sphere) may be regarded as
giving respectively the intensity and state of polarisation, of the polarised
fraction of the corresponding beam. The vector for the resultant beam is
obtained by adding to the sum of the two given vectors (which are directed
towards points A and B), a third vector directed towards a point C” on the
Poincaré sphere. This last vector which arises because of the interference
of the beams, is specified in terms of the angles of the triangle ABC”, which
is isoscles: the base angles A and B are both equal to the effective phase

difference § and the length of the vector is equal to 2y+/LT, sin 3 C”.

The converse problem is discussed and also the addition of » partially
coherent polarised beams. The paper alsg presents the subject of the Stokes
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parameters of partially polarised radiation through an extension of the
Poincaré representation.
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