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1. INTRODUCTION

ANHARMONICITY of vibration is responsible for several of the finer features
observed in the vibration spectra of molecules, viz., the uneven spacing of
the overtone levels of the different normal modes and the splitting of levels
that are degenerate in the harmonic oscillator approximation. The spec-
trum of the vibrational energy levels, when the effect of anharmonic terms in
the potential energy of the molecule is taken into account, has been the sub-
ject of several investigations, references to which can be had from the well-
known books on the subject by Herzberg! and by Wilson, Decius and Cross.2
In a detailed and elaborate piece of work, Nielson® has considered the prob-
lem for a general molecule taking account of one more complication, viz.,
the vibration-rotation interaction in the molecule.

In the harmonic oscillator approximation, the normal modes of vibra-
tion of the molecule are independent of each other and the energy of the
system is the sum of the energies of the (3n — 6) normal modes of the mole-
cule. When anharmonicity is taken into account, product terms of the
third and higher powers in the normal co-ordinates are introduced in the
potential energy of the system, and as a consequence the normal modes are
no longer independent but interact with each other. The standard pro-
cedure for obtaining the corrections to the energy levels due to the anhar-
monic terms is by the perturbation method applied to N = (3n — 6) varia-
bles and the results of the theory indicate that the energy levels get altered
by the introduction of additional quadratic terms in the vibrational quantum
numbers of the normal modes of the molecule. In the present paper, we
adopt a different method and follow a procedure well known in the treat-
ment of electronic motion in atoms and molecules, namely the method of
the self-consistent field proposed by Hartree. Each normal mode of the
molecule is assumed to be moving in the average potential field of vibration
of the remaining ones, and the eigenfunctions and energy levels of each of
the normal modes are calculated accordingly. Apart from the academic
interest of the fact that the Hartree method can be applied to the problems
of vibrational motion of. the"mo'lecule, the procedure deserves attention
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since it enables one to regard a molecule as an assembly of anharmonic
oscillators and calculate the anharmonicity constants in terms of the force
constants of the molecule, and also because it enables one to evaluate a
measure of the interaction exerted on each mod¢ by the remaining ones.
Thus it is shown in Section 2 that a normal mode of the anti-symmetric
species does not interact with the rest even in the first order of approximation.
In Section 3, the question of degeneracy has been considered and eigen-
functions and energy values for the case in which one of the modes 1s doubly
degenerate have been evaluated.

2. THE ENERGY LEVELS
We start from the equilibrium configuration of the molecule, that is
the configuration in which the forces acting on each atom of the molecule
is zero. Referred to this state, the potential energy of the system will not
contain any terms linear in the displacements of the atoms. If further we
use normal co-ordinates, the potential and kinetic energies will not contain
any quadratic cross terms and we can write therefore

N
T =% (1)
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where 1y, 7gsecevvn.- 7w (N =3n—6 or 3n — 5 as the case may be) are
the normal co-ordinates of the system. We first consider the case in which
the system is non—degenerate. The constants Ay, Agy........ Ay in (2) are
then all dlfferent -

" 'The wave. funcnon & (... M0 deséribing the state of the molecule is
given by ‘the solution of the variationalpripci"ple :

'8[J]=8f¢*Hx/:dV=0" - ‘ )]
sub_]ect to the condition , '

J* 4dV =1 : “4)
where

H=(T+V)  and dV=Idy

Tim
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We now try to approximate i in terms of the ¢ one normal co-ordinate ’
wave functions #; (;), each of which depending on one normal co-ordinate
only. We set

§ = ‘/‘vi (m) ‘/’v. ("72) -------- ‘ﬁvN () 5

where v, v,........ vy are integral numbers denoting the degree of excita-
tion of the different normal modes, each moving in the field of the rest. The
functions ¢y, (n;) are all assumed to be normalised, and the best possible
choice of these which approximate the physical system as closely as possible
are obtained as the solution of the variational principle (3). This leads to
the following set of differential equations which the ¢’s must satisfy.t

(Hy — &) by, =0 (6)
where /
H; = [ (1T 44,,*) H(IT y,) IT dmy ™
s ki ki

¢ is independent of the suffix / and denotes the energy of the whole molecule.

To evaluate the Hamiltonian of the i-th normal mode as well as to
determine its eigenfunction, we adopt the procedure of variation-iteration.
To a first approximation, we ignore the quartic terms in (2) and substitute
for all the wave functions ¢y, (qx) (ki) in (7) the harmonic oscillator
eigenfunctions of these normal co-ordinates. The integrals that arise in
this process, like {4*y, ni®py dn have been tabulated in Wilson’s? book
and making use of these, we find that equation (6) reduces to

2 2
{— gorgms + (At — 4®) + Ay £ A 9y

+ Au®ni®} o, (i) = 0 ®

where
AV = Z (v1+ B hwi;
19k¢

Ay® =1 E ! ammi g/":nm + ‘l‘);
n:‘i

Apt =

.
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A = % ag;; and

2
— 4'” Vm.

Ym “h ®

The upper suffix in the above indicates the order of approximation.

Further W = f(IT¢*y)H (1)1 dn; and by substitution of the
harmonic oscillator wave-functions in this we get ‘

. N
&'V = z (v1+ %) hw.

Hence the eigenvalue of the i-th mode (ie.) (g — AY), is equal to
(vi +.%) hv;. The first order approximation therfore does not introduce
any corrections to the eigenvalues of the different normal modes from their
harmonic oscillator values.

From (8) it follows that the Hamiltonian of the oscillator contains an
anharmonic cubic term whose coefficient is the same as the coefficient of
7;® in the potential energy of the molecule and also a term linear in %;. The
linear term arises out of the process of averaging terms of the type ;72
and it gives a measure of the action exerted by the other normal modes on
the i-th one. It further suggests that the vibrations of the remaining modes
tend to displace the equilibrium position of the i-th one from the place it
occupies in the equilibrium configuration of the molecule as a whole.

The coefficient of the linear term is much smaller than the coefficient
of the cubic one and their ratio is of the order of 1/y ~ 108, But since
the region wherein the displacement of the oscillator has a finite probability
is of the order of y-%, both these terms are of the same order of smallness.

If the i-th mode belongs to an antisymmetric species of vibration of the
molecule, all the coefficients of the type ammi and oj3 should be equal to
zero. This is because the potential energy, including third and higher order
terms, should be invariant under all the symmetry operations of the mole-
cule and there will be at least one operation which will change the sign of
a normal co-ordinate falling under an antisymmetric species of the mole-
cule. Thus from (9) it follows that to a first approximation a normal mode
belonging to the antisymmetric species of vibration of the molecule does not
interact with the rest and also it suffers no anharmonicity.

The first order eigenfunctions of (8) may be obtained by the perturba-
tion method. The normalised eigenfunctions are given by

o = iy ® + 3i Py + B3 P ® + Gy Ny
+ G4 s (10)
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where
L ﬂ f.2
A ~ 1= W@y T § (Shz"i;?’ia)z
with
1 ,
fi=g vi(i— D) i —2) &® + v; Bvia; + B;)?
+ @i+ DB+ 1) e+ Bil?
+ %_(vi +1) (o3 + 2) (03 + 3) 052
a3 = 3—;;;5;;—13); [vi(vi — 1) (v — 2] oy
a4 = h_%:—(_s%y,? vg? (3vi04 + By); (an
4y = ’W%Vi—“)—*(vi+ 1! [3 (vi+ 1) ai + Bi]
Bis = 3—,,;"(’—5%3—), [wi + 1) (v; + 2) (v + )P o
and 7 : .

= "2 and B= —y E’“mmi(”m‘f“‘}).

m
myse

The upper suffix in (10) denotes the order of approximation. The zeroth
order functions are chosen as the harmonic oscillator eigenfunctions.

To obtain the eigenvalues and eigenfunctions correct to the second order,
we substitute the first order eigenfunctions (10) in (7). We now take into
account of the quartic terms in the Hamiltonian also. After considerable
simplification, the wave function of the ith mode can be written as

h% 2 :
{— gt ot T AP+ Ap'Bni? - Ayn® Ai4(2)77‘i4} Yo,

= Witz),[,m : (12)
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where
, Ol (‘Ul -+ '}) aui
A 12) 2 id 2‘}’l + 2 ; 16h2vlzy4Ql
ﬂllllt . Aimi__
+ 2, 24y*hv l+Z i'ym T T
+ ' Bumi (V1 + 1) Rm.
dym*yihvm
. ,\ mR.'], ’ EIB_" ’
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A = + 122 hvyia RO
3
AP = 34 ﬂﬁﬁ
and

Wit = (vi + 3) hvi + (8y;3)hv + 24;‘“th

+ 2 2 i+ 3° + )
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In the above the accent indicates that the sum excludes the term or m = i.
The quantities Ry, K3, T; and Q; are given by
Ri=3Qui+ Day+ By

K; = 300;2 {(vz + 32+ 610} + 12081 (vp + B + 8%

Ty =300 {01+ B* + g} + B0+ B3 (15)
Q=Ki+ v (v; — 1) (v; — 2) Guiaz + fy) a1
— vy (v;+ 1) Buia; + B1) (Bvi + log + B)
+3+ D+ + 3B+ Da+ il
W;t® gives the expression for the energy of the ith normal mode.

The energy of the whole molecule is

6® = Z, (vi+ 4 hv + E (8713)hw 24;?,’,“, Ty

+ D) P o+ H 3+ Z iRy (o1t

m YUV

im
I56m

+Z ff,’l';"" (v + %) (om + %) (16)°

Remark
We shall define Wi™ by

im _ %im . emmi (Vm + %) ,
R (e T R o Tl

+ i (o, + 4) (04 + B} an

Wim denotes the average interaction energy of the ith and mth modes correct
to the second order of approximation. The energy of the whole molecule
is related to the energy of the individual modes by means of the relation

=3 Wi —3 3 Zwin a8
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3. DEGENERACY

We now consider the case of degeneracy of vibrations. For the sake
of preciseness, we consider the case in which one of the modes of vibrations
of the molecule is doubly degenerate and the remaining modes are all non-
degenerate. The more general cases can be discussed on exactly the same
lines. Let us denote the modes that are degenerate with one another by the
suffixes (N — 1) and N so that vy_,= vy. Our problem then is to evaluate
the energy values and eigenfunctions of the degenerate mode and to find a
measure of its splitting due to anharmonicity.

Let us fix our attention on a state in which the different normal modes
of the molecule are excited by vy, vg,-..... vy—; and vy quantas respectively.
The degeneracy of the overtone level of the doubly degenerate mode is then
(vyse)- It is well known that the eigenfunctions for the degenerate mode
may be written as

Yim = Npe /28" Fp, I (1/yypy) e 19

where Fy, ™ (v/ynpy) is 2 polynomial of degree vy in py [= (nn-1% + 7D,
and Iy is an integer which can assume the values vy, ¥y, Un—y....1 Or O

depending on whether vy is odd or even.

Now the symmetry of an overtone level of degree vy of a mode which
falls under a species I" of the molecule is given by (I")*™ and this is in general,
a linear sum of the irreducible representations of the point group of the
molecule. Thus the wave-functions (19) will transform, under a symmetry
operation, like a linear sum of the different irreducible representations of
the molecule. Or, alternatively, one can form linear combinations of the
above vy + 1) wave-functions in such a way that the resulting functions
fall exclusively each under any one of the irreducible representations of the
symmetry group of the molecule.

Let us suppose that the structure of the level under consideration is given
by z,'n("’l’"” where '™ stands for the yth species and n'? is the number of

tlmes this species occurs in the reduced representation of the level. It has
been shown by Tisza® that only wave-functions which either belongjto different
irreducible representations or to different matrix representations of the same
species can have different energy levels and thus the maximum number of
components into which the level can be split up by the anharmonic terms
is ZnM.

Let us now subject the set of wave-functions (19) to an orthogonal trans-
formation and obtain a new set of functions 57 (s = 1, 2,....vny) such
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that each one of these fall exclusively under one of the irreducible representa-
tions of the symmetry group of the molecule. In symbols,

Vs
¢51a —_ ‘_\:'lcsm‘Yazl;m (S =1, 2,. .o UNH) (20)
where
(Vnn1)
3 (Com1®y? = 1 @D
mel
and
Uy ) ot
3 Csm"Com?® =0 (s=~= 5

In the above the upper suffix y denotes the irreducible representation
I'™ under which Y% falls, and a denotes the matrix representation of the
irreducible representation. All functions with different y and @ may there-
fore be expected to have different energies.

The wave function for the ith mode is now given by

(Hi, - Ei) ‘l"Di = O (22)
where
H; = [ (JT4*y,) H (1T §p,) IT d (22 0)
ke koli kA

In evaluating the above expression, we may notice that the potential
energy of the system does not contain the factors ny_y or gy individually, but
involves these only through the sum of their squares (i.e.) through

(")N—l2 + 7]N2) = pn°.
Thus, we have
a§iN-1 = GfjN = 0
(G,j=12,... N—2); oxynana1=ocannn=0;

Bijkn— = Bijken = .- = Bian =0 ...
Gjk=12....N—=2)

and

O4N-1 N-1 = NN’ ﬁijN—l N-1 = ﬁijm:, ete.
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The first-order energy values and eigenfunctions may be obtained by substi-
tuting the harmonic oscillator wave functions for the non-degenerate modes
and the function ¥37% for the degenerate one. We get 'V = X (v; + di/2) hv;
where the sum is over all modes with distinct frequencies and d; denotes
the degeneracy of the ith mode. The wave equation is given by the same
formule (8) and (9) with this difference that the constants Aj? and Aj
get modified in this by

d;
A = 3 (v; 4] \
w)‘—" (v,—l—z)hvj
and

ommi (”m + dz_m)

Ym

Ay =13 23)

The first order wave equation is therefore still given by (10) with this change
that B; should be defined here by

Smmi (”m + %n)

Ym

Bi=—ri &' 24

For the degenerate mode, the wave equation is given by

2 2 2\ Ae
= o (5o + ) = Wi+ Bl o =0 29

T8\ |
where

WN(I) = (‘UN -+ l) h'VN.

We see that in the first order approximation, anharmonicity does not affect
the degenerate mode at all.

The Hamiltonian as well as the eigenvalue for the degenerate mode
correct to the second order may be obtained by substituting the wave func-
tions given by (10) and (24) in the variational principle (6). One gets

R o2 22
{'" 872 \ PN + annz)

— Wyt + An® pp® + AN“)PN4} Yoy =0 (26)
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where

1
A = 23 Brnwn

N--2

N2
Ax"’— + 2'4;?21;!” R + z’ﬂmugt;zl+ P .
=y

Wi = (v + 1) hvy + Z a}g/",;g,:hjml)

m=1

+ Z’ ﬁ;;—*%f(vﬁ D) (vm + 3

+ B o 12 4+ 4y — g

Vot
X {Z (Com™)*Im? @
Since the last term in the above may be expected to be different for functions
with different y and a (i.e.) for wave functions falling under different irredu-
cible representations or different matrix representations of the same irreducible
representation, each level of the degenerate mode will get split into not more

than (Zn7) sublevels.
The energy of the whole molecule is

% = Z (vH- )hw-}- Z’

— "-llm (”l -+ )
aygy 7
+ Z 24y%hw T+ Z Rm
=1 ngéN
N—g a R

+ Z' P o+ 2+ 8 |
Bumm LAY A d,
4;,;; v+ j)-(vm + —'21‘) _

l<n
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BNNNN {(”N + l)g + %} ﬁlgzNN

X {. 2 (Cs )% Im?} (28)

Nielson has given explicit expressions for the vibrational energy levels of
the molecule. His formula for the energy of the molecule may be written as

G(vy, vg,....)

= Z (v + F) b+ 2 2 xue

k>i

g X -(v; + %‘) (vk + % + ?kZ‘,g:k Ii Iy 29
In the above, the cross coefficient gy of the azimuthal quantum numbers
I; and I3 depends on the vibration-rotation interaction of the molecule which
is a feature considered in Nielson’s work. This explains the absence of the
cross terms in the quantum number ‘[’ in the equation (28). Further, as
has been pointed out by Herzberg, the formula (29) gives in general a splitting
into fewer levels than what a group theoretical theory would indicate. This
is because the wavefunctions used in the evaluation of energy in (29) are the
functions (19) and not linear combinations of these falling under- different
representations of the point group of the molecule. A comparison of (28)
with (29) however indicates that the difference is only slight and consists in
the replacement of gy by a . coefficient gn'Y“ dependmg on the symmetry of
the state of the sublevel.

For a molecule with several degenerate modes of vibration, the sym-
metry of a general vibrational level is given by the formula

—@PXTY" X (30)

where the ‘X’ denotes the direct product multiplication of groups and
v, ¥,. . . . V5 are the degrees of excitation of the modes 1, 2,. .. .f respectively.
I'is a linear sum of the different irreducible representations of the molecule,
and thus by forming linear sums of products of the wavefunctions of the
type (19) which fall exclusively under one of the matrix representation of an
irteducible representation of ‘the symmetry group of the molecule, one can
evaluate the energy levels of the molecule. If one adopts the standard
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perturbation method involving N variables, the expected energy levels may
be written in the form

G0 (v, v,....0y)
= z, (vH—%‘)th— sz Xy "®

\
(v + ) (on+ %)+ 2 zawuh OD
i kpi
In the above, all coefficients x;,Y® pertaining to non-degenerate modes will
be independent of y and a, but the coefficients x;;¥® pertaining to degenerate
modes and the coefficients gs¥® will, in general, be different for levels of
different symmetries.

The author’s thanks are due to Professor Sir C. V. Raman for his kind
interest in this work.

SuMMARY

The presence of anharmonicity entails the interactions of the normal
modes of vibrations, which are independent in the harmonic oscillator
approximation. The method of Hartree has been applied to study the mutual
interaction of the normal modes, each assumed to be moving in the average
potential field of the rest, and to evaluate their wave functions and eigen-
values. Tt is shown that, to a first order of approximation, normal vibra-
tions belonging to the antisymmetric species do not interact with the rest
and suffer no anharmonicity at all. The wave functions and eigenvalues
of the different normal modes have been evaluated correct to the second
order. The question of degeneracy has been considered and expressions
have been given for the energy values of the different sublevels into which
an overtone level of a degenerate system may be expected to split up
according to group-theoretical considerations.
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