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1. INTRODUCTION

Tae well-known relativistic wave equation for an electron! was derived by
Dirac by factorising a second order equation into two linear equations.
It is the object of the present note to point out that the Dirac equation is
simply the eigenvalue equation of the magnitude of the momentum four-
vector, and that one can derive it by expressing the magnitude of the momentum
vector in terms of its four components.

The above idea enables one to generalise the Dirac equation and obtain
a relativistic equation for systems containing several electrons. In Section 3,
we have given the wave equation (Equation 16) for a system composed of
several particles and this is very similar in form to the Dirac equation.
Relativistic wave equations for a system of two electrons have previously
been given by Eddington,? Gaunt® and Breit® of which the one given by Breit
is the most satisfactory. By replacing the velocities v! and v of the electrons
by the spin matrices — ca’ and — ca™ in a Hamiltonian given by Darwin,*
Breit was able to obtain an approximate wave equation for two-electron
systems. It is shown in Section 4, that Equation (16) leads to the Breit
equation when it is represented in the product space of the two electrons.

2. THE MOMENTUM FOUR-VECTOR

Before proceeding further, we first state a result which was first proved
by Weyl® for a vector in a n-dimensional space and which we shall apply
presently.

(@) Lemma.—Let (x,, X,, - -+, Xn) be the co-ordinates of a vector _r)
in an Eucledian space with reference to a system of orthogonal axes, and
let r = (% + xg2 + ¢+« + xp%)?* denote the ‘magnitude’ or ‘length’ of
the vector , Then
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r= 2 (yuxy)’ . (1)

e

where the y,’s are elements of an abstract algebra satisfying the relations
(71&77 + Vv')’y.) = 28#1'

'The y’s can be expressed as matrices and for the case n = 4, they are
the Dirac matrices.

(b) The Dirac Equation.—Let x;, X;, x5 and x, (= ict) be the co-ordinates
of a world point, and similarly let p,, ps, ps and p, (= iE/c) denote the com-
ponents of the momentum four-vector. Besides x, and p,, we shall also
use the symbols x, and p, given by x, = ix, and p, = ip,. Expressed as
operators we have then p, = — ifd/dx, and p, = i#d[dx,.

Now the momentum four-vector P is a vector with constant magnitude
imoc where m, is the rest mass of the particle. Apply now the result (1)

-> .
to the vector P = (py, pss P3, o). We then get.

NG 'S

YiDi = imeC. ' ¥))]

L

[}
fa

If |4 ) is an eigenstate of the momentum four-vector, we get from (2)
the equation of an electron as

(inpo + é YiPi — imoc) |4 =0. 3)

For the y’s we now choose the following representations :—

—_ I 0 ial . _ —_ i0'2
Ve = ioy 0 /)’ "7 o, 0

0 - 10'3

Vs = lO’I 0

where I, o,, o, and o; denote respectively the unit matrix in two dimensions
and the three Pauli matrices.

Multiplying (3) to the left by — iy42, we get
.8 .
po+ 2 api+ Pmec) [$) =0 @
‘which is the Dirac equation in its conventional form.

When the electron is moving in a field, the components of the momentum
four-vector are given by (pi + efc Aj) (i =0, 1, 2, 3) where Ay, Ay, A;, Ag
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. 4
are the scalar and vector potentials of the field. From the relations 3} (p; +
. ) =1
elc A)? = — my2c?, we see that the magnitude of the momentum four-
vector is equal to imqc in this case also. Thus by replacing p; by (p; + e/c A;)
in (4), we get the equation for an electron moving in field as

{(Po + ng) + Z' a; (Pz + EeAi) + Bmoc} |4)=0. (5)

The left-hand side of (2) is similar in form to the expression of the length
of a vector in terms of its direction cosines. The y’s can thus be regarded
as the representations in a matrix algebra of the direction cosines of the
momentum four-vector. We have thus

Yi=-53- Oof  iy;=u (6)

where »; (i = 1, 2, 3, 4) are the components of the velocity four-vector. The
matrices iy; thus represent thé components of the velocity four-vector.

Since

a; = — i('y(!)-l Yi (l = 13 23 3):
we have

i _ %

D ¢

or

¥ = — caj : @)
Similarly

B=“«/1—%§- (8)

We thus get the well-known expressions for the components of the velocity
of the particle without calculating the commutation relations of x,, x, and
x; with the Hamiltonian.

In finding out the dynamical variables that are the classical analogues
of products (or quotients) of matrices, care should be taken to verify that
only the algebraical rules that are common to both the matrix and the ordi-
nary algebras are used. We have derived (4) by multiplying (2) by — iy?
making use of the relation (y,)™ y; = 1 which is common to both algebras,

2



38 | K. S. VISWANATHAN
though one could equally well derive (4) by multiplying (2) by — iy,. The
classical analogue of a; is thus — i(y)'y; and not — iy, ;.
3. SYSTEM OF MANY ELECTRONS
We have seen that the Dirac equation can be derived by expressing the

> ->
magnitude of the four-vector P + e/c A in terms of its components. Now
(Pi+ SA) = moews  (1=1,2,3,4)

MoX;
= MeXi sz’ ®)
-

where wu;, u,, u;, u, are the components of the velocity four-vector.
natural way to generalise the Dirac equation for a system of particles would
be to consider a four-vector whose components are respectively 2 mgcu;
(i=1,2, 3, 4, or 0) where the sum is to be taken over all the particles of
the system. We shall denote the components of this vector by (P, + e/c Ag),
(P, + efc Ay), (Py -+ efc A;) and (P; + e/c Ay).

Now in the special theory of relativity the components of the total
momentum are given by’

P;= — z_;fTidek + & mocus, , (10)

where T;i.. are the components of the energy-momentum tensor. In three-
dimensional form, we can write for the total momentum of field plus charges

°

S ,
.fﬁdv+2p - (10 a)
and for the energy
JWdv + 2 &, (10 b)
where
c i
S= i ExH

is the Poynting vector and

= o (B + HY)
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is the density of the field energy. For a system of charges, the electrostatic
energy (U), apart from the self-energy terms, is equal to

U=deV= E'eA"B y
, Ta
We thus see that the Quantltles
- g (AO’ A19 A2’ A3)
stand respectively for the energy-momentum of the field.

Let us denote the magnitude of f’)+ e/cK by iP’. P’ is equal to
2 myc only as a first approximation. We have in fact
i

2 3 n . 2
—P2=—¢? (Z,' mi) +2(Z mixik) , (1)
i k=1 \{=1 )
where
Mo
mi —3 V—_oz_;v_iz .
-
Thus
—P2=—c? (Z'mi’ +2X mim,-)
&
+ <2 mi?vi® +2 X mimjvrvj)
U .
or
.2 ' ey
pr_z mﬁc"(l — %) + 25 mimyer (1- Wy, (12)
Now

v- - v .
e (152
myimeic?

Ve E—E) )

~ Mimgic? (l + 12)_::%)9 (13)
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- where

Vij == (Vi - Vj). (14)
Substituting (13) in (12), we get

v..z 4
P2 ~ 2 mg%c? + 2 2 moimg;c? (1 + 2%)

= (2 myic)? + Z myimyjvi;>.
Thus a second approximation for P’ is given by

Pk z MgimMg;Vis® s

~ ‘=Z: My + % Zmoic . ) ( )

Applying now the results of Section 1 to the vector P + ejc A, we get the
equation for the system of electrons as

{(Po+'f:Ao)+ Zak(Pk+gAk)+BP'}l¢)=0- (16)

k=1

4, REPRESENTATION IN THE PRODUCT SPACE AND
THE BREIT EQUATION

Equation (16) describes the system as a whole and can be considered
to be the equation of motion for the centre of inertia of the system. Since
we are operating in a four-dimensional space, the matrices ax and B are all
four-dimensional. They refer to the entire-system of electrons and do not
contain any labels of the individual particles. In practice, however, one
needs equations that bring in explicitly the positions and spins of the individual
electrons of the system. We shall see presently that Equation (16) can be
transformed into one that contains explicit reference to the spins of the
electrons if it is represented in the product space of the electrons.

Since the y’s represent the direction cosines of the momentum four-
vector, their classical analogues are given by

”
2 miXik
i=1

Yk = P (k = l’ 29 3)

and

(& imic)
P

(17a)

4=



The Dirac Equation for Many-Electron Systems
Thus we have

. Ty
ok = — 107 e = — L
and
P
BP——CZ'mi'
Thus we have
3
Z “k(Pk'i‘gAk)'f'ﬂP'
k=1

-z Z'mzxzk) —p1

_ k=1
cxm;
i

= — EI o= El My

= mic = (4 W
* o

= — E mmc,\/l—-———— E m;v;?

correct to terms of the order of v;%/ct.

41

78)

(18)

Alternatively, one can get (18) without using the idea of direction

cosines at all. From (16) we have

k=1

and by definition,

—(Po+iA)=— z, myc;
4
this leads now to the right-hand of (18).

~For an electron moving in a field, we have

{Zak(Pk—l- Ak)-l-ﬁp'}llﬁ) —(Po+ A)l'/’)
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where P is the momentum conjugate to the position of the particle and A
_ is the vector potential of the field. Thus we have

Zmiviz=2vi-(Pi+gA"). o | (19)

The term e/c Zv; - At gives the interaction energy of the charges with
the magnetic field produced by the motion of the electrons.

Now the potentials arising from the motion of a charge e have been
worked out in Landau and Lifshitz’ and these are given by

O (E XY

2cr

¢ = 204)

“i®

where r is the distance of the charge from the field point and #n = r/r. When
there are several charges we must sum over all the charges. Thus the potentials
acting at the position of charge 1 due to the motions of charges 2, 3, -+, n
are given by v

e
L— pun—
¢ j=2 rlj

and

=e Z’ [vj + (vérlynlj) nlj] (20 b)

Let us suppose that our system consists of # electrons moving in a static
electric field V (r) (the field of the nuclel) We can write the potential energy
of the system as

U=—eP=—c3d¢
=1

where

14

h=VE)—3 ) <.
i

The factor 1 in the above expression for ¢; is introduced to take care that
the interaction energy between two electrons is not counted twice. The
energy is thus expressible as the sum of » different terms, each term standing
for the energy density of a particle, Consider now ¢,. We have
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4

¢1—V("1)"‘

’ e .

this can be interpreted as the potential at the field point of electron 1 due .
to the static field V (r) and the fields of (» — 1) moving charges, each having
a charge of — e/2. Thus the vector potential A' that arises as a consequence
of the motion of electrons 2, 3, ..., n can be obtained by multiplying (20 5)
by — 1. We have

’

e

¢ =,V (r) — 3 o >
1)
_ _ [V7 + (VJ ”1;) ”19]
¢ Z der 1j (21),
In general we have
Al = — e [vi + (vj - mij) mis)
‘ 4crij :

i

Substituting (21) in (19) we get

2(:2 Z [vi-v; + (v; - "1,]) (VJ n;;)] ) (22)

Y
i<1

Substituting (22) in (18) we get

3

Zak(Pk‘l'%Ak)‘l'ﬂP"

k=1

o2 ~ .
= — E m,,wdl—%—-% v; - P
L3

2 s o W
+ 4 Z’ [Vzrijva + O ’wr)z fvz CU 23)

i

We have seen that the velocity of the electron is related to the spin matrices
by means of the relations

V= —2Ca
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and

Let us therefore introduce a set of matrlces o' and B! by means of the
relatlons ‘

vi = — ca

and
p=—af1-% | (24)

A representation for the matrices o and g in the product space of the elec-
trons can be obtained by adopting the following rule®: If two physical systems
a and b are compounded to form a total system ¢, then the system space
H of ¢ is RX G where R is the system space of a and G of b. In the system
¢ obtained by composition, a Hermitean form A XxI; is associated with a
quantity a of a and I, X B with 8 of b where A and B are the forms associated
with e, B in R, G respectively, and I, and I, are the unit.-forms in R and G.

In the product space, therefore, the matrices o' and B are given by

al = IXIXI...XaXxI...xI
and _ :
ﬁi=IXIXI'°°XBXI~O-XI. ) (25)

In the above, the product contains » terms, and e« and B occur in the i-th
place; further the X denotes direct product multiplication. Substituting
(25), (24) and (23) in (16), we get the equation for the system as

Pot+ & Ar)+ a'Pid + moc (£ B
QERYS 13 e
o o - ol @ -r)@-rp [{, _
+2 Z . Z 2 $=0. (26)

ij . 4
i<§ i<q

For the case n = 2, the above equation reduces to the well-known Breit
equation.
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SUMMARY

It is shown that the Dirac equation for an electron moving in a field
can be derived by expressing the magnitude of the momentum four-vector
in terms of its components. By considering a four-vector whose components
denote the total momentum and energy of the particles, a relativistic equation
for a system of several electrons has been derived. A representation of
this equation has been made in the product space of the electrons and it is
shown that for the special case of a system containing two electrons, it leads
to the well-known Breit equation.
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