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§ 1. INTRODUCTION

AMONG the most beautiful and interesting phenomena in crystal optics are
the interference figures displayed by crystalline plates in convergent light.
Figures of the most diverse descriptions are met with even in the realm of
transparent crystals, and this is not a matter for surprise: for, firstly the
crystal may possess optical activity—in which case the two waves propagated
along any direction in the medium are in general elliptically polarised;
and secondly the state of polarisation of the incident light as well as that of
the light for which the analysing arrangement is completely transparent may
be adjusted to be linear, circular or elliptic in form. By the use of the
Poincaré sphere, the varied phenomena which fall under this head may be
brought under a general method of analysis, which—without complicating
the explanation of the simpler phenomena—helps in the understanding of
more complex phenomena.

As specific applications of the method we shall consider some of the
interference figures displayed by the optically active crystal, quartz. Using
a single basal section, an interference figure consisting of two spirals coiled
around each other may be obtained with a circular polariser and a linear
analyser. This case has been theoretically discussed in the treatises of
Walker,! Pockels? and Szivessy® (though, due to certain minor errors, the
final description of the spirals given in these treatises differ as regards the
handedness and orientation of the spirals). 'When a usual polarising micro-
scope is used, the quarter-wave plate has be to inserted just prior to the
analysing nicol, and hence the spirals have to be observed under an arrange-
ment slightly different from that considered in the above-mentioned references.
The spirals thus observed with a linear polariser and a °circular analyser’
are discussed in the treatise of Mascart* The sense of description of the
spirals is reversed when the quarter-wave plate is transferred from a posi-
tion behind the quartz plate to a position in front of it (though Mascart
states that the same results are obtained under both arrangements).
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We shall also discuss from a novel point of view, the Airy’s spirals
observed when two basal sections of quartz of equal thickness and of
opposite sign are superposed, and the combination observed between cross
sed nicols in convergent light.

§2. DiscussioN OF THE GENERAL CASE

As is well known, each point in a convergent light figure is the focal
point of a particular bundle of parallel rays emerging from the plate, of
which each pair of rays which have been derived by the splitting of a common
incident ray, can (after passing through the analysing arrangement)
interfere at the focal point. Hence our first step is to discuss the interference
effects presented in parallel light at normal incidence by an arbitrarily cut
plate of any transparent material when examined between an elliptic pola-
risst C; and an elliptic analyser C,.f The crystal being transparent, the
two waves propagated through it must necessarily be in two oppositely
polarised states A and A’ as indicated in Fig.1 (since only then will the
intensity of the emerging beam be independant of the phase retardation intro-
duced by the plate [Part L° §2]).

‘When the incident light (of unit intensity) in the state of polarisation
C, is split into two beams of opposite polarisation A and A’, these component
beams will have the intensities cos?%a,’ and sin®4aq,” respectively, where
a,’ is the angular distance between the states C, and A on the Poincaré
sphere (Part I, §2). The analyser C, transmits the fractions cos?®4a,” and
sin? 4a,’ of these beams, since it transmits only the corresponding resolved
components’¢ of these beams in the state of polarisation C,; here a,’ is the
angular separation between the states C, and A on the Poincaré sphere.
Taking the state of relative phase of the two oppositely polarised beams at
the point of entry in the medium as the zero or standard, their phase dif-
ference at the point of emergence from the crystal will be equal to & (which
is the path retardation suffered by the slower beam of polarisation A’ rela-
tive to the other). The phase difference between the corresponding resolved
components transmitted by the analyser will however be smaller than this
value by an angle A ; according to Part I, eq. 9, A denotes now half the area
of the lune AC,A'CA, or A = LC,AC, = LC,A’C,. (The angles are
measured with the usual sign convention, being reckoned positive in a
counter-clockwise sense [see Fig. 1]).

+ An elliptic analyser C, appears completely transparent for light of elliptic polarisation Cs;
a quarter-wave plate followed by a linear analyscr together form a simple elliptic analyser (Part 1

§8).
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- Thus the analyser C, transmits two beams having intensities I, and I,
and phase difference A given by

I, = cos? 1a,’ cos? }a,’; I, = sin? %a,’ sin? {a,’ }

51 M

These beams being in the same state of polarisation, the final intensity I
transmitted by the analyser will be given by the usual interference formula

I=1 + I, + 2v/ETcos A @
The expression for the intensity I can also be written as the difference of
two terms, the first of which is the intensity cos? % 6:02 which would be trans-

mitted if the plate were absent (8 = 0), the second term giving rise to sub-
traction colours in white light.

Equations (1) and (2) are the basic equations on which the further dis-
cussion of all interference phenomena shown by transparent crystals are
based. Though they have been derived for the most general case they are
practically identical with those customarily used? for the simplest case, viz.,
when the plate possesses only linear birefringence, and the polarising and
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analysing elements are nicols—in which case A is equal to zero or ». In
discussing any specific case, the values of the angles a,’, @’ and A which
obtain in that case have to be used; but their explicit values need be
introduced not in the general expression (2), but only in certain subsidiary
expressions determining those particular aspects of the phenomena which
are to be investigated.

The variation of I with the direction of propagation may be observed
in convergent light, using a plate cut normal to an optic axis—each point
in the convergent light figure corresponding to a definite direction of pro-
pagation. For a plate of moderate thickness the retardation & introduced
by the plate increases rapidly as we proceed outwards along directions
normal to the curves of constant retardation. The rate of variation of
I as we proceed outwards from the optic axis is therefore taken to be
predominantly due to the change in A. We should therefore expect the
appearance of interference rings, the curves of minimum intensity occur-
ring along directions for which the pairs of pencils transmitted by the
analyser ‘ destructively ’ interfere, i.e., along the curves where A = (2n + 1) #.
These do not however coincide with the curves where the retardation of the
plate is an odd multiple of =.  The physical reason for this is that the final
phase difference A between the interfering pencils transmitted by the analyser
is not identical with the retardation introduced by the plate but exceeds it
by an amount (— A); this latter may be correctly described as the contri-
bution to the phase difference arising from the processes of dissolution and
analysation, and it depends on the mutual relation between the state of
incident polarisation C,, the states of polarisation A and A’ of the beams into
which it is split, and the analysing state C,. The curves of minimum inten-
sity are thus given by

S=2n+Dnr+A 3

and from what has been said above, these curves of minimum intensity do
not in general follow the curves of constant retardation, § = const., because
the angle A is not constant but is itself a function of the direction of pro-
pagation (since the states A and A’ vary with the direction of propagation).
A fairly accurate method of plotting the curves of minimum intensity (for
a uniaxial crystal or a biaxial crystal of not too small an axial angle) is
obviously the following; the circular curve 8 = (2n + 1) = is first drawn
and the radii vectors of this curve are increased by amounts which vary with
the azimuth and which correspond to an additional retardation of A. 1In
‘this manner it can be shown that the interference rings exhibited by a basal
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section of quartz between inclined nicols take the form of squares with
rounded corners. .

The intensity at any point on a curve of minimum intensity may be
obtained by substituting A = = in (2) and is given by
Luw = cos? $ (a) + a))) @

This is not constant along a curve of minimum intensity, since the states
A and A’ vary with direction, and hence the rings appear darkest along
particular zones which have to be determined for each specific case.

§ 3. SPIRAL FIGURES DUE TO A SINGLE BASAL SECTION OF QUARTZ

In discussing the convergent light figures of quartz we will have to keep
in mind the following features regarding the propagation of light near the
optic axial direction. Referring to Fig.2a, consider any point P in the
convergent light figure, whose polar co-ordinates are r, 8 (the origin O re-

(6)

FiG. 2.

presenting the optic axial direction, and OV being a vertical line). Along
the direction represented by P are propagated two crossed elliptic vibra-
tions; and since quartz is a positive crystal, the major axis of the slower
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vibration coincides with the plane of the radius vector OP itself (so that
0 is the azimuth of the major axis of the faster vibration A with respect to
the horizontal). Hence if € be the ellipticity of the faster wave, its state of
polarisation will be represented on the Poincaré sphere (Fig.2b), by the
point A of longitude 260 and latitude 2, € being positive or negative accord-
ing as the crystal is optically left or right handed. The numerical value of
the ellipticity decreases rapidly as the angular distance r from the optic axis
increases, (tan 2e = 2p/Ar?), being a maximum along the optic axial
direction where opposite circular vibrations are propagated. In what
follows the main fact to remember is that for all points P on a circle of radius
r, the ellipticity is constant—so that the latitude 2¢ of the point A is constant,
only the longitude 26 being altered.

‘We shall first discuss the interference figure presented by a left-rotating
basal section when a left-circular analyser (represented by the pole C; in
Fig. 2 b) is used, the vibration direction of the incident plane polarised light
being vertical (represented by the point V). In this case we have A= ZCJAV.
It is seen immediately from Fig. 2 b that (keeping 2¢ constant) as 26 increases
from 0> 47— n —37/2— 27, the LAV also increases continuously and
goes through the same range of values O—>47 >7; —7—— in 0.
This means that along the circle 8 = (2n + 1) #, the phase difference A bet-
ween the interfering pencils transmitted by the analyser falls short of
(2n + 1) = (condition for destructive interference) by an angle C;AV which
increases continuously with the azimuth & — and which in fact becomes
exactly equal to twice the azimuth at 6 = mn/4. It follows immediately
(see Section 2) that the curves of minimum intensity consist of two mutually
enwrapping left-handed spirals which are related to one another by a rotation
of 180°. 'From the triangle VAC; we have

tan ZCjAV = tan 20/sin 2¢ ®)

In the usual treatment* equations (3) and (5) are derived by a more lengthy
procedure, and these equations may be used to discuss the form of the
spirals in more detail. Close to the optic axial direction we have
LCJAV 2~ 20, so that the spirals are given by:

8 = v/(Ar® + 4p®) = (2n + ) m + 26

If the two arms of the spiral be extrapolated to the origin (where they
actually fade away) the common tangent at the origin will be at an azimuth
(3 + p) with respect to the vertical—where p is the total optical rotation
along the optic axis. Towards the border the figure must approximate to
the non-spiral form shown by inactive crystals. The transition occurs by
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way of the non-uniform rate of increase of the arm of the spiral—which
manifests itself as kinks, which in turn assume the proportion of disconti-
nuities towards the border of the figure (see Pockels, Plate VI, Figs. 3 and 4).

The zones along which the successive arcs of the spiral appear darkest
may be determined with sufficient accuracy by studying the variation of
(4) along a circle described about the optic axis (a,’ = constant). Referring
to Fig. 2 b, the arc a," acquires its maximum value of (= — 2¢) at 26 =0,
and its minimum value of 2¢ at 26 = «#. Along directions close to the optic
axis (where 2e > =/4) the sum (a," 4 a,) lies between the limits 3= to =.
Hence the arcs of the spiral appear darkest along the vertical radius of the
field of view. This result has also been derived in the usual presentation.
We must emphasize however, that for a plate of moderate thickness (say
3 mm.) the above result holds only for points on the first convolution of
the spiral, since at greater angular distances 2e < w/4 (see Pockels, Plate VI,
Figs. 3 and 4).

‘When the analysing state C, is changed to its opposite state C,’, the
result (as is seen from Fig. 1) is to diminish the value of A by = and to change
the length of the arc a,’ to its supplement. The same alteration in the ex-
pression (2) may be produced if the polarising state C, is changed to its
orthogonal state. Hence, when a right-circular analyser is used, the entire
spiral figure is rotated around by a right angle compared to the previous
case (when a left-circular analyser was used).

'We may obviously summarise the above results in a form applicable
to both right and left-rotating basal sections. The handedness of the
double spirals exhibited with a linear polariser and circular analyser is
always the same as the handedness of the quartz. 'When the handedness
of the circular analyser is opposite to that of the quartz, the tangent to the
spiral at the origin coincides with the vibration direction of the light
emerging along the optic axial direction; and, close to the optic axis, the
spirals appear darkest along the diameter perpendicular to the plane of
vibration of the incident light. A change in the handedness of the circular
analyser causes a rotation of the entire figure, as such, through a right angle.

We see from Fig. 1 that when the state of polarisation of the incident
light, and the state of polarisation C, of the light for which the analyser is
transparent are interchanged, the sign of A is reversed, but the remaining
factors in (1) remain unchanged. In Fig. 2 b the same result is obtained by
change of the sign of 20. Hence the entire spiral figure exhibited with
a circular polariser and linear analyser is merely the reflection about the plane
of vibration of the analyser, of the figure obtained when the polariser and
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tnalyser are z‘hterchanged. This statement holds with regard to all the
details of the figure, and hence we need not discuss this case further.

The results of this section were qualitatively verified using a plate of
right-quartz. The general arguments may be applied mutatis mutandis
for discussing the spiral figures in negative uniaxial crystals and in biaxial
crystals. In the latter case only a single spiral is formed because, as the polar
angle of the point P increases, the azimuth of the major axis of the faster
elliptic vibration increases at only Aalf the rate.

§4. ARY’s SPIRALS DUE To TwoO SUPERPOSED BASAL SECTIONS

Our general treatment can also be applied to the case of superposed
transparent plates which often exhibit curious interference figures (see
e.g., Walker, loc. cit., p.293). For this purpose it is necessary to replace
the effect of the passage through a succession of plates by a passage through
a single ‘ equivalent plate’. This can be done by combining successive
rotations of the Poincaré sphere.

As an example, let us suppose that a left-handed and a right-handed
section of quartz (both of the same thickness and cut at the same angle to
the optic axis) are superposed (in that order) such that the corresponding
principal planes of the two plates are in coincidence, the combination being
then viewed in parallel light at normal incidence.

Referring to Fig. 3, let the point A; of latitude 2¢ represent the state of
polarisation of the faster elliptic vibration (of ellipticity €) propagated in the
first plate; the state of the faster elliptic vibration of ellipticity (— €) pro-
pagated in the second plate is then represented by a point A, of the same
longitude as A,, but of latitude (— 2¢). Let us construct an isosceles trian-
gle A; X A, as indicated, such that the base angles A,A;X and XA,A, are
both equal to /2 where 3 is the retardation of each plate.

The action of the first plate is equivalent to an anti-clockwise rotation
of the sphere about A; through twice the internal angle at A,, while the
action of the second plate is equivalent to an anti-clockwise rotation about
A, through twice the internal angle at A, (see e.g., Part I, § 6). By a well-
known theorem for compounding rotations,® the two successive rotations
are equivalent to a single rotation about the equatorial diameter through
X, through twice the external angle at X. 'We have thus proved that the
combination is equivalent to a single optically inactive birefringent plate of
retardation A, the faster vibration direction of which makes an angle — a
with the common principal plane of the two quartz plates (which corres-
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ponds to the major axis of the faster ellipse). Here « and A have the values
indicated in Fig.3. From the spherical triangle A;XX, we have

tan 2a = tan 48 sin 2¢ )

Since the equivalent plate does not possess optical activity we should
expect the appearance of ‘isogyres’ when two equal basal sections of left-
and right-quartz are superposed, and the combination observed between
crossed nicols. The ‘isogyres’ should occur along the directions where -
the ‘equivalent’ principal planes of the combination coincide with the
vibration directions of the polariser and analyser. Since, as we'have seen,
the equivalent principal planes for any direction of propagation do not
coincide with the principal planes of the individual plates the ‘isogyres’ will
not take the form of a uniaxial cross. If 6 be the azimuth of a point in the
field of view with respect to the plane of the polariser, the dark ‘isogyres’
obviously occur where 0 is equal to o or (37 + a), where a is given by (6).
This equation has been derived by an entirely different method of analysis
in the usual presentation (Walker,® p. 368, eq.39). According to. this
equation it may be shown by following the usual treatment that the dark
¢ jsogyres > take the form of four mutually enwrapping left-handed spirals
known as Airy’s spirals. Besides these spirals we will have dark curves,
where the retardation A of the equivalent plate is a whole multiple of 2=,
and from Fig. 3 these occur along the circles 8 = 2nn.

The sense of description of Airy’s spirals is reversed when the right-
‘handed plate is placed first because the sign of a is then changed.
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5. SUMMARY

The geometric method of specifying states of polarisation by points
on the Poincaré sphere is used for giving a unified and physically intelligible
approach to the interference phenomena displayed by crystalline plates in
parallel or convergent light—under general conditions when the polarising
and analysing states are linear, circular or elliptic in form. Examples dis-
cussed are the spiral figures exhibited in convergent light (@) by a basal
section of quartz between a circular polariser and linear analyser (or vice-
versa), and (b) by two superposed basal sections of left- and right-quartz
between crossed nicols. The Airy’s spirals observed in the latter case are
interpreted as the ‘isogyres’ of the optically inactive plate to which the
combination is equivalent.
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