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We improve and generalize a resummation method of post-Newtonian multipolar waveforms from

circular (nonspinning) compact binaries introduced in Refs. [1,2]. One of the characteristic features of this

resummation method is to replace the usual additive decomposition of the standard post-Newtonian

approach by a multiplicative decomposition of the complex multipolar waveform h‘m into several

(physically motivated) factors: (i) the Newtonian waveform, (ii) a relativistic correction coming from

an ‘‘effective source,’’ (iii) leading-order tail effects linked to propagation on a Schwarzschild back-

ground, (iv) a residual tail dephasing, and (v) residual relativistic amplitude corrections f‘m. We explore

here a new route for resumming f‘m based on replacing it by its ‘-th root: �‘m ¼ f1=‘‘m . In the extreme-

mass-ratio case, this resummation procedure results in a much better agreement between analytical and

numerical waveforms than when using standard post-Newtonian approximants. We then show that our

best approximants behave in a robust and continuous manner as we deform them by increasing the

symmetric mass ratio � � m1m2=ðm1 þm2Þ2 from 0 (extreme-mass-ratio case) to 1=4 (equal-mass case).

The present paper also completes our knowledge of the first post-Newtonian corrections to multipole

moments by computing ready-to-use explicit expressions for the first post-Newtonian contributions to the

odd-parity (current) multipoles.
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I. INTRODUCTION

One of the prime targets for the currently operating
network of laser interferometer gravitational wave (GW)
detectors is the inspiral and merger of binary black-hole
systems. To detect and interpret the GW signals from such
systems one will need accurate templates to match theo-
retically computed signals to the noisy output of the de-
tectors. The prime analytical framework allowing one to
compute (within general relativity) the GW signal emitted
by a comparable-mass binary system in the mildly relativ-
istic regime1 x� ðv=cÞ2 �GM=ðc2RÞ � 1 is the post-
Newtonian (PN) approximation scheme (see Ref. [3] for
a review). This raises the issue of the convergence of the
PN expansion, or, in practical terms, of the largest value of
the PN-expansion parameter x for which the currently
known PN expansions yield accurate enough GW tem-
plates. Note that, when speaking of ‘‘convergence’’ in
this paper we shall not have in mind the mathematical
question of whether the full PN expansion of, say, the

(Newton-normalized) GW radiation flux, F̂TaylorðxÞ ¼Pþ1
n¼0 fnð�; logxÞxn is a mathematically pointwise conver-

gent series (for some fixed x belonging to some range) as
n ! þ1, but the more practical question of how small is
the numerical difference (say in the supremum, L1, norm)
between the currently known truncated PN expansions,

say, F̂
Taylor
N � TaylorNF̂ðxÞ ¼

P
N
n¼0 fnð�; logxÞxn, for

N ¼ 3 (3PN approximation), and the ‘‘exact’’ flux

F̂ExactðxÞ in some physically relevant interval 0< x<
xmax, where xmax is equal or close to the value correspond-
ing to the Last Stable (circular) Orbit (LSO). We shall then
consider that some resummation method, which transforms

F̂Taylor
N ðxÞ into F̂Resummed

N ðxÞ (say for N ¼ 3) is, effective if

supx<xmax jF̂Resummed
N ðxÞ � F̂ExactðxÞj is significantly smaller

than supx<xmax jF̂Taylor
N ðxÞ � F̂ExactðxÞj when xmax corre-

sponds to the LSO (i.e., xmax ¼ 1=6 in the extreme-mass-
ratio limit � ! 0).
It was pointed out by Cutler et al. [4] and Poisson [5]

that the convergence (in the sense just explained) of the
PN series is rather poor, especially near the LSO (i.e.,
when x ’ 1=6) in the extreme-mass-ratio case that they
considered. It was then suggested by Damour, Iyer,
Sathyaprakash [6], to use resummation methods to extend
the numerical validity of the PN expansions (at least) up to
the LSO. They used several resummation techniques, and,
in particular, Padé approximants. New resummation meth-
ods, aimed at extending the validity of suitably resummed
PN results beyond the LSO, and up to the merger, were
later introduced in the ‘‘effective-one-body’’ (EOB) ap-
proach and used to estimate the complete GW signal

1Our notation is M � m1 þm2, � � m1m2=M, � � �=M ¼
m1m2=ðm1 þm2Þ2, � � orbital frequency, v � ðGM�Þ1=3,
x � v2=c2 � ðGM�=c3Þ2=3. We shall generally use x as a PN
ordering parameter, and often use (without warning) units where
either c ¼ 1 or G ¼ 1. We recall that a term xn � v2n=c2n is said
to belong to the n-PN approximation.
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emitted by inspiralling, plunging, merging, and ringing
binary black-hole systems [7,8]. The EOB method has
been recently improved, notably by the introduction of a
new, resummed, 3þ2PN accurate2 waveform for the ‘ ¼
m ¼ 2 case [1,2]. For several, comparable-mass cases,
such a waveform (married to the EOB dynamics) has
been shown to agree remarkably well, both in phase and
in modulus, with numerical relativity data (see [9] for
review of binary black-hole numerical simulations). For
instance, Ref. [10] found a phase difference smaller than
�0:025 radians with Jena data all over the inspiral and
plunge up to merger, while Ref. [2] found a remarkable
amplitude agreement with published Caltech-Cornell data
over the inspiral and part of the plunge. Let us note in this
respect that the use of a theoretically less-accurate wave-
form (Newtonian-accurate multipolar waveform) still al-
lows for a rather small phase difference, but leads to
significantly larger differences in the modulus [11].

The main aim of this paper is to further improve the type
of resummed multipolar waveform introduced in [1,2] for
circularized (nonspinning) compact binaries. More pre-
cisely, we shall achieve here two goals: (i) on the one
hand, we shall generalize the resummed ‘ ¼ m ¼ 2 wave-
form of [1,2] to higher multipoles by using the most
accurate currently known PN-expanded results [12–14]
as well as the higher PN terms, which are known in the
test-mass limit [15,16], and (ii) on the other hand, we shall
introduce a new resummation procedure, which consists in
considering a new theoretical quantity, denoted below as
�‘mðxÞ, which enters the ð‘;mÞ waveform (together with
other building blocks, see below) only through its ‘-th
power: h‘m / ð�‘mðxÞÞ‘. In this paper we shall primarily
use the small-mass-ratio limit (� ! 0), in which one
knows both high PN expansions of �‘mðxÞ [15,16] and
the exact value of �‘mðxÞ from numerical studies of test
particles around black holes [4,5,17], to study the quality

of the convergence of �
Taylor
‘m ðxÞ. Then we shall explore the

robustness and consistency of our new approximants in the
comparable-mass case.

Though we leave to later sections the precise definition
of the various building blocks of our new, resummed
waveform, let us already sketch here its structure. The
basic idea is to write the ð‘;mÞ multipolar waveform
emitted by a circular3 nonspinning compact binary as the
product of several factors, namely,

hð�Þ‘m ¼ GM�

c2R
nð�Þ‘mc‘þ�ð�Þxð‘þ�Þ=2Y‘��;�m

�
�

2
;�

�

� Ŝð�ÞeffT‘me
i�‘m�‘

‘m: (1)

Here, � ¼ 0 for ‘‘even-parity’’ (mass-generated) multi-
poles (‘þm even), and � ¼ 1 for ‘‘odd-parity’’ (current-

generated) ones (‘þm odd); nð�Þ‘m and c‘þ�ð�Þ are numeri-

cal coefficients; Ŝð�Þeff is a �-normalized effective source

(whose definition comes from the EOB formalism); T‘m

is a resummed version [1,2] of an infinite number of
‘‘leading logarithms’’ entering the tail effects [19,20];
�‘m is a supplementary phase (which corrects the phase
effects not included in the complex tail factor T‘m), and,
finally, ð�‘mÞ‘ denotes the ‘-th power of the quantity �‘m,
which is the new building block introduced and studied in
this paper. (In previous papers [1,2] the quantity ð�‘mÞ‘
was denoted as f‘m.)
We shall discuss in quantitative details below the various

facts showing that the new ingredient �‘mðxÞ is a useful
quantity to consider (mainly because its PN expansion has
better convergence properties than the straightforward PN
expansion of h‘m itself). In this introductory section, we
shall whet the appetite of the reader by comparing the
performance of our new-resummed method, to some of
the previously considered PN-based methods. For definite-
ness, we shall do this initial comparison at the level of the
total energy flux, say F, which is related to the individual
waveforms via

Fð‘maxÞ ¼ X‘max

‘¼2

X‘
m¼1

F‘m ¼ 2

16�G

X‘max

‘¼2

X‘
m¼1

jR _h‘mj2

¼ 2

16�G

X‘max

‘¼2

Xm¼‘

m¼1

ðm�Þ2jRh‘mj2: (2)

Note that F‘m ¼ F‘jmj denotes the sum of two equal con-

tributions corresponding to þm and �m (m � 0 as F‘0

vanishes for circular orbits). This explains the explicit
factor two in the last two equations above, which relate
F‘m to h‘m. It is convenient to consider the total flux F for
continuity with previous studies of the convergence of PN
expansions that focussed on F [4–6,17] and because of its
physical importance as a measure of the radiation reaction
that acts on inspiralling binaries. To be fully precise, we

shall consider here the (rather accurate) approximation Fð6Þ
obtained by truncating the sum over ‘ in Eq. (2) beyond
‘ ¼ 6, and we normalize the result onto the Newtonian
(i.e., quadrupolar) result FN

22 ¼ 32=5ð�=MÞ2x5. In other

words, we consider here the quantity F̂ � Fð6Þ=FN
22.

Figure 1 compares and contrasts four different ways of
using the same PN information about the total Newton-

normalized GW flux function F̂ðvÞ ¼ FðvÞ=F22ðvÞ (i.e.,
the same finite set of coefficients ffkðlogxÞ; 1 � k � ng of
the n-PN expansion of the Newton-normalized flux

TaylornðF̂ðxÞÞ ¼
P

n
k¼0 fkðlogxÞxk of the GW flux). As in

2The notation 3þ2PN refers to a ‘‘hybrid’’ expression which
incorporates both the comparable-mass (� � 0) 3PN terms and
the extreme-mass ratio (� ¼ 0) 4PN and 5PN terms. See below
for the precise definition of the ‘‘hybridization’’ procedure we
use here.

3In this paper, we focus on the waveform emitted by exactly
circular orbits (see, however, footnote 12 below). We leave to
future work the study of ‘‘non-quasi-circular’’ corrections that
must be introduced in the realistic case of inspiralling and
plunging orbits (such corrections have already been introduced
in the EOB approach, see [10,18]).
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many previous works, we use the extreme-mass-ratio limit
� ! 0 as a laboratory for devising and testing resummation
procedures. Indeed, in that case, the quasicircular adiabatic
description of inspiralling binaries is expected to hold up to
the LSO (xLSOð� ¼ 0Þ ¼ 1=6) and one can compare PN-
based analytical results [15,16,21] to numerical estimates
of the GW flux, based on the numerical integration of some
(Regge-Wheeler-Zerilli or Teukolsky) wave equation
[4,17].

Panel (a) of the figure recalls the results of Refs. [4,5],
namely, the rather poor convergence of the standard Taylor

approximants of F̂ðxÞ in the full interval 0< x< xLSO
where one might hope to tap the PN information. For
clarity, we selected only three Taylor approximants: 3PN
(v6), 3.5PN ðv7Þ, and 5.5PN (v11). These three values
suffice (by contrast with the other panels) to illustrate the

rather large scatter among Taylor approximants, and the
fact that, near the LSO, the convergence toward the exact
value (solid line) is rather slow, and non monotonic. (See
Fig. 1 in Ref. [5] and Fig. 3 of Ref. [6] for fuller illustra-
tions of the scattered and non monotonic way in which
successive Taylor expansions approach the numerical
result.)
On the other hand, panel (b) recalls the results of [6],

namely, the significantly better (and monotonic) way in
which successive Padé approximants approach (in L1
norm on the full interval 0< x< xLSO) the numerical
result. Reference [6] also showed that the observationally
relevant overlaps (of both the ‘‘faithfulness’’ and the ‘‘ef-
fectualness’’ types) between analytical and numerical adia-
batic signals were systematically better for Padé
approximants than for Taylor ones. Note that our present

FIG. 1 (color online). Extreme-mass-ratio limit (� ¼ 0). Comparing various resummations of the (Newton-normalized) gravitational
wave energy flux: (a) standard Taylor expansion; (b) Padé resummation as proposed in Ref. [6] with vpole ¼ 1=

ffiffiffi
3

p
; (c) Padé

resummation flexing vpole according to the discussion of Sec. II of Ref. [2]; (d) new resummation technique based on the �‘m functions

discussed in this paper.
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panel (b) is slightly different from the corresponding re-
sults in panel (b) of Fig. 3 in [6] [in particular, the present
panel (b) exhibits a better convergence of the v11 curve].
This difference is due to the new treatment of the logarith-
mic terms / logx. Instead of factoring them out in front as
proposed in [6], we consider them here (following [2]) as
being part of the ‘‘Taylor coefficients’’ fnðlogxÞ when
Padéing the flux function. Note also that panel (b) follows

Ref. [6] in introducing a pole in the resummed flux F̂ðvÞ
located at the value vð�¼0Þ

pole ¼ 1=
ffiffiffi
3

p
.

By contrast, panel (c) of the figure illustrates the remark-
able improvement in the (L1) closeness between

F̂Pad�e-resummedðvÞ and F̂ExactðvÞ obtained, as recently sug-
gested by Damour and Nagar [2] (following ideas origi-
nally introduced in Ref. [22]), by suitably flexing the value
of vpole. As proposed in Ref. [2], vpole is tuned until the

difference between the resummed and the exact flux at the
LSO is zero (or at least smaller than 10�4). The resulting
closeness between the exact and tuned-resummed fluxes is
so good (compared to the previous panels, where the
differences were clearly visible) that we need to comple-
ment panel (c) of Fig. 1 with Table I. This table compares
in a quantitative way the result of the ‘‘untuned’’ Padé

resummation (vpole ¼ 1=
ffiffiffi
3

p
) of Ref. [6] to the result of the

‘‘vpole-tuned’’ Padé resummation of Ref. [2]. Defining the

function �F̂ðv;vpoleÞ ¼ F̂Resummedðv;vpoleÞ � F̂ExactðvÞ
measuring the difference between a resummed and the

exact energy flux, Table I lists both the values of�F̂ at v ¼
vLSO and its L1 norm on the interval 0< v< vLSO for
both the untuned and tuned cases. Note, in particular, how
the vpole-flexing approach permits to reduce the L1 norm

over this interval by more than an order of magnitude with
respect to the untuned case. Note that the closeness be-
tween the tuned flux and the exact one is remarkably good
(4:3� 10�3) already at the 3PN level.

Finally, panel (d) of Fig. 1 illustrates the even more
remarkable improvement in the closeness between

F̂New-resummed and F̂Exact obtained by means of the new
resummation procedure proposed in this paper. More pre-
cisely, panel (d) plots two examples of fluxes obtained
from our new �‘m representation, Eq. (1), for the individual
multipolar waveforms h‘m in the sum Eq. (2). These two
examples differ in the choice of approximants for the ‘ ¼

m ¼ 2 partial wave. One example uses for �22 its 3PN
Taylor expansion, T3½�22�, while the other one uses its 5PN
Taylor expansion, T5½�22�. All the other partial waves are
given by their maximum known Taylor expansion. Note
that the fact that we use here for the �‘m’s some straight-
forward Taylor expansions does not mean that our new
procedure is not a resummation technique. Indeed, the
defining resummation features of our procedure have four
sources: (i) the factorization of the PN corrections to the

waveforms into four different blocks, namely, Ŝð�Þeff , T‘m,

ei�‘m , and �‘
‘m in Eq. (1); (ii) the fact the Ŝð�Þeff is by itself a

resummed source whose PN expansion would contain an
infinite number of terms; (iii) the fact that the tail factor is a
closed form expression [see Eq. (19) below] whose PN
expansion also contains an infinite number of terms and
(iv) the fact that we have replaced the Taylor expansion of
f‘m � �‘

‘m by that of its ‘-th root, namely, �‘m.

Even more so than in the vpole-tuned case of panel (c),

the closeness between analytical and exact results exhib-
ited by the ‘‘new-resummed’’ case of panel (d) is so good
that it is undistinguishable by eye. We therefore comple-
ment panel (d) by displaying in Fig. 2 the residual differ-

ences �F̂ðvÞ ¼ F̂New-resummedðvÞ � F̂ExactðvÞ. We included
in Fig. 2 a third curve corresponding to the case where we
further resum our ‘‘new-resummed’’ flux by using for (the
5PN accurate) �22 its near-diagonal (2, 3) Padé approxim-
ant, say P2

3fT5½�22ðxÞ�g, instead of its Taylor expansion.

(The other �‘m’s being still used in Taylor-expanded form).

Note that the difference �F̂ at the LSO is 	 4:5� 10�4

when using T3½�22�, is �5:7� 10�3 when using T5½�22�
and is þ1:6� 10�3 when using P2

3fT5½�22ðxÞ�g. Note that
these numbers are in the same ballpark as the v11-accurate
vpole-tuned result (8:5� 10�4) quoted in Table I.

Discarding the very small difference corresponding to the
3PN-accurate T3 case as being probably accidental we
conclude that using the normal, near-diagonal4 Padé re-
summation of only the leading multipolar contribution �22

has the effect of significantly improving the agreement
with the exact result (compare the two 5PN-accurate
curves, T5½�22� andP2

3fT5½�22ðxÞ�g, in Fig. 2). We therefore

expect that Padéing some of the higher multipoles will

TABLE I. Errors in the flux of the two (untuned or tuned) Padé resummation procedures. From
left to right, the columns report: the PN order; the difference between the resummed and the
exact flux, �F̂ ¼ F̂Resummed � F̂Exact, at the LSO, and the L1 norm of �F̂, jj�F̂jj1 (computed

over the interval 0< v< vLSO), for vpole ¼ 1=
ffiffiffi
3

p
; the flexed value of vpole used here; �̂F at the

LSO and the corresponding L1 norm (over the same interval) for the flexed value of vpole.

PN order �F̂1=
ffiffi
3

p
LSO jj�F̂jj1=

ffiffi
3

p
1 vpole �F̂

vpole

LSO jj�F̂jjvpole1

3 (v6) �0:048 0.048 0.5334 7:06� 10�5 0.00426

3.5 (v7) �0:051 0.051 0.5425 5:50� 10�5 0.00429

5.5 (v11) �0:022 0.022 0.5416 2:52� 10�5 0.000 854

4We will explore other Padé approximants of �22 below.
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further improve the agreement between the energy fluxes.
Note also, in passing, that the new resummation procedure
explored here is more ‘‘predictive’’ than the vpole-flexing

technique in that it does not need to rely on the knowledge
of the exact answer. We will also show below that it is
‘‘robust’’ under the deformation brought about by increas-
ing the symmetric mass ratio � from 0 up to its maximal
value 1=4.

This paper is organized as follows: in Sec. II we explic-
itly define the building blocks entering the resummation of
the gravitational waveform. Section III analyzes the per-
formance of this resummation procedure in the extreme-
mass-ratio (� ! 0) case, while Sec. IV considers the
comparable-mass case ( � 0). We present some conclud-
ing remarks in Sec. V. The paper is completed by three
appendices, which present many useful formulas that com-
plete the discussion of the main text. In particular,
Appendix A provides the first explicit, ready-to-use ex-
pression for the 1-PN corrections to the symmetric-trace-
free (STF) current-multipole moments and to the corre-
sponding spherical-harmonics odd-parity multipoles for
arbitrary ‘ and m.

II. DEFINING THE BUILDING BLOCKS OF THE
RESUMMATION OF THE MULTIPOLAR

GRAVITATIONALWAVEFORM

Let us now explicitly define each of the building blocks
of our new-resummed waveform, Eq. (1). Note that our
methodology differs from the PN methodology in a basic
way. The PN approach consists in writing any relativistic
quantity as a sum of various contributions starting with the
so-called Newtonian approximation. In other words, a PN-

expanded multipolar waveform has the structure h‘m ¼
hN‘m þ h1PN‘m þ h1:5PN‘m þ . . . . By contrast to this additive

approach we will use here, as advocated in Refs. [1,2], a
multiplicative approach in which any relativistic quantity is
decomposed as a product of various contributions.5 One of
the factors of this multiplicative decomposition will be the
Newtonian waveform, hN‘m. Some of the other factors are

chosen so as to best capture part of the essential physics
contained in the waveform. The remaining factors will then
resum the subleading effects that have not been included in
the previous ones. First of all, it is convenient to introduce
the following notation

h‘m ¼ hðN;�Þ
‘m ĥð�Þ‘m; (3)

where hðN;�Þ
‘m represents the Newtonian contribution and

ĥð�Þ‘m the product of all the other factors in our multiplicative

decomposition. As all these other factors represent re-
summed version of PN corrections (of the type 1þOðxÞ)
their product will also have the structure ĥð�Þ‘m ¼ 1þOðxÞ.

A. The Newtonian multipolar waveform

Though all the work in this paper will focus on the

resummation of the PN-correcting factor ĥð�Þ‘m, let us, for

completeness, recall the well-known [12,14,23] structure
of the Newtonian multipolar waveform,6 here considered
for the adiabatic circular case. The Newtonian contribution

for circular orbits is, for given ð‘;mÞ, a function of x �
ðGM�=c3Þ2=3 and the two mass ratios X1 ¼ m1=M and
X2 ¼ m2=M

7

hðN;�Þ
‘m ¼ GM�

c2R
nð�Þ‘mc‘þ�ð�Þxð‘þ�Þ=2Y‘��;�m

�
�

2
;�

�
: (4)

Here, � denotes the parity of the multipolar waveform, i.e.,
even (� ¼ 0) for mass-generated multipoles and odd (� ¼
1) for current-generated ones. In the circular case, � is
equal to the parity of the sum ‘þm: � ¼ �ð‘þmÞ. In
other words � ¼ 0 when ‘þm is even, and � ¼ 1 when
‘þm is odd. The Y‘mð�;�Þ are the usual scalar spherical
harmonics,8 while

FIG. 2. Extreme-mass-ratio limit (� ¼ 0). Complement to
panel (d) of Fig. 1. Difference between the resummed and exact
energy flux, for different approaches to the resummation of the
�22 function. See text for explanations.

5This multiplicative approach can be naturally applied to the
multipolar waveform h‘m, which is a complex number.

6We mostly follow here the conventions of Refs. [12,23],
except that we take into account some of the simplifications
used in [14]. Note the presence of a factor 1=

ffiffiffi
2

p
in the relation

between the ð‘;mÞ Newtonian waveform and the corresponding

ð‘;mÞ radiative multipoles: Rheven‘m ¼ ðG= ffiffiffi
2

p ÞU‘m ¼ ðG= ffiffiffi
2

p ÞIð‘Þ‘m

for mass multipoles and Rhodd‘m ¼ �iðG= ffiffiffi
2

p ÞV‘m ¼
�iðG= ffiffiffi

2
p ÞSð‘Þ‘m for current multipoles.

7Note that X1 þ X2 ¼ 1, X1X2 ¼ �, where � is the symmetric
mass ratio � � m1m2=ðm1 þm2Þ2, while X1 � X2 ¼ signðm1 �
m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
, where the sign depends whether m1 >m2 or the

reverse.
8We use the Y‘m’s defined in Eqs. (2.7) and (2.8) of Ref. [23],

or equivalently by the s ¼ 0 case of Eqs. (4) and (5) of Ref. [12].
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nð0Þ‘m ¼ ðimÞ‘ 8�

ð2‘þ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 1Þð‘þ 2Þ

‘ð‘� 1Þ

s
; (5)

nð1Þ‘m ¼ �ðimÞ‘ 16�i

ð2‘þ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð‘þ 2Þð‘2 �m2Þ
ð2‘� 1Þð‘þ 1Þ‘ð‘� 1Þ

s
;

(6)

are (�-independent) numerical coefficients. Finally, the
�-dependent coefficients c‘þ�ð�Þ (such that jc‘þ�ð� ¼
0Þj ¼ 1), can be expressed in terms of � (as in
Refs. [12,14]), although it is more conveniently written
in terms of the two mass ratios X1 and X2 in the form9

c‘þ�ð�Þ ¼ X‘þ��1
2 þ ð�Þ‘þ�X‘þ��1

1

¼ X‘þ��1
2 þ ð�ÞmX‘þ��1

1 : (7)

In the second form of the equation we have used the fact
that, as � ¼ �ð‘þmÞ, �ð‘þ �Þ ¼ �ðmÞ.

B. The first three factors in the multiplicative
decomposition of the PN fractional correction ĥð�Þ

‘m

Let us recall that, in the comparable-mass case (� � 0),

the ĥð�Þ‘m-PN correction can be computed within the pertur-

bative multipolar-post-Minkowskian (MPM) formalism
[3,19,20], while in the test-mass limit (� ! 0) it can be
obtained by black-hole perturbation theory [15,16,24,25].

The final result is that ĥð�Þ‘m is given by a PN expansion of

the form ĥ‘m ¼ 1þ h1xþ h1:5x
3=2 þ . . . . For com-

parable-mass circularized compact binaries, the partial
wave which is known with the highest PN accuracy is the

leading even-parity quadrupolar wave ĥ22, which is known
to fractional 3PN accuracy [2,12,14,26]. Note that
Ref. [14] provides h‘m half a PN order more accurately
than Ref. [12] for multipolar orders ð‘;mÞ ¼ ð2; 1Þ, (3, 3),
(3, 2), (3, 1), (4, 3), (4, 1), (5, 5), (5, 3), and (5, 1). This
information is fully employed in this work. In the extreme-
mass-ratio case, the partial waves are known with even

higher PN accuracy. For instance, ĥ22 is known to 5.5PN
[15,16] and other multipoles to accuracies consistent with
5.5PN GW flux. As explained later, this information is also
appropriately exploited in our construction.

As indicated above, the resummation method we shall
use here consists in (i) decomposing the PN-correction

factor ĥð�Þ‘m ¼ 1þ h1xþ h1:5x
3=2 þ . . . into the product of

four factors, each of which has a similar PN-expansion,
1þOðxÞ, namely,

ĥ
ð�Þ
‘m ¼ Ŝð�ÞeffT‘me

i�‘m�‘
‘m; (8)

and then (ii) resumming separately each factor.
The choice of these various factors is based on our

physical intuition of the main physical effects entering
the final waveform. The first factor is motivated by think-
ing about the form of the equation satisfied by each partial
wave in the (circular) test-mass limit: indeed in this limit

ĥ‘m is the asymptotic value (at spatial infinity) of a solution
of a (frequency-domain ) wave equation of the Regge-
Wheeler-Zerilli type (see, e.g., Ref. [27]). The source
term appearing on the right-hand side of this equation is
a linear combination of terms linear in the stress-energy
tensor T�� of a test particle of mass � moving around a

black hole of mass M. As the effective-one-body method
has shown that the dynamics of comparable-mass black
holes can be mapped onto the dynamics of an effective
particle of mass�moving in some effective metric (which
reduces to the Schwarzschild metric of mass M when � !
0), it is natural to introduce (both when � ! 0 and � � 0)
effective source terms in the partial waves made up from
the important dynamical characteristics of the EOB dy-
namics, namely, the effective EOB Hamiltonian Heff and
the EOB angular momentumJ . This motivates us to define

as first factor in ĥ‘m an effective source term Sð�Þeff propor-

tional either to Heff or J . Note that this idea of factoring
Heff or J from the wave amplitude is similar to the
suggestion of Ref. [6] of factoring out a pole in the energy
flux. Indeed, the analytical continuation in x of the flux
function FðxÞ below the LSO inherits, in the � ! 0 limit, a
simple pole from the fact that FðxÞ is proportional to the
square10 of the energy of the ‘‘rotating source’’ (see dis-
cussion p. 893 of [6]).
Our second factor is motivated by thinking about the

structure of the ‘‘transfer’’ function relating (in the
comparable-mass case) the far-zone GW amplitude h‘m
to the near-zone one. If we keep, in the full Einstein
equations considered outside the binary system, only the
terms coupling the instantaneous ‘‘monopolar’’ Arnowitt-
Deser-Misner (ADM) mass of the system, MADM ¼ Mþ
binding energy ¼ Hreal, to the multipolar wave amplitude,
we get (in the circular approximation and in the Fourier
domain) a Schrödinger-type equation, for each multipole
order ‘, containing a potential V‘ðrÞ whose leading behav-
ior as r ! 1 is dominated by two effects: (i) the ‘ð‘þ
1Þ=r2 centrifugal barrier, and (ii) a more slowly decreasing
term �� 4MADM!

2=r coming from the coupling to a
curved (Schwarzschild-like) monopolar background met-
ric. One can solve this leading-order equation by means of

9When expressing c‘þ�ð�Þ as an explicit function of �, as in
Ref. [12], it is useful to note that c‘þ�ð�Þ vanishes in the equal-
mass case when ‘þ � is odd, which is equivalent (given that
� ¼ �ð‘þmÞ for circular orbits), to m being odd. In such cases
one can factor out, as in Refs. [12,14], from c‘þ�ð�Þ a factor � �
X1 � X2 ¼ signðm1 �m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
. The c‘ð�Þ in this paper are

the same as the s‘ð�Þ in [14]. Note however that in Appendix A
of Ref. [12], in the second line above Eq. (A7), the definition of
d‘ should include a supplementary factor m=�m ¼ 1=ðX1 � X2Þ
on the right-hand side.

10Note that in the � ! 0 limit both Heff and J have a square-
root singularity / 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p
at the light ring. See, e.g.,

Eqs. (56)–(58) below.
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Coulomb wave functions. When doing this, it is found that
each asymptotic partial wave is related to its corresponding
near-zone expression by a certain ‘‘tail’’ factor T‘m. It can
be checked that, in the comparable-mass case, this tail
factor represents the resummation of the infinite number
of leading logarithms (see Eqs. (7)–(9) in [2]) that appear
when computing asymptotic multipolar waves in the MPM
formalism [3,19,20]. Having so factorized two of the main

physical effects entering ĥ‘m, we define the two other
factors as the phase, ei�‘m and the modulus, f‘m of the
remaining quotiented Newton-normalized waveform. In
this subsection we discuss in detail the first three factors,
postponing to the following subsection the last one,
namely, the modulus f‘m.

Let us start by discussing the structure of the Ŝð�Þeff and

T‘m factors. In the even-parity case (corresponding to mass
moments), since the leading-order source of gravitational
radiation is given by the energy density, it is natural to
define

Ŝ
ð0Þ
effðxÞ ¼ ĤeffðxÞ ‘þm even: (9)

Here, Ĥeff is the effective EOB Hamiltonian (per unit �
mass), that we shall restrict here along the sequence of

EOB circular orbits. When � ! 0, Ĥeff reduces to the usual
conserved energy of a test-mass � in a Schwarzschild
background of mass M [see Eq. (56) below].

The explicit expression of Ĥeff , along circular orbits, as
a function of the frequency parameter x, cannot be written
in closed form [7,8]. However, it can be written in para-
metric form in terms of the EOB inverse radius parameter11

u ¼ 1=r. More precisely, we have

Ĥ eff ¼ Heff

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðuÞð1þ j2u2Þ

q
ðcircular orbitsÞ;

(10)

where u ¼ 1=r, and where AðuÞð� �geffective00 ðrÞÞ is the

crucial EOB radial potential and j ¼ J =ð�GMÞ is the
(dimensionless) angular momentum along circular orbits.
We recall that the PN expansion of AðuÞ has the form

ATaylorðuÞ ¼ 1� 2uþ 2�u3 þ
�
94

3
� 41

32
�2

�
�u4 þ a5�u

5

þOð�u6Þ; (11)

where the u4 term corresponds to 3PN contributions to the
EOB dynamics [28] and where we have parametrized the
presence of yet uncalculated 4PN (and higher) contribu-
tions to AðuÞ by adding a term þa5ð�Þu5 with the simple
form a5ð�Þ ¼ a5�. As in previous EOB work, we shall not
use the Taylor-expanded function ATaylorðuÞ, but replace it
by a suitably Padé resummed function AðuÞ.

The circular orbits in the EOB formalism are determined
by the condition @ufAðuÞ½1þ j2u2�g ¼ 0, which leads to
the following parametric representation of the squared
angular momentum:

j2ðuÞ ¼ � A0ðuÞ
ðu2AðuÞÞ0 ðcircular orbitsÞ; (12)

where the prime denotes d=du. Inserting this u-parametric
representation of j2 in Eq. (10) defines the u-parametric

representation of the effective Hamiltonian ĤeffðuÞ. We

can then obtain (at least numerically) Ĥeff as a function

of x by eliminating u between ĤeffðuÞ and the correspond-
ing u-parametric representation of the frequency parameter

x ¼ ðGM�=c3Þ2=3 obtained by the angular Hamilton equa-
tion of motion in the circular case

M�ðuÞ ¼ 1

�

@Hreal

@j
¼ MAðuÞjðuÞu2

HrealĤeff

; (13)

where Hreal denotes the real EOB Hamiltonian

Hreal ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðĤeff � 1Þ

q
: (14)

While in the even-parity case we shall factor out ĤeffðxÞ
as a ‘‘source term,’’ in the odd-parity one we explored two,
equally motivated, possibilities. The first one consists sim-

ply in still factoring ĤeffðxÞ; i.e., in defining

Ŝ
ð1;HÞ
eff ¼ ĤeffðxÞ ‘þm odd: (15)

The second one consists in factoring the angular momen-
tum J . Indeed, the angular momentum density �ijkx

j	0k

enters as a factor in the (odd-parity) current moments, and
J occurs (in the small-� limit) as a factor in the source of
the Regge-Wheeler-Zerilli odd-parity multipoles. This
leads us to define as a second possibility

Ŝ
ð1;JÞ
eff ¼ ĵðxÞ � x1=2jðxÞ ‘þm odd; (16)

where ĵ denotes what can be called the ‘‘Newton-

normalized’’ angular momentum, namely, the ratio ĵðxÞ ¼
jðxÞ=jNðxÞ with jNðxÞ ¼ 1=

ffiffiffi
x

p
. [This Newtonian normal-

ization being such that ĵðxÞ ¼ 1þOðxÞ.] We will compare
below the performances of these two possible choices.
Note that the PN expansions of these two possible sources
start as

Ĥ effðxÞ ¼ 1� 1
2xþOðx2Þ; (17)

ĵðxÞ ¼ 1þ
�
3

2
þ �

6

�
xþOðx2Þ: (18)

The second building block in our factorized decomposition
is the ‘‘tail factor’’ T‘m (introduced in Refs. [1,2]). As
mentioned above, T‘m is a resummed version of an infinite
numbers of ‘‘leading logarithms’’ entering the transfer
function between the near-zone multipolar wave and the

11As usual in EOB work, we use dimensionless variables,
notably r ¼ Rc2=GM, where R is the EOB Schwarzschild-like
radial coordinate.
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far-zone one, due to tail effects linked to its propagation in
a Schwarzschild background of mass MADM ¼ Hreal. Its
explicit expression reads

T‘m ¼ �ð‘þ 1� 2i ^̂kÞ
�ð‘þ 1Þ e�

^̂ke2i
^̂k logð2kr0Þ; (19)

where r0 ¼ 2GM and
^̂k � GHrealm� and k � m�. Note

that
^̂k differs from k by a rescaling involving the real

(rather than the effective) EOB Hamiltonian, Eq. (14).
The tail factor T‘m is a complex number, which already

takes into account some of the dephasing of the partial
waves as they propagate out from the near zone to infinity.
However, as the tail factor only takes into account the
leading logarithms, one needs to correct it by a comple-
mentary dephasing term, ei�‘m , linked to subleading loga-
rithms and other effects. This subleading phase correction
can be computed as being the phase �‘m of the complex

ratio between the PN-expanded ĥð�Þ‘m and the above defined

source and tail factors. In the comparable-mass case (� �
0), the 3PN �22 phase correction to the leading quadrupolar
wave was computed in Ref. [2] (see also Ref. [1] for the
� ¼ 0 limit). For the subleading partial waves, we com-
puted the other �‘m’s to the highest possible PN accuracy
by starting from the currently known 3PN-accurate
�-dependent waveform [14]. Our explicit results read

�22 ¼ 7

3
y3=2 þ 428�

105
y3 � 24� �y5=2; (20)

�21 ¼ 2

3
y3=2 � 493�

42
�y5=2; (21)

�33 ¼ 13

10
y3=2 � 80897

2430
� �y5=2; (22)

�32 ¼ 10þ 33�

15ð1� 3�Þ y
3=2; (23)

�31 ¼ 13

30
y3=2 � 17�

10
�y5=2; (24)

�44 ¼ 112þ 219�

120ð1� 3�Þ y
3=2; (25)

�43 ¼ 486þ 4961�

810ð1� 2�Þ y
3=2; (26)

�42 ¼ 7ð1þ 6�Þ
15ð1� 3�Þ y

3=2; (27)

�41 ¼ 2þ 507�

10ð1� 2�Þ y
3=2; (28)

�55 ¼ 96875þ 857528�

131250ð1� 2�Þ y3=2: (29)

Here, following Ref. [2], we define y � ðHreal�Þ2=3, which
gathers together relativistic corrections (like those entering
the tail) that depend on the instantaneous ADMmass of the
system, namely, Hreal, rather than the total ‘‘mechanical

mass’’M. Concerning the last �y5=2 corrections,12 it is not
clear whether they are more linked to the ADM mass or to
the mechanical mass. This is why we use the notation �y,
meaning that it could be replaced either by x or y [note that

in Ref. [2] we chose �y ¼ x inside the �24� �y5=2 correction
to �22, Eq. (11) there]. Indeed, these 2.5PN terms are not
known to 1PN fractional accuracy because we rely here on
the available 3PN (and not 3.5PN) accurate results of [14].
In the extreme-mass-ratio limit � ! 0, the information

needed to compute some of the higher-order PN correc-
tions to the �‘m’s is contained in the results of Ref. [15].
We leave to future work the task of exploiting this infor-
mation to complete the above �-dependent �‘m’s with
higher-order � ¼ 0 corrections. In addition we shall leave
here the �‘m’s in Taylor-expanded form. We leave to future
work an eventual comparison between numerically deter-
mined phases and (possibly resummed) analytic ones.

C. The fourth factor in the multiplicative
decomposition of the PN fractional correction ĥð�Þ

‘m

The fourth and last factor in the multiplicative decom-
position, Eq. (8), can be computed as being the modulus

f‘m of the complex ratio between the PN-expanded ĥð�Þ‘m

and the above defined source and tail factors. In the
comparable-mass case (� � 0), the f22 modulus correction
to the leading quadrupolar wave was computed in Ref. [2]
(see also Ref. [1] for the � ¼ 0 limit). For the subleading
partial waves, we compute here the other f‘m’s to the
highest possible PN accuracy by starting from the currently
known 3PN-accurate �-dependent waveform [14]. In addi-
tion, as originally proposed in Ref. [2], to reach greater
accuracy the f‘mðx;�Þ’s extracted from the 3PN-accurate
� � 0 results are complemented by adding higher-order
contributions coming from the � ¼ 0 results [15,16]. In the
particular f22 case discussed in [2], this amounted to add-
ing 4PN and 5PN � ¼ 0 terms. This hybridization proce-
dure is here systematically pursued for all the other
multipoles, using the 5.5PN accurate calculation of the
multipolar decomposition of the gravitational wave energy
flux done in Refs. [15,16]. It is worth emphasizing at this
stage that our hybridization procedure is not equivalent to

the straightforward hybrid sum ansatz, ~h‘m ¼ ~hknown‘m ð�Þ þ
~hhigher‘m ð� ¼ 0Þ (where ~h‘m � h‘m=�) that one may have

12Note that these Oð �y5=2Þ corrections in �‘m are the only terms
in the wave amplitude that we use here, which go beyond the
strict ‘‘circular limit’’ in that they include contributions propor-
tional to the (radiation-reaction-driven) time derivatives of the
orbital radius, or of the orbital frequency.
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chosen to implement. The detailed definition of the hybrid-
ization procedure that we use, as well as the reasons why
we think that our procedure is better than others, will be
explained below.

In the even-parity case, the determination of the modu-
lus f‘m is unique. In the odd-parity case, it depends on the
choice of the source which, as explained above, can be
either connected to the effective energy or to the angular
momentum. We will consider both cases and distinguish
them by adding either the label H or J of the correspond-
ing f‘m. Note, in passing, that, since in both cases the
factorized effective source term (Heff or J ) is a real
quantity, the phases �‘m’s are the same.

The above explained procedure defines the f‘m’s as
Taylor-expanded PN series of the type

f‘mðx;�Þ ¼ 1þ cf‘m1 ð�Þxþ cf‘m2 ð�Þx2
þ cf‘m3 ð�; logðxÞÞx3 þ . . . (30)

Note that one of the virtues of our factorization is to have

separated the half-integer powers of x appearing in the

usual PN expansion of hð�Þ‘m from the integer powers, the

tail factor, together with the complementary phase factor
ei�‘m , having absorbed all the half-integer powers.
We have computed all the f‘m’s (both for the H and J

choices) up to the highest available (� dependent or not)
PN accuracy. In the formulas for the f‘m’s given below we
‘‘hybridize’’ them by adding to the known �-dependent

coefficients cf‘mn ð�Þ in Eq. (30) the � ¼ 0 value of the

higher-order coefficients cf‘m
n0 ð� ¼ 0Þ. The 1PN-accurate

f‘m’s for ‘þm even and—thanks to the new results for
1PN current multipoles obtained in Appendix A for arbi-
trary ‘—also for ‘þm odd can be written down for all ‘.
In Appendix B we list the complete results for the f‘m’s
that are known with an accuracy higher than 1PN. Here, for
illustrative purposes, we quote only the lowest feven‘m and

fodd;J‘m up to ‘ ¼ 3 included.

f22ðx;�Þ ¼ 1þ 1

42
ð55�� 86Þxþ ð2047�2 � 6745�� 4288Þ

1512
x2

þ
�
114 635�3

99 792
� 22 7875�2

33 264
þ 41

96
�2�� 34 625�

3696
� 856

105
eulerlog2ðxÞ þ 21 428 357

727 650

�
x3

þ
�
36 808

2205
eulerlog2ðxÞ � 5 391 582 359

198 648 450

�
x4 þ

�
458 816

19 845
eulerlog2ðxÞ � 93 684 531 406

893 918 025

�
x5 þOðx6Þ; (31)

fJ21ðx;�Þ ¼ 1þ
�
23�

42
� 59

28

�
xþ

�
85�2

252
� 269�

126
� 5

9

�
x2 þ

�
88 404 893

11 642 400
� 214

105
eulerlog1ðxÞ

�
x3

þ
�
6313

1470
eulerlog1ðxÞ � 3 399 8136 553

4 237 833 600

�
x4 þOðx5Þ; (32)

f33ðx;�Þ ¼ 1þ
�
2�� 7

2

�
xþ

�
887�2

330
� 3401�

330
� 443

440

�
x2 þ

�
147 471 561

2 802 800
� 78

7
eulerlog3ðxÞ

�
x3

þ
�
39eulerlog3ðxÞ � 53 641 811

457 600

�
x4 þOðx5Þ; (33)

fJ32ðx;�Þ ¼ 1þ 320�2 � 1115�þ 328

90ð3�� 1Þ xþ 39544�3 � 253 768�2 þ 117 215�� 20 496

11 880ð3�� 1Þ x2

þ
�
110 842 222

4 729 725
� 104

21
eulerlog2ðxÞ

�
x3 þOðx4Þ; (34)

f31ðx;�Þ ¼ 1þ
�
� 2�

3
� 13

6

�
xþ

�
� 247�2

198
� 371�

198
þ 1273

792

�
x2 þ

�
400 427 563

75 675 600
� 26

21
eulerlog1ðxÞ

�
x3

þ
�
169

63
eulerlog1ðxÞ � 12 064 573 043

1 816 214 400

�
x4 þOðx5Þ: (35)

For convenience and readability, we have introduced the following ‘‘eulerlog’’ functions eulerlogmðxÞ:
eulerlog mðxÞ ¼ 
E þ log2þ 1

2 logxþ logm; (36)

which explicitly reads, when m ¼ 1, 2, 3,
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eulerlog 1ðxÞ ¼ 
E þ log2þ 1
2 logx; (37)

eulerlog 2ðxÞ ¼ 
E þ 2 log2þ 1
2 logx; (38)

eulerlog 3ðxÞ ¼ 
E þ log2þ log3þ 1
2 logx; (39)

where 
E is Euler’s constant, 
E ¼ 0:577 215 . . . and
logðxÞ denotes, as everywhere else in this paper, the natural
logarithm function.

D. Resumming the modulus factor f‘m

The decomposition of the total PN-correction factor ĥð�Þ‘m

into several factors is in itself a resummation procedure,
which has already improved the convergence of the PN
series one has to deal with: indeed, one can see that the
coefficients entering increasing powers of x in the f‘m’s
tend to be systematically smaller than the coefficients

appearing in the usual PN expansion of ĥð�Þ‘m. The reason

for this is essentially twofold: (i) the factorization of T‘m

has absorbed powers of m�, which contributed to making

large coefficients in ĥð�Þ‘m, and (ii) the factorization of either

Ĥeff or ĵ has (in the � ¼ 0 case) removed the presence of
an inverse square-root singularity located at x ¼ 1=3,
which caused the coefficient of xn in any PN-expanded
quantity to grow as 3n as n ! 1. To prevent some poten-
tial misunderstandings, let us emphasize that we are talking
here about a singularity entering the analytic continuation
(to larger values of x) of a mathematical function hðxÞ
defined (for small values of x) by considering the formal
adiabatic circular limit. The point is that, in the � ! 0
limit, the radius of convergence and therefore the growth
with n of the PN coefficients of hðxÞ (Taylor expanded at
x ¼ 0), are linked to the singularity of the analytically
continued hðxÞ, which is nearest to x ¼ 0 in the complex
x plane. In the � ! 0 case, the nearest singularity in the

complex x plane comes from the source factor ĤeffðxÞ or
ĵðxÞ in the waveform and is located at the light-ring
xLRð� ¼ 0Þ ¼ 1=3. In the � � 0 case, the EOB formalism
transforms the latter (inverse square-root) singularity into a
more complicated (‘‘branching’’) singularity, where

dĤeff=dx and dĵ=dx have inverse square-root singularities
located at what is called [8,2,11,18,29] the (effective)13

‘‘EOB light ring,’’ i.e., the (adiabatic) maximum of �,

xadiabELR ð�Þ � ðM�adiab
max Þ2=3 * 1=3.

Despite this improvement, the resulting convergence of
the usual Taylor-expanded f‘mðxÞ’s quoted above does not
seem to be good enough, especially near or below the LSO,
in view of the high accuracy needed to define gravitational
wave templates. For this reason, Refs. [1,2] proposed to

further resum the f22ðxÞ function via a Padé (3, 2) approx-
imant, P3

2ff22ðx;�Þg, so as to improve its behavior in the
strong-field-fast-motion regime. Such a resummation gave
an excellent agreement with numerically computed wave-
forms, near the end of the inspiral and during the beginning
of the plunge, for different mass ratios [1,10,18]. Here,
however, we wish to explore a new route for resumming
f‘m, based on replacing f‘m by its ‘-th root, say

�‘mðx;�Þ ¼ ½f‘mðx;�Þ�1=‘: (40)

Our basic motivation for replacing f‘m by �‘m is the
following: the leading ‘‘Newtonian-level’’ contribution to

the waveform hð�Þ‘m contains a factor!‘r‘harmv
�, where rharm

is the harmonic radial coordinate used in the MPM formal-
ism [30,31]. When computing the PN expansion of this
factor one has to insert the PN expansion of the (dimen-
sionless) harmonic radial coordinate rharm, rharm ¼
x�1ð1þ c1xþOðx2ÞÞ, as a function of the gauge-
independent frequency parameter x. The PN reexpansion
of ½rharmðxÞ�‘ then generates terms of the type x�‘ð1þ
‘c1xþ ::::Þ. This is one (though not the only one) of the
origins of 1PN corrections in h‘m and f‘m whose coeffi-
cients grow linearly with ‘. As we shall see in detail below,
these ‘-growing terms are problematic for the accuracy of
the PN expansions. Our replacement of f‘m by �‘m is a
cure for this problem.
More explicitly, the investigation of 1PN corrections to

GW amplitudes [12,30,31] has shown that, in the even-
parity case (but see also Appendix A for the odd-parity
case),

c
feven
‘m

1 ð�Þ ¼ �‘ð1� �

3
Þ þ 1

2
þ 3

2

c‘þ2ð�Þ
c‘ð�Þ � b‘ð�Þ

c‘ð�Þ

� c‘þ2ð�Þ
c‘ð�Þ

m2ð‘þ 9Þ
2ð‘þ 1Þð2‘þ 3Þ ; (41)

where c‘ð�Þ is defined in Eq. (7) and, consistently with the
notation of Appendix A,

b‘ð�Þ � X‘
2 þ ð�Þ‘X‘

1 : (42)

As we shall see below, the � dependence of cf‘m1 ð�Þ is quite
mild. For simplicity, let us focus on the � ¼ 0 case, where
the above result shows that the PN expansion of f‘m starts
as

feven‘m ðx; 0Þ ¼ 1� ‘x

�
1� 1

‘
þ m2ð‘þ 9Þ

2‘ð‘þ 1Þð2‘þ 3Þ
�

þOðx2Þ: (43)

The crucial thing to note in this result is that as ‘ gets large
(keeping in mind that jmj � ‘), the coefficient of x will be
negative and will approximately range between�5‘=4 and
�‘. This means that when ‘ 
 6 the 1PN correction in f‘m
would by itself make f‘mðxÞ vanish before the (� ¼ 0) LSO
x ¼ 1=6. For example, for the ‘ ¼ m ¼ 6 mode, one

13Beware that this ‘‘effective EOB light ring’’ occurs for a
circular-orbit radius slightly larger than the purely dynamical
(circular) EOB light ring (where Heff and J would formally
become infinite).
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has f1PN66 ðx; 0Þ ¼ 1� 6xð1þ 11=42Þ 	 1� 6xð1þ 0:26Þ,
which means a correction equal to �100% at x ¼ 1=7:57
and larger than �100% at the LSO, namely,
f1PN66 ð1=6; 0Þ 	 1� 1:26 ¼ �0:26. This is definitely in-

compatible with the numerical data we shall quote below.
Similar results hold also for the odd-parity f‘m’s, espe-
cially in the case where we factorize the J source (which
happens to have close similarities to the H-factored even-
parity f‘m). Indeed, we have extended the result of Eq. (43)
to the odd-parity case, i.e., we have computed, (using the
comparable-mass 1PN results of Ref. [31]) the 1PN cor-
rection in f‘m and �‘m. In the � ! 0 limit, we found that
(see Appendix A for more details and for a discussion of
the comparable-mass case)

fJ‘mðx; 0Þ ¼ 1� ‘x�
�
1þ 1

‘
� 2

‘2
þ m2ð‘þ 4Þ

2‘ð‘þ 2Þð2‘þ 3Þ
�

þOðx2Þ; (44)

which is structurally similar to the even-parity expression
quoted above.

Let us now see how the replacement of f‘m by the newly
defined �‘m, Eq. (40), cures this problem of abnormally
large 1PN corrections to the waveforms for large values of
‘. Indeed, the Taylor expansion of �‘m now starts as (say
for simplicity in the � ¼ 0, even-parity case)

�even
‘m ðx; 0Þ ¼ 1� x

�
1� 1

‘
þ m2ð‘þ 9Þ

2‘ð‘þ 1Þð2‘þ 3Þ
�

þOðx2Þ: (45)

Note that for large ‘ and arbitrary m the coefficient of x
now approximately ranges between �5=4 and �1. We
shall see below that the nice behavior of �‘m expected
from this 1PN estimate indeed holds for the exact �‘m, at
least in the � ¼ 0 case. In addition, the same structure is
found in the odd-parity �J

‘m’s. In particular, from Eq. (44)

above one finds

�J
‘mðx; 0Þ ¼ 1� x�

�
1þ 1

‘
� 2

‘2
þ m2ð‘þ 4Þ

2‘ð‘þ 2Þð2‘þ 3Þ
�

þOðx2Þ; (46)

where, for ‘ � 1, the coefficient of x again approximately
ranges between �5=4 and �1.
We have computed all the �‘m’s (both for the H and J

choices) up to the highest available (� dependent or not)
PN accuracy. In the formulas for the �‘m’s given below we
hybridize them by adding to the known �-dependent co-
efficients c�‘m

n ð�Þ in the Taylor expansion of �‘m’s,

�‘mðx;�Þ ¼ 1þ c
�‘m

1 ð�Þxþ c
�‘m

2 ð�Þxþ c
�‘m

3 ðlogðxÞ;�Þx3
þ . . . ; (47)

the � ¼ 0 value of the higher-order coefficients c
�‘m

n0 ð� ¼
0Þ. Beware that this definition of an hybrid �‘m is not
equivalent to that displayed in Eqs. (31)–(35) above of an
analogous hybrid f‘m (nor is it equivalent to a straightfor-
ward hybridization of h‘m). The primary hybridization
procedure that we advocate (and use) in this paper is the
one based on �‘m (i.e., replacing c

�‘m

n0 ð�Þ by c
�‘m

n0 ð0Þ when
n0 is beyond the maximal �-dependent PN knowledge).
The 1PN-accurate �‘m’s for ‘þm even and—thanks to
the new results for h‘m for ‘þm odd in Appendix A—also
for ‘þm odd are explicitly known for all ‘. For the 1PN
coefficient of the �‘m’s we explicitly have

c
�even
‘m

1 ð�Þ ¼ �
�
1� �

3

�
þ 1

2‘
þ 3

2‘

c‘þ2ð�Þ
c‘ð�Þ � 1

‘

b‘ð�Þ
c‘ð�Þ

� m2ð‘þ 9Þ
2‘ð‘þ 1Þð2‘þ 3Þ

c‘þ2ð�Þ
c‘ð�Þ ; (48)

c
�J
‘m

1 ð�Þ ¼�
�
1��

3

�
� 1

2‘

�
5��

3

�
� �

2‘2

þ 2‘þ 3

2‘2
b‘þ1ð�Þ
c‘þ1ð�Þ þ 2�

‘þ 1

‘2
b‘�1ð�Þ
c‘þ1ð�Þ

þ 1

2

‘þ 1

‘2
c‘þ3ð�Þ
c‘þ1ð�Þ�

m2ð‘þ 4Þ
2‘ð‘þ 2Þð2‘þ 3Þ

c‘þ3ð�Þ
c‘þ1ð�Þ :

(49)

For definiteness, we give in Appendix B the complete
results, for �‘m (even parity) and �J

‘m (odd parity), up to

‘ ¼ 8 included. Here, for illustrative purposes, we quote
only some of the lowest multipole results up to ‘ ¼ 3
included.

�22ðx;�Þ ¼ 1þ
�
55�

84
� 43

42

�
xþ

�
19 583�2

42 336
� 33 025�

21 168
� 20 555

10 584

�
x2

þ
�
1 062 0745�3

39 118 464
� 6 292 061�2

3 259 872
þ 41�2�

192
� 48 993 925�

9 779 616
� 428

105
eulerlog2ðxÞ þ 1 556 919 113

122 245 200

�
x3

þ
�
9202

2205
eulerlog2ðxÞ � 387 216 563 023

160 190 110 080

�
x4 þ

�
439 877

55 566
eulerlog2ðxÞ � 16 094 530 514 677

533 967 033 600

�
x5 þOðx6Þ;

(50)
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�J
21ðx;�Þ ¼ 1þ

�
23�

84
� 59

56

�
xþ

�
617�2

4704
� 10 993�

14 112
� 47 009

56 448

�
x2 þ

�
7 613 184 941

2 607 897 600
� 107

105
eulerlog1ðxÞ

�
x3

þ
�
6313

5880
eulerlog1ðxÞ � 1 168 617 463 883

911 303 737 344

�
x4 þOðx5Þ; (51)

�33ðx;�Þ ¼ 1þ
�
2�

3
� 7

6

�
xþ

�
149�2

330
� 1861�

990
� 6719

3960

�
x2 þ

�
3 203 101 567

227 026 800
� 26

7
eulerlog3ðxÞ

�
x3

þ
�
13

3
eulerlog3ðxÞ � 57 566 572 157

8 562 153 600

�
x4 þOðx5Þ; (52)

�J
32ðx;�Þ ¼ 1þ 320�2 � 1115�þ 328

270ð3�� 1Þ xþ 3 085 640�4 � 20 338 960�3 � 4 725 605�2 þ 8 050 045�� 1 444 528

1 603 800ð1� 3�Þ2 x2

þ
�
5 849 948 554

940 355 325
� 104

63
eulerlog2ðxÞ

�
x3 þOðx4Þ; (53)

�31ðx;�Þ ¼ 1þ
�
� 2�

9
� 13

18

�
xþ

�
� 829�2

1782
� 1685�

1782
þ 101

7128

�
x2 þ

�
11 706 720 301

6 129 723 600
� 26

63
eulerlog1ðxÞ

�
x3

þ
�
169

567
eulerlog1ðxÞ þ 2 606 097 992 581

4 854 741 091 200

�
x4 þOðx5Þ: (54)

III. RESULTS FOR THE EXTREME-MASS-RATIO
CASE (� ¼ 0)

A. Extracting the �Exact
‘m multipoles from black-hole

perturbation numerical data

To test our new resummation procedure based on the
�‘m’s we shall compare the analytical results defined by
our multiplicative decomposition Eq. (8) to the exact re-
sults obtained by numerical analysis of black-hole pertur-
bation theory. For most of the comparisons discussed
below we will rely on data kindly provided by E. Berti,
who computed the multipolar decomposition of the GW
flux from stable circular orbits above the LSO with a
frequency-domain code, which solves numerically the
Teukolsky equation with a point-particle source. (see, for
example, Ref. [17] and references therein). In addition, we
have complemented Fig. 5 by computing the quadrupolar
GW energy flux F22 from a sample of unstable circular
orbits with radius between 6M and 3:1M.

The result of the numerical computation is expressed in
terms of the multipolar pieces F‘m of the total exact flux,
Eq. (2). We shall only consider multipoles up to ‘ ¼ 6
included. The exact � ! 0 version of our new quantities
�‘mðx;�Þ’s are then obtained from the ratio of the exact
partial fluxes FExact

‘m to their Newtonian counterparts

FNewton
‘m as

�Exact;ð�Þ
‘m ðx; 0Þ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FExact
‘m =FNewton

‘m

q
jT‘mjŜð�Þeff

�
1=‘

; (55)

where, for � ¼ 0, we explicitly have

Ŝ
ð0Þ
effðxÞ ¼

1� 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3x

p ; (56)

and either

Ŝ
ð1;HÞ
eff ðxÞ ¼ 1� 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3x
p ; (57)

or

Ŝ
ð1;JÞ
eff ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3x
p : (58)

Still in the � ! 0 limit, we have Hreal ! M, and, from
well-known properties of the � function, the square modu-
lus of the tail factor T‘m reads

jT‘mj2 ¼ 1

ð‘!Þ2
4� ^̂k

1� e�4� ^̂k

Y‘
s¼1

½s2 þ ð2^̂kÞ2�; (59)

where now
^̂k ¼ mM� ¼ mx3=2 ¼ mv3.

B. Finding structure in the �Exact
‘m multipoles extracted

from numerical data

Let us first consider the properties of the exact �‘m’s. In
the odd-parity case we shall focus here on the
J -normalized quantity �J

‘m. We shall see that the �‘m’s

convey interesting information about the x dependence of
the multipolar GW amplitudes. Figure 3 exhibits the nu-

merical �‘m functions for ‘ � 6, versus x ¼ ðM�Þ2=3
(where we recall that � denotes the orbital frequency) up
to the � ¼ 0 LSO, x ¼ 1=6. Each panel of the figure dis-
plays, for each given 2 � ‘ � 6, the partial �‘m’s for the
various possible m’s, 1 � m � ‘ (we do not plot the
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FIG. 3 (color online). Extreme-mass-ratio limit (� ¼ 0). The exact functions �‘mðxÞ for 0< x< 1=6 extracted from E. Berti’s
numerical fluxes. Multipoles up to ‘ ¼ 6 are considered. Each panel corresponds to one value of ‘ and shows the even-parity partial
amplitudes (black online) together with the J-normalized odd-parity ones (red online).
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negative m’s since they correspond to the same value of
�‘m). The even-parity (‘þm even, black online) and odd-
parity (‘þm odd, red online) modes are shown together
for comparison.

Figure 3 displays the following noticeable facts: (i) to a
good approximation, all the �‘mðxÞ are straight lines14 [see
below]; (ii) for each value of ‘, the (negative) slopes of the
dominant m ¼ ‘ (even-parity), and subdominant m ¼ ‘�
1 (odd-parity) multipole modes are very close to each
other; and these slopes become closer and closer as the
value of ‘ increases (note, in particular, that for ‘ ¼ 6
�66ðxÞ and �65ðxÞ are practically coincident); (iii) for a
given value of ‘, and a given parity (even or odd), the
absolute value of the (negative) slope decreases monotoni-
cally as jmj decreases. This ‘‘order’’ in the exact data can
be analytically understood.

The property (i) means that the 1PN correction is al-
ready capturing most of the physical information, which
might turn out to be a useful fact to know (see below). We
illustrate this result in Fig. 4, which focuses on the quad-
rupolar (‘ ¼ 2) partial waves, and exhibits the exact �22

and �J
21 (solid and dashed lines) together with their 1PN

approximations (dotted lines). Note, for instance, that the
difference between the 1PN accurate, �1PN

22 , that we shall
denote15 T1½�22� � �1PN

22 ¼ 1þ c�‘m

1 x, and the exact one

�Exact
22 is equal, at the LSO, to �1PN

22 � �Exact
22 ¼ 0:8294�

0:8143 ¼ 0:0151, which is only 1.9% of the exact result
0.8143. The other multipoles exhibit a similar agreement
between the exact �‘m and their analytical 1PN represen-
tations. To understand analytically what underlies this
agreement, let us consider the ‘ ¼ m ¼ 2 case.
Numerically, from Eq. (50) we have, near the LSO [for
simplicity, we replace the logðxÞ terms present in the co-
efficients by their numerical values at x ¼ 1=6]

�22ðx; 0Þ 	 1� 1:024x� 1:942x2 þ 8:384x3 þ 2:038x4

� 21:690x5

	 1� 0:171ð6xÞ � 0:054ð6xÞ2 þ 0:039ð6xÞ3
þ 0:0016ð6xÞ4 � 0:0028ð6xÞ5: (60)

We see that the successive coefficients of the PN expansion
of �22 are such that, even at the LSO, the magnitudes of the
PN corrections beyond the 1PN one are rather small. They
are significantly smaller than the corresponding terms in
the usual PN expansion of the total flux. For instance, by
contrast to the coefficient �21:69, which enters the 5PN

correction in �22, let us recall that the coefficient [includ-
ing the logðxÞ estimated at the LSO] of the 5PN correction
in the usual PN-expanded flux is 	 �1321:402 (see,
e.g., [6]). Note that the latter 5PN contribution to the
PN-expanded flux considered at the LSO is
�1321:40=65 	 �0:17, which is as large as the 1PN con-
tribution to �22 and about 60 times larger than the corre-
sponding 5PN correction to �22. In addition, as the signs in
Eq. (60) fluctuate, there are compensations between the
higher PN contributions, as it will be clear from further
results presented below.
Property (ii) can be analytically understood by means of

the 1PN-accurate closed formulas, Eqs. (45) and (46).
Indeed, it is easily checked that the difference between
the coefficients of x Eq. (45) for m ¼ ‘ and Eq. (46) for
m ¼ ‘� 1 is of order Oð1=‘2Þ when ‘ gets large.
Finally, property (iii) is understood by noting that the

coefficients of x in Eqs. (45) and (46) have the structure
�ðað‘Þ þm2bð‘ÞÞ, where að‘Þ and bð‘Þ are positive.

C. Comparing Taylor and Padé approximants of �22

Let us now compare and contrast the convergence of
various PN approximants toward the exact (numerical) �22.
We first focus on the values of various approximants to
�22ðxÞ at the LSO, i.e., at xLSO ¼ 1=6 or actually the last
point in the numerical data computed by E. Berti, xlast ¼
1=6:00 001. At the point x ¼ xlast the numerical value of

the Newton-normalized ‘ ¼ m ¼ 2 partial flux is F̂22 �
F22=F

N
22 ¼ 0:8 927 266 028. This corresponds to

�Exact
22 ðxlastÞ ¼ 0:8 143 372 247. In Table II we compare

this value to several PN-based approximants: both Taylor
approximants, from 1PN to 5PN (T1½�22� to T5½�22�) and
several of the ‘‘around the diagonal’’ 5PN-accurate
Padé approximants, namely, P4

1fT5½�22�g, P1
4fT5½�22�g,

FIG. 4 (color online). Extreme-mass-ratio limit (� ¼ 0).
Comparison between the exact leading and subleading quadru-
polar amplitudes �22 and �J

21 and the corresponding 1PN-

accurate analytical ones.

14In the odd-parity case, ‘þm odd, this quasilinear behavior
up to the LSO, is particularly clear for the functions �J

‘mðxÞ’s,
making us consider �J

‘m as our best default choice. By contrast,
the H-normalized functions �H

‘mðxÞ have a more ‘-dependent
shape that the reader can figure out by noting the link between
them: �H

‘m ¼ �J
‘m=ð1� 2xÞ1=‘.

15Here and in the following we shall denote the truncated n-PN-
accurate expansion of any function fðxÞ as Tn½fðxÞ� �
f0 þ f1xþ . . .þ fnx

n.
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P3
2fT5½�22�g, and P2

3fT5½�22�g. Note how the sequence of

Taylor approximants to �22 nicely approaches the exact
value, especially starting with the 3PN approximation.
Probably by accident, the Taylor 3PN approximant,
T3½�22�, happens to be closer to the exact value than the
higher-order approximants T4 and T5. Besides this acci-
dental closeness of T3, the important thing to note is the
very small dispersion (within �1:8� 10�3) of T3, T4, and
T5 around the correct value. This excellent behavior of the
Taylor approximants of �22 should be contrasted with the
much worse behavior of the standard Taylor approximants
either of the flux or of the waveforms (see, for example,
Fig. 1 in Ref. [5], Fig. 3 in Ref. [6] and Fig. 6 below, where
we directly compare the usual Taylor approximants to the
waveform to our new �‘m-based approximants). Note that
when considering ‘‘Taylor approximants to �22’’ we are
actually speaking of a specifically resummed approximant

to the waveform ĥ22. This approximant has the factorized
form of Eq. (8), and is made of the product of several
resummed constituents. Even the last factor f22 of this
product is not used in Taylor-expanded form (which would
be T5½f22�), but in the minimally resummed way
fResummed
22 ¼ ðT5½�22�Þ2.
We have also explored several ways of further resum-

ming �22, i.e., of replacing its PN-expanded form T5½�22�
by various non-Taylor approximants. In view of the good
closeness of the 1PN approximation to �22 to the exact
result we explored, in particular, some ‘‘factorized’’ ap-
proximants (similar to those considered for the AðuÞ func-
tion in Ref. [32]) of the type �22ðxÞ ¼ ð1þ c�22

1 xÞ ��22ðxÞ.
We will not show our results for these approximants here.
Instead, let us discuss the use of Padé approximants for
representing T5½�22� as a rational function16 of x. As an

example, we present in Table II the values of �22ðxlastÞ
predicted by using the four ‘‘around the diagonal’’ 5PN
accurate Padé approximants, namely, P4

1fT5½�22�g,
P1
4fT5½�22�g, P3

2fT5½�22�g, and P2
3fT5½�22�g. The important

thing to note is that all these approximants are both con-
sistently clustered among themselves, as well as closely
centered around the correct numerical value (within
�1:3� 10�3). Note also that, apart from T3, all the Padé
approximants are closer to the exact value than the T4 and
T5. (Though the a priori less-accurate T3 approximant
happens to be closer to the exact value than all other
approximants, we consider that this is coincidental because
the subsequent Taylor approximants T4 and T5 do not
exhibit such a close proximity.)
We display in Fig. 5, the various 5PN-accurate approx-

imants discussed above (together with the 1PN-accurate
T1½�22� for comparison) to �22ðxÞ over the larger interval
0 � x � xLR, where xLR ¼ 1=3 is the value of the fre-
quency parameter x at the (� ¼ 0) ‘‘light ring.’’ Note
that, while all the 5PN approximants stay very close to
each other (and to the exact numerical value, red online) up
to the LSO, they start diverging from each other when x *
0:2. This motivated us to extend the numerical data of E.
Berti beyond the LSO, i.e., to consider the GW flux emitted
by unstable circular orbits of Schwarzschild radii 3GM �
R � GMr � 6GM, corresponding to 1=6 � x � 1=3. See
Table III for results obtained for such a sample of sub-LSO
orbits (they also appear in Fig. 5 as empty circles). These
numbers have been computed with the time-domain code
described in Ref. [33]. A resolution of �r� ¼ 0:01

TABLE II. Closeness of various resummed approximants to
�22 at the LSO, xLSO ¼ 1=6, or actually xlast ¼ 1=6:00 001. The
right-most column lists the difference ��22 between the re-
summed approximant and the exact value at x ¼ xlast.

Approximant �22ðxlastÞ ��22ðxlastÞ
�Exact
22 0.8 143 372 247 0

T1½�22� 0.8 293 653 638 0.0 150 281 391

T2½�22� 0.7 754 188 106 �0:038 9184 141
T3½�22� 0.8 142 342 355 �0:0 001 029 892
T4½�22� 0.8 158 069 452 0.0 014 697 205

T5½�22� 0.8 130 176 477 �0:0 013 195 770
P4
1fT5½�22�g 0.8 148 012 716 0.0 004 640 469

P1
4fT5½�22�g 0.8 146 954 164 0.0 003 581 917

P3
2fT5½�22�g 0.8 132 320 684 �0:0 011 051 563

P2
3fT5½�22�g 0.8 146 954 104 0.0 003 581 857

FIG. 5 (color online). Extreme-mass-ratio limit (� ¼ 0).
Resummation of the function �22ðxÞ on the interval 0 � x �
1=3: comparison between various Taylor and Padé approximants
and the exact function obtained from (both frequency-domain
and time-domain) numerical calculations. The time-domain data
points (see Table III) are indicated as empty circles.

16As in Ref. [2] we consider in this work the logarithmic terms
(of the type eulerlogmðxÞ in Eqs. (50)–(54)) as part of the
coefficients when Padéing �‘mðxÞ
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was used. To test the accuracy of our numerical procedure

we computed the energy flux F̂22 at r ¼ 6 and compared it
with the value obtained via Berti’s frequency-domain
code (at the very close value r ¼ 6:00 001). We obtained

F̂time
22 ¼ 0:897 342 to be contrasted with F̂

freq
22 ¼ 0:892726,

which yields a fractional difference �F̂=F̂freq 	 0:005.
This gives an indication of the accuracy of our time-
domain results, though we expect, for various numerical
reasons, that the accuracy degrades as r gets below 4.

We do not wish to give too much weight to the indication
given by our sub-LSO results on the behavior of the
function �22ðxÞ below the LSO. Indeed, on the one hand,
the GW flux along sub-LSO circular orbits does represent
the analytic continuation of the function FðxÞ yielding the
GW flux along (stable) super-LSO circular orbits. As such,
the empty circles in Fig. 5 do provide correct mathematical
information about the analytical continuation of the func-
tion �22ðxÞ that we are trying to best approximate. On the
other hand, we are evidently aware that the real dynamics
of the ‘‘plunge’’ strongly deviates from the sequence of
unstable circular orbits below the LSO and that the GW
flux emitted by a plunging test mass (or effective source)
will not be correctly represented by this mathematical
continuation of FðxÞ. However, we expect, especially on
the basis of the EOB formalism, which has shown that
plunging orbits remain approximately quasicircular, that,
in view of the present approach where we decompose the
GW amplitude into several different factors having differ-
ent physical origin, the mathematical continuation of the
�22 part is likely to continue to capture important aspects
of the nonlinear relativistic corrections to the waveform
[note that we have in mind using our factorized waveform
Eq. (8) along the EOB quasicircular plunge together with

the correct instantaneous source Ŝð�Þeff and tail corrections

T‘m]. However, we are also aware that some aspects of the
EOB plunge do physically differ, near the end of the
plunge, in a relevant way from the physics included in
the mathematical continuation of �22ðxÞ, namely, the fact
that the ratio ðm�Þ2=V‘ðrÞ (where V‘ðrÞ is the Zerilli
potential) stays always small along the real plunge, while

it increases more along unstable circular orbits and ends up
reaching values of order unity. In other words the part of
�22ðxÞ, which takes into account the filtering of V‘ðrÞ, will
be different in the two cases for orbits near the light ring.
However, with due reserve we think that the first three
empty circles on Fig. 5 do provide a guideline for selecting
among the various diverging PN approximants the ones
that are likely to provide, within the EOB formalism, a
good zeroth-order approximation to the wave amplitude
emitted by real plunging orbits. But, we expect that it will
be necessary to correct such a zeroth-order quasicircular
wave amplitude by non-quasi-circular corrections of the
type that has already been found necessary in Refs. [1,18]
to obtain a close agreement between EOB waveforms and
numerical waveforms.
If we use such a guideline, Fig. 5 suggests that the best

continuations of �22ðxÞ below the LSO are given by the
three particular Padé approximants, P1

4, P4
1, and P2

3.

However, as P4
1 develops a spurious pole (which is barely

visible on the left upper corner of the figure because it is
very localized) at x 	 0:038wewill discard it. By contrast,
the other two are robust against the presence of spurious
poles in the useful regime x & 1=3 (although they develop
poles for higher values of x, namely, below the formal
‘‘event horizon’’ value x ¼ 1=2). In the following, we shall
choose P2

3 as our current best-bet approximant to the �22

function (notably because this is the natural near-diagonal
default Padé approximant). Note finally, in Fig. 5, how the
simple 1PN-accurate Taylor approximant of �22ðxÞ suc-
ceeds in providing a reasonably good representation of
�Exact
22 ðxÞ over a very large range of x values.

D. Comparing resummed waveforms to
Taylor-expanded and exact ones

Up to now, we focussed on the convergence of various
PN-based approximants toward the numerically deter-
mined value of the fourth technical building block �22

entering the dominant quadrupolar wave.
In this subsection we shall investigate instead the con-

vergence of various possible PN-based approximants to-
ward the more physically relevant Newton-normalized

GW amplitudes ĥ‘m. On the one hand, we shall consider
not only the dominant ‘ ¼ m ¼ 2 wave, but also a selec-
tion of subdominant partial waves. On the other hand, we
shall consider other PN-based approximants than those
considered above. In particular, we shall compare and

contrast the exact moduli jĥ‘mj both with standard high-

accuracy Taylor-expanded waveforms (jĥ‘mj ¼ 1þ c1xþ
c1:5x

3=2 þ c2x
2 þ . . . ), and with our new ‘‘resummed with

Taylor [�]’’ waveforms (jĥ‘mj ¼ ŜeffjT‘mj�‘
‘m with �‘m ¼

1þ c01xþ c02x
2 þ c03x

3 þ . . . ). We shall also analyze the

performance of our new ‘‘resummed with Padé½��’’ wave-
forms (jĥ‘mj ¼ ŜeffjT‘mj�‘

‘m with �‘m ¼ Pq
p½1þ c01xþ

c02x2 þ c03x3 þ . . .�), at least for the ‘ ¼ m ¼ 2 dominant

TABLE III. Newton-normalized energy flux, and partial am-
plitudes f22 and �22, for a sample of unstable circular orbits
computed via the time-domain code of Ref. [33]. These values of
�22 are represented as empty circles in Fig. 5. The case r ¼ 6 is
shown here only for comparison with frequency-domain-based
results.

r x F̂time
22 ftime

22 �time
22

6 0.1666 0.897 0.665 0.815

5 0.2000 0.995 0.615 0.784

4 0.2500 1.378 0.562 0.750

3.5 0.2857 2.202 0.539 0.734

3.1 0.3226 6.665 0.513 0.716
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mode.17 For definiteness, we discuss here only, besides the

dominant even-parity quadrupole mode jĥ22j, the first sub-
dominant odd-parity mode jĥ21j, as well as the dominant

‘ ¼ 4 mode jĥ44j.
Figure 6 focusses on jĥ22j. The left panels, (a) and (c),

display the standard Taylor-expanded jĥ22j ¼ 1þ c1xþ
c1:5x

3=2 þ c2x
2 þ . . . . More precisely, panel (a) considers

the standard Taylor-expanded amplitudes up to 3PN accu-
racy included, while panel (c) displays the standard Taylor-
expanded amplitudes from 3PN to 5.5PN accuracy. By
contrast, the right panels, (b) and (d), display our new
‘‘resummed with Taylor [�]’’ approximants: panel (b) ex-

hibits the 1PN, 2PN and 3PN approximants, while panel
(d) contrasts the 3PN, 4PN and 5PN approximants.18

Consistently with previous studies [5,6] (done at the level
of the flux) there is evidently more scatter in the standard
Taylor-expanded amplitudes than in the resummed ones. In
particular, note that the standard 1PN-accurate Taylor ap-

proximant gives a grossly inaccurate representation of ĥ22
as soon as x * 0:05 (building up to �40% at the LSO),
while our new-resummed T1½�22�-based waveform not
only captures the qualitative behavior of the exact wave-
form, but also reproduces it quantitatively within �4%
even at the LSO. On the other hand, for 3PN and higher
accuracies the resummed waveforms exhibit a very close

FIG. 6 (color online). Extreme-mass-ratio limit (� ¼ 0): Various representations of the jĥ22j waveform modulus. Left panels:
standard PN-expanded amplitudes. Right panels: Various resummed amplitudes. See text for details.

17In view of the remarkable agreement, displayed in panel (d)
of Fig. 1, between the exact total flux F̂ðxÞ and the results
obtained by using only ‘‘resummed with Taylor [�]’’ approx-
imants, we will not discuss here the probable improvements that
a further Padéing of the subdominant �‘m’s might bring in.

18Note that because our tail factor (together with ei�‘m ) has
conveniently resummed all the half-integer powers of x, the left
panels have to include half-integer PN approximants, while the
right panels have only integer-power approximants.
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agreement (within �1� 10�3) with the exact one.19 In

previous work [1,2], we had proposed to resum ĥ22 by Padé
(P3

2) approximating f22 ¼ ð�22Þ2 instead of �22. For com-
pleteness, we compare in Fig. 7 our previous best proposal
to the cluster of our current best proposals (based on
various Taylor and Padé approximants of �22). In first
approximation, this figure shows a rather close agreement
between all these approximants. In second approximation,
one can note that some of our new approximants, namely,
P2
3, P

1
4, and P4

1, are closer to the exact numerical results.

From the pragmatic point of view, our current best-bet
approximants are therefore our two new, pole-free, Padé
approximants based on P2

3fT5½�22�g and P1
4fT5½�22�g. We

have a slight preference for P2
3fT5½�22�g, which is the

normal subdiagonal Padé (admitting a simple continuous
fraction representation) and which was close to the sub-
LSO numerical results (see Fig. 5).

Figure 8 exhibits the results for jĥ21j. We compare and
contrast: (i) standard Taylor-expanded amplitudes (top
panel), (ii) new-resummed amplitudes when factoring J
(middle panel), and (iii) new-resummed amplitude when
factoring Heff (bottom panel). For brevity, the ‘‘standard
Taylor-expanded’’ top panel exhibits only the integer-order

PN approximants. Note again, as in the case of jĥ22j
discussed above, how the use of a standard 1PN-accurate
Taylor-expanded waveform leads to a grossly inaccurate
approximation to the exact result, building up to �22% at

the LSO. By contrast, our new-resummed T1½�J
21�-based

approximant (middle panel) or, for that matter, the
T1½�H

21�-based one (bottom panel), captures both qualita-

FIG. 7 (color online). Extreme-mass-ratio limit (� ¼ 0).
Resummation of the jĥ22j waveform modulus: contrasting ‘‘re-
summed with Taylor [�]’’ approximants with some 5PN accurate
‘‘resummed with Padé [�]’’ approximants. See text for defini-
tions and explanations.

FIG. 8. Extreme-mass-ratio limit (� ¼ 0): various representa-
tions of the jĥ21j waveform modulus. Top panel: standard PN
expansion. Middle panel: resummation factoring the angular
momentum J . Bottom panel: resummation factoring the energy
Heff .

19As before, the fact that the resummed T3½�22� approximant is
closer to the exact result than the T4½�22� and T5½�22� ones is
probably coincidental. It is more important to note that panel (d)
exhibits much less scatter than panel (c).
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tively and quantitatively the correct behavior of the exact
waveform.20 Ultimately, for 3PN and 4PN accuracies, both
resummed waveforms exhibit a very close agreement
(within �3� 10�3 for the J case) with the exact one.
The standard Taylor-expanded ones are also close to the
exact results, but visibly less close than our new
approximants.

Finally, Fig. 9 exhibits the results for the jĥ44j wave-
forms. Note that ĥ44 and ĥ42 are the last partial multipoles
for which the analytical � ¼ 0 result is known to 3PN
accuracy. The comparisons between standard Taylor-
expanded and new-resummed waveforms displayed in
Fig. 9 leads to essentially the same conclusions as above.
In particular, the standard Taylor-expanded 1PN accurate
waveform is even more grossly inaccurate21 than before, as
the difference builds up to about �90% at the LSO (i.e.,

jĥ1PN44 ðxLSOÞj 	 0:0793 instead of jĥExact44 jðxLSOÞ ¼
0:8334)! Let us also emphasize that, as we could have

already pointed out for jĥ22j and for jĥ21j, the new-
resummed approximant based on the 2PN-accurate
Taylor-expanded �‘m’s is systematically less good than
the one based on the 1PN-accurate Taylor-expanded
�‘m’s. This suggests that for waveforms that are subdomi-
nant with respect to h44 and h42 (for which one does not
know the 3PN expansion of the waveform) one will be
better off, if one intends to use Taylor-expanded �‘m’s, in
employing only the 1PN accurate �‘m’s. However, as we
have shown in the ‘ ¼ m ¼ 2 case (see Table II and

Fig. 7), we expect that a suitable Padé resummation of
the highest accuracy available results will yield better
agreement than simply using the Taylor 1PN-accurate
�‘m’s. In this respect, let us recall that, as exhibited in
Eqs. (45) and (46), the 1PN corrections for all even- and
odd-parity multipoles are known. In the � ! 0 limit they
are given by Eqs. (45) and (46); in the comparable-mass
case the even-parity result is given by Eq. (41), while the
odd-parity result is given in Appendix A.

IV. RESULTS FOR THE COMPARABLE-MASS
CASE (NOTABLY THE EQUAL-MASS CASE,

� ¼ 0:25)

Let us continue to test our resummation procedure by
considering the comparable-mass case � � 0, and notably
the equal-mass case, � ¼ 1=4 ¼ 0:25. In this case, we
cannot rely on the knowledge of the exact multipolar
waveforms from comparable-mass circular orbits. Indeed,
though this problem can in principle be numerically inves-
tigated for binary black-hole systems by considering the
helical Killing-vector approach (see Ref. [34] and refer-
ences therein), there are no presently available results
where one goes beyond the conformally flat approximation
to Einstein equations. (But see Ref. [35] for the case of
binary neutron star systems.) For what concerns the avail-
able numerical results on coalescing black holes, previous
work has shown that the deviations from the adiabatic-
quasi-circular approximation were far from being negli-
gible near the LSO, so that they cannot be directly com-
pared to the circular waveforms investigated in this paper.
We leave to future work a comparison between suitably
non-quasi-circular corrected analytical waveforms and the
results of numerical simulations of coalescing black holes.
In the absence of exact waveforms to be compared to,

we shall content ourselves here by investigating the inner
consistency and robustness of our current best-bet analyti-

FIG. 9. Extreme-mass-ratio limit (� ¼ 0): various representation of the jĥ44jwaveform modulus. Left panel: standard PN expansion.
Right panel: our new resummation.

20The fact that the resummed T1½�H
21�-based approximant is

extremely close to the exact result (see bottom panel) is probably
coincidental. We do not expect this coincidence to hold for
higher-order partial waves.
21This is the consequence of the analytical fact noted above that
the 1PN correction to the waveform is negative and grows
linearly with ‘. We recall that this fact was one of our motiva-
tions for introducing the new quantities �‘m.
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cal approximants as suggested by the � ¼ 0 results re-
ported above. More precisely, we shall study the depen-
dence of �‘m and the corresponding new-resummed

waveform jĥ‘mj on the two EOB deformation parameters
� and a5.

A. Mild dependence of �‘m on �

To motivate the study of the � dependence of �‘m let us
start by having a close look at the general structure of �‘m,

i.e.,

�‘mðx;�Þ ¼ 1þ c�‘m

1 ð�Þxþ c�‘m

2 ð�Þxþ c�‘m

3 ðlogðxÞ;�Þx3
þ . . . : (61)

For concreteness, let us display here �44ðx;�Þ (given to-
gether with our results in Appendix C)

�44ðx;�Þ ¼ 1þ 2625�2 � 5870�þ 1614

1320ð3�� 1Þ x

þ 1 252 563 795�4 � 6 733 146 000�3 � 313 857 376�2 þ 2 338 945 704�� 511 573 572

317 116 800ð1� 3�Þ2 x2

þ
�
16 600 939 332 793

1 098 809 712 000
� 12 568

3 465
eulerlog4ðxÞ

�
x3: (62)

We see on the example of �44 that the � dependence of the
coefficient c

�‘m
n ð�Þ is not polynomial in �, but rather given

by a rational fraction. The denominator of this rational
fraction in the case of �44 is proportional to some power
of 1� 3�. The denominator 1� 3� decreases significantly
(from 1 to 1=4) as � increases from the extreme-mass-
ratio case, � ¼ 0, to the equal-mass case, � ¼ 1=4. From
Eq. (7), for the general multipole �ð�Þ

‘m this denominator
would be proportional to a power of

d‘mð�Þ ¼ c‘þ�ð�Þ
X2 þ ð�ÞmX1

¼ X‘þ��1
2 þ ð�ÞmX‘þ��1

1

X2 þ ð�ÞmX1

: (63)

This ratio is expressible as a polynomial in �. For instance,
for �54, it would be d54 ¼ 1� 5�þ 5�2, which decreases
from 1 down to 1=16 as � goes from 0 to 1=4. More
generally, d‘mð�Þ decreases, as � varies from 0 to 1=4,
from 1 down to 1=2‘þ��2 when �ðmÞ ¼ 0 and to ð‘þ ��
1Þ=2‘þ��2, when �ðmÞ ¼ 1. The presence of such ‘‘small
denominators’’ raises the issue of a possible large increase
of the coefficients c�‘m

n ð�Þ as � increases from 0 to 1=4. If
that were true, this would undermine the applicability to
the comparable-mass case of the conclusions that we have
drawn above from the � ! 0 limit. Therefore, we have
studied the � dependence of the known coefficients c

�‘m
n ð�Þ

to check whether the presence of these ‘‘small denomina-
tors’’ might cause them to grow uncontrollably when �

increases. In Table IV we list the fractional differences
��c

�‘m
n ð�Þ ¼ c

�‘m
n ð�Þ=c�‘m

n ð0Þ � 1 at � ¼ 1=4 (and at
logðxÞ ¼ logð1=6Þ for the logarithms contained in the
higher coefficients) for a sample of the �‘m’s whose �
dependence is analytically known. The good news is that
Table IV indicates that the fractional variation of the co-
efficients c�22

n ð�Þ when going from the extreme-mass ratio
case to the equal-mass ratio one is typically of the order of
20%.
This mild dependence of the coefficients c

�‘m
n ð�Þ on � is

the basis of the proposal [2] of improving the accuracy of
known �-dependent �‘m’s by adding the � ! 0 limit of
higher-order PN corrections (hybridization). [For instance,
in the case of �22ðx;�Þ, where the �-dependent terms are
known up to 3PN, we have added the 4PN and 5PN � ¼ 0
corrections.] Indeed, this procedure consists in using, for
some higher corrections, the approximation22 c

�‘m
n ð�Þ 	

c
�‘m
n ð0Þ.
We have validated this approximate completion of

known �-dependent terms in the following way. In view
of the results of Table IV, we have tested our procedure by
modifying the 4PN coefficient for � ¼ 0, c�22

4 ð0Þ, by multi-

plying it by the factor (1þ 0:8�), in order to mimic a
possible 20% increase of this coefficient when � increases
up to 1=4. We then found that such a modification of the
4PN coefficient yielded a corresponding modification of
T5½�22ðx;�Þ� equal to T5½�22ðx;�Þ�modified=T5½�22ðx;�Þ� ¼
1:00 038 when evaluated for � ¼ 0:25 at x ¼ 1=6. Even at
x ¼ 1=3 we find that such a modification yieldsTABLE IV. Analysis of the fractional variation ��c

�‘m
n ð�Þ ¼

c
�‘m
n ð�Þ=c�‘m

n ð0Þ � 1 of the coefficients c
�‘m
n ð�Þ in Eq. (61) for

a selected sample of values of ð‘;mÞ.
ð‘;mÞ ��c�‘m

1 ð1=4Þ ��c�‘m

2 ð1=4Þ ��c�‘m

3 ð1=4; logð1=6ÞÞ
(2, 2) �0:159 884 0.185 947 �0:100 421
(4, 4) �0:230 328 0.46 265 . . .
(5, 4) �0:176 295 . . . . . .

22Note that our results on the mild � dependence of c
�‘m
n ð�Þ

show that, a contrario, a naive hybridization of the waveform of
the type ~h

hybrid
‘m ¼ ~hknown‘m ð�Þ þ ~h

higher
‘m ð� ¼ 0Þ would probably be

rather unreliable, especially for ‘ 
 3, because it would not
incorporate the overall strong decrease approximately propor-
tional to the ‘‘small denominator’’ d‘mð�Þ, Eq. (63).
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T5½�22ðx;�Þ�modified=T5½�22ðx;�Þ� ¼ 1:013. In the �44

case, where the �-dependent corrections are known only
up to 2PN accuracy, a similar modification of the 3PN term
for � ¼ 0 by a factor (1þ 0:8�) yields a corresponding
fractional change of �44 between � ¼ 0 and � ¼ 0:25
equal to 1.0099 at x ¼ 1=6 and 1.079 at x ¼ 1=3. These
results confirm the reliability of the hybridization proce-
dure adopted here, and give us an idea of the related small
uncertainty. For instance, for the dominant quadrupolar
wave, we can anticipate that our hybridization procedure
introduces an uncertainty in the waveform h22ðxÞ /
ð�22ðxÞÞ2 of order 8� 10�4 at the LSO. This level of
uncertainty is comparable to the fractional difference be-
tween our best-bet quadrupolar amplitude based on
P2
3½�22ðx; � ¼ 0Þ� and the exact result (see Table II).

B. Mild sensitivity of jĥ‘mj to �

In Fig. 5 we had put together, in the extreme-mass-ratio

case, the predictions for jĥ22j made by all the higher-order
approximants within our new resummation method. Let us
now deform the results of Fig. 5 by turning on � and
increasing it up to � ¼ 1=4. Figure 10 is the
‘‘� ¼ 1=4-deformed’’ version of Fig. 5. In constructing
this figure we have used the value a5 ¼ 0 for the 4PN
EOB parameter entering Eq. (11), and we have defined
the EOB radial potential AðuÞ as being P1

4½ATaylorðu;a5Þ�.
The horizontal axis has been extended up to the location of
xLSOða5; �Þ as predicted by the corresponding adiabatic
EOB dynamics, namely, xLSOð0; 1=4Þ ¼ 0:2112. Some of
the lessons we might draw from comparing the � ¼
1=4-deformed Fig. 10 to its � ¼ 0 counterpart, Fig. 5,
are the following: (i) apart from P4

1fT5½�22�g (which still

has a spurious pole) and our old P3
2ff22g, the relative

stacking order of all the other approximants is maintained

in the deformation between � ¼ 0 and � ¼ 1=4; (ii) our
old prescription [1,2] based on P3

2ff22g, which in the � ¼ 0
case was clustered together with the other approximants (as
well as with the exact curve), seems now to have drifted
apart from the cluster of the other ones; (iii) indeed, all the
new approximants are rather well clustered together, with a
dispersion which reaches only about 2% at xLSOð0; 1=4Þ ¼
0:2112.
One of the results of the � ¼ 0 study above, particularly

in the dominant ‘ ¼ m ¼ 2 case, was to select, among the
array of new approximants, a small sample of ‘‘best ap-
proximants.’’ This sample was made of the approximants
based on P2

3fT5½�22�g and P1
4fT5½�22�g. In Fig. 11 we

extracted from the previous figure the � ¼ 1=4-deformed
version of only these two ‘‘best approximants.’’
Remembering that in the � ¼ 0 case these two curves
were both extremely close (within 6� 10�9 at x ¼ 1=6!)
to each other, as well as being very close to the correct
answer, we note that their � ¼ 1=4-deformed versions are
still very close to each other (within 3� 10�3 at
xLSOð0; 1=4Þ ¼ 0:2112). We therefore expect that this dou-
blet of curves is a good indication of where the currently
unknown (circular, adiabatic) correct � ¼ 1=4 curve might
lie.

C. Weak dependence of jĥ‘mðxÞj on a5

Finally, we study in Fig. 12 the sensitivity of our new-
resummed circular waveform to the 4PN EOB parameter
a5. This sensitivity comes from several sources. Both the

source term Sð�Þeff in Eq. (1) and the tail term T‘m depend on

the EOB dynamical quantities H and J . Therefore, when
expressing the waveform as a function of the frequency
parameter x, obtained by solving Eq. (13) above, the
a5-dependent radial potential AðuÞ comes in at several
different places.

FIG. 10 (color online). Equal-mass case (� ¼ 1=4): contrast-
ing various methods for resumming the waveform modulus jĥ22j
for a5 ¼ 0. Note the presence of a localized spurious pole in
P4
1fT5½�22�g at x 	 0:038.

FIG. 11. Equal-mass case (� ¼ 1=4): Same as Fig. 10, but
focussing on only the ‘‘best’’ (3þ2PN-accurate) Padé approxim-
ants to the waveform.
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For concreteness, we shall study the ‘‘deformation’’ of
our two best approximants when a5 increases from 0 to 25
(such a range is motivated by recent work [2,10,11,18]).
The a5-deformed version of Fig. 11 is plotted as Fig. 12.
This figure compares two doublets of curves: our two best
Padé approximants (P2

3fT5½�22�g, P1
4fT5½�22�g) for a5 ¼ 0

versus the same Padé approximants when a5 ¼ 25.
The main thing to note is that the a5 deformation is

continuous and monotonic. The displacement of each
curve is only of order 2� 10�3 at x ¼ 0:2112 ¼
xLSOð0; 1=4Þ (the horizontal axis of the figure has been
extended up to xLSOð25; 1=4Þ ¼ 0:2236). In addition, the
separation of the a5-deformed doublet of Padé curves is
about the same as it was before deformation.

V. CONCLUSIONS

In this paper we have explored the properties of a new
resummation method of post-Newtonian multipolar wave-
forms from circular nonspinning compact binaries. The
two characteristic features of this method are (i) the multi-

plicative decomposition of the (complex) hð�Þ‘m waveform

into the product of several factors corresponding to various
physical effects, and (ii) the replacement of the last (real)

factor, f‘m, in this decomposition, by its ‘-th root �‘mðxÞ ¼
ðf‘mðxÞÞ1=‘.

To test this resummation method we have first consid-
ered the extreme-mass-ratio limit (� ! 0), for which exact
results for the waveform can be obtained by numerical
analysis of black-hole perturbation theory. We first noted
(see Fig. 3) that the new quantity that we introduced,
�‘mðxÞ, has a remarkably simple quasilinear behavior as

a function of the orbital frequency parameter x ¼
ðGM�=c3Þ2=3. [In the odd-parity case, this quasilinear
behavior is especially pronounced when factoring out the

angular momentumJ from the wave amplitude. This leads
us to consider �J

‘m as our ‘‘best-bet’’ default choice.] We

related the simple properties of the function �‘mðxÞ [in-
cluding those concerning its dependence on ð‘;mÞ], to
analytical results on the 1PN corrections to multipole mo-
ments. In this regard, we explicitly computed new expres-
sions for the 1PN source current multipoles for arbitrary ‘
and in consequence the coefficient of the 1PN correction in
the odd-parity waveform (and �‘m). The quasilinear be-
havior of the functions �‘mðxÞ also means that 2PN and
higher-order corrections to them are smaller than analo-
gous corrections in usual quantities, like the waveform.
We have shown that, even if one uses only (without any

further resummation) the successive Taylor approximants
to �‘m, this defines a sequence of new-resummed approx-
imants to the waveform which ‘‘converges’’ toward the
exact waveform much less erratically than the standard
PN-approximants. Moreover, for all the waveforms for
which 3PN corrections are known (at least when � ! 0),
our results show that the new-resummed waveform nearly
coincide with the exact results starting with the 3PN ap-
proximation (see Figs. 6, 8, and 9). We have also shown
that we can further improve the quality of our new approx-
imants by suitably Padé-resumming the function �‘mðxÞ
before using it to construct the waveform hð�Þ‘mðxÞ /
ð�‘mðxÞÞ‘. In particular, two Padé approximants to �22,
namely, P2

3fT5½�22�g and P1
4fT5½�22�g, stand out as defining

the most accurate representation of the exact waveform
(see Fig. 7).
We have finally explored the robustness of our approx-

imants when considering a finite mass ratio. We have
checked that the � dependence of the coefficients entering
the Taylor expansion of the function �‘mðx;�Þ is rather
mild in spite of the presence of �-dependent denominators
that decrease very significantly as � increases from 0 to
1=4. This justifies the proposal of completing the known
�-dependent �‘m’s by adding the � ! 0 limit of higher-
order PN corrections. We have also shown that the relative
stacking order of all the best approximants is maintained in
the ‘‘� deformation’’ between � ¼ 0 and � ¼ 1=4. In
addition, our new approximants are rather well clustered
together, with a dispersion which reaches only about 2% at
the last stable orbit.
Let us finally note that we have compared in the four

panels of Fig. 1 four different resummation approaches to

the total (Newton-normalized) GW energy flux F̂ðxÞ (for
� ! 0): (a) the standard post-Newtonian (Taylor) expan-
sion, (b) the Padé resummation advocated long ago [6],
(c) the improved vpole-tuned Padé resummation advocated

in [2], and (d) our present new resummation method (using
only Taylor-expanded �‘m’s). The vpole-flexed technique,

panel (c), is clearly superior to the results of the first two
techniques, panels (a) and (b). It has however the disad-
vantage that it needs to rely on some external knowledge
(such as the exact value of the flux at the LSO) to determine

FIG. 12 (color online). Equal-mass case (� ¼ 1=4): Effect of
varying a5 (between 0 and 25) on the best Padé approximants
displayed in Fig. 11.
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the optimal value of vpole. On the other hand, our new

resummation procedure not only stands out, among all
other proposals, as yielding the best agreement with the
exact flux (when � ¼ 0), but it has also the further advan-
tage of being parameter-free.
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APPENDIX A: RESULTS FOR ODD-PARITY
(CURRENT) 1PN-ACCURATE MULTIPOLES

The 1PN-accurate results for the source current (i.e.,
odd-parity) moments (of any multipolar order ‘) were
obtained long ago in Eqs. (5.18) and/or (5.21) of
Ref. [31]. Alternatively, we can use as starting point for

the explicit determination of the 1PN-accurate source
current-multipole moment Eqs. (4.3) and (4.4) in [36].
Recalling the notation 
 ¼ GM=Rc2 and (consistently
with Eq. (7)) using the notation

b‘ð�Þ � X‘
2 þ ð�Þ‘X‘

1 ; (A1)

c‘ð�Þ � X‘�1
2 þ ð�Þ‘X‘�1

1 ; (A2)

cY
L
b ðy1; y2Þ �

@

@yc1

@

@yb2
YLðy1; y2Þ; (A3)

YLðy1; y2Þ � r12
‘þ 1

X‘
p¼0

yhL�P
1 yPi2 ; (A4)

at 1PN accuracy the ‘‘compact’’ terms for the source
current-multipole moment JL can be explicitly evaluated,
in the circular orbit case, for a general value of ‘ (as in the
‘þm even case). They read

J
compact
L ¼ STFL�M�abi‘xavb

�
xL�1

�
c‘þ1ð�Þ þ 
ðb‘þ1ð�Þ þ 2�b‘�1ð�Þ þ

�
1

2
� ð‘� 1Þð‘þ 4Þ

2ð‘þ 2Þð2‘þ 3Þ
�
c‘þ3ð�ÞÞ

�

þ r2

c2
xL�3vi‘�2

vi‘�1

ð‘� 1Þð‘� 2Þð‘þ 4Þ
2ð‘þ 2Þð2‘þ 3Þ c‘þ3ð�Þ

�
: (A5)

In addition to the above ‘‘compact terms’’(generated by compact-support terms in the effective stress-energy tensor 	��),
there exist three ‘‘noncompact’’ contributions that make the 1PN current moments more involved than the corresponding
1PN mass moments. These noncompact contributions can be expressed in terms of the YL objects introduced in [31], so as
to obtain,

Jnoncompact
L ¼ STFL�M�abi‘

GM

c2
�

�
2X1v

c
cY

L�1a
b þ 3

2
X2v

c
cY

L�1a
b � 2‘þ 1

2ð‘þ 2Þð2‘þ 3Þ
d

dt
ðaYL�1cb

c Þ þ 1 $ 2

�
: (A6)

More explicit expressions for these noncompact contributions can be provided for a general value of ‘ by straightforward
but slightly long computations. For circular orbits one can check that the last term does not contribute and the final result
for the other two terms can be simply re-expressed in terms of the polynomials b‘ð�Þ and c‘ð�Þ,
Eqs. (A1) and (A2), as for the compact terms. The final result (for circular orbits) is given by

Jnoncomp
L ¼ STFL�M
�abi‘xavbx

L�1 �
�
c‘þ3ð�Þ þ 3b‘þ1ð�Þ

2‘
þ �

4b‘�1ð�Þ � c‘þ1ð�Þ
2‘

�
: (A7)

In the test-mass limit (� ! 0) this expression reduces to

J
noncomp
L ¼ STFL2�M
�abi‘xavbx

L�1 ð�1Þlþ1

‘
: (A8)

Thus, in the circular orbit case, the 1PN-accurate current-multipole for a general value of ‘ finally reads

JL ¼ STFL�M�abi‘xavb

�
xL�1

�
c‘þ1ð�Þ þ 


�
� �

2‘
c‘þ1ð�Þ þ 2‘þ 3

2‘
b‘þ1ð�Þ þ 2�

‘þ 1

‘
b‘�1ð�Þ

þ 1

2

�
‘þ 1

‘
� ð‘� 1Þð‘þ 4Þ

ð‘þ 2Þð2‘þ 3Þ
�
c‘þ3ð�Þ

��
þ r2

c2
xL�3vi‘�2

vi‘�1

ð‘� 1Þð‘� 2Þð‘þ 4Þ
2ð‘þ 2Þð2‘þ 3Þ c‘þ3ð�Þ

�
: (A9)
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Adapting the reasoning line of Ref. [12], recalling the additional velocity dependence of the current moments that leads to
ðv=cÞ‘þ1 and noting that 
 ¼ x to this order of accuracy, one can finally show that, for circular orbits, the 1PN-accurate
odd-parity ĥð1Þ‘m’s read

ĥð1Þ‘mðx;�Þ ¼ 1� x

�
ð‘þ 1Þ

�
1� �

3

�
þ �

2‘
� 2‘þ 3

2‘

b‘þ1ð�Þ
c‘þ1ð�Þ � 2�

‘þ 1

‘

b‘�1ð�Þ
c‘þ1ð�Þ �

1

2

‘þ 1

‘

c‘þ3ð�Þ
c‘þ1ð�Þ

þ m2ð‘þ 4Þ
2ð‘þ 2Þð2‘þ 3Þ

c‘þ3ð�Þ
c‘þ1ð�Þ

�
þOðx2Þ; (A10)

where we have not simplified on purpose in order to allow
the reader to explicitly track the origin of each single
contribution. In the extreme-mass-ratio limit, M � m1 �
� � m2 (� � �=M ! 0), one has c‘ð0Þ ¼ b‘ð0Þ ¼
ð�1Þ‘, and so this equation simply reduces to

ĥð1Þ‘mðx; 0Þ ¼ 1� x

�
‘� 1

2
� 2

‘
þ m2ð‘þ 4Þ

2ð‘þ 2Þð2‘þ 3Þ
�

þOðx2Þ: (A11)

When computing the amplitude fJ‘mðx;�Þ (where Ŝð1;JÞeff � ĵ
is factorized), an additional contribution of �ð3=2þ
�=6Þx [see Eq. (18)] comes in, so that the 1PN-accurate
fJ‘mðx;�Þ’s read

fJ‘mðx;�Þ ¼ 1� x

�
ð‘þ 1Þ

�
1� �

3

�
þ 3

2
þ �

6
þ �

2‘

� 2‘þ 3

2‘

b‘þ1ð�Þ
c‘þ1ð�Þ � 2�

‘þ 1

‘

b‘�1ð�Þ
c‘þ1ð�Þ

� 1

2

‘þ 1

‘

c‘þ3ð�Þ
c‘þ1ð�Þ

þ m2ð‘þ 4Þ
2ð‘þ 2Þð2‘þ 3Þ

c‘þ3ð�Þ
c‘þ1ð�Þ

�
þOðx2Þ: (A12)

In the test-mass limit, this equation becomes

fJ‘mðx; 0Þ ¼ 1� x

�
‘þ 1� 2

‘
þ m2ð‘þ 4Þ

2ð‘þ 2Þð2‘þ 3Þ
�

þOðx2Þ: (A13)

These results lead to the 1PN-accurate �J
‘m’s, Eqs. (46) and

(49), that we have used in this paper.
For completeness, we conclude this appendix by quoting

the �-dependent, 1PN-accurate f‘m’s for ‘þm even and a
ready-reckoner of the b‘ð�Þ and c‘ð�Þ functions for ‘
values relevant for this work, Table V. From Eq. (C5) of

Ref. [12], the general expression of ĥð0Þ‘m at 1PN reads

ĥ
ð0Þ
‘mðx;�Þ ¼ 1� x

�
‘

�
1� �

3

�
� 3

2

c‘þ2ð�Þ
c‘ð�Þ þ b‘ð�Þ

c‘ð�Þ

þ c‘þ2ð�Þ
c‘ð�Þ

m2ð‘þ 9Þ
2ð‘þ 1Þð2‘þ 3Þ

�
þOðx2Þ:

(A14)

From this expression, the even-parity f‘m’s follow as

f‘mðx;�Þ ¼ 1� x

�
‘

�
1� �

3

�
� 1

2
� 3

2

c‘þ2ð�Þ
c‘ð�Þ þ b‘ð�Þ

c‘ð�Þ

þ c‘þ2ð�Þ
c‘ð�Þ

m2ð‘þ 9Þ
2ð‘þ 1Þð2‘þ 3Þ

�
þOðx2Þ;

(A15)

which reduces to Eq. (43) in the test-mass limit.

APPENDIX B: EXPLICIT FORM OF THE f‘m’S
WITH HIGHER PN-ACCURACY

In this appendix we complete the information given in
the text by explicitly listing the f‘m’s that are known at an
accuracy higher than 1PN. This means considering multi-

TABLE V. List of the b‘ð�Þ and c‘ð�Þ functions that appear in the text for some values of ‘. In the following formulas, we have
introduced the notation X12 � X1 � X2 ¼ signðm1 �m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
.

‘ b‘ð�Þ c‘ð�Þ
1 �X12 0

2 1� 2� 1

3 �X12ð1� �Þ �X12

4 1� 4�þ 2�2 1� 3�
5 �X12ð1� 3�þ �2Þ �X12ð1� 2�Þ
6 1� 6�þ 9�2 � 2�3 1� 5�þ 5�2

7 �X12ð1� 5�þ 6�2 � �3Þ �X12ð1� 4�þ 3�2Þ
8 1� 8�þ 20�2 � 16�3 þ 2�4 1� 7�þ 14�2 � 7�3

9 �X12ð1� 7�þ 15�2 � 10�3 þ �4Þ �X12ð1� 6�þ 10�2 � 4�3Þ
10 1� 10�þ 35�2 � 50�3 þ 25�4 � 2�5 1� 9�þ 27�2 � 30�3 þ 9�4

11 �X12ð1� 9�þ 28�2 � 35�3 þ 15�4 � �5Þ �X12ð1� 8�þ 21�2 � 20�3 þ 5�4Þ
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poles up to ‘ ¼ 5 for even-parity modes (‘þm even) and
‘ ¼ 4 for odd-parity modes (‘þm odd). We consider
separately the even-parity f‘m’s and the odd-parity fJ‘m’s
and fH‘m’s.

1. Even-parity f‘m’s

The even-parity f‘m’s (with � � 0 and � ¼ 0 contribu-
tions) are given by

f22ðx;�Þ ¼ 1þ 1

42
ð55�� 86Þxþ 2047�2 � 6745�� 4288

1512
x2

þ
�
114 635�3

99 792
� 227 875�2

33 264
þ 41

96
�2�� 34 625�

3696
� 856

105
eulerlog2ðxÞ þ 21 428 357

727 650

�
x3

þ
�
36 808

2205
eulerlog2ðxÞ � 5 391 582 359

198 648 450

�
x4 þ

�
458 816

19 845
eulerlog2ðxÞ � 93 684 531 406

893 918 025

�
x5 þOðx6Þ; (B1)

f33ðx;�Þ ¼ 1þ
�
2�� 7

2

�
xþ

�
887�2

330
� 3401�

330
� 443

440

�
x2 þ

�
147 471 561

2 802 800
� 78

7
eulerlog3ðxÞ

�
x3

þ
�
39eulerlog3ðxÞ � 53 641 811

457 600

�
x4 þOðx5Þ; (B2)

f31ðx;�Þ ¼ 1þ
�
� 2�

3
� 13

6

�
xþ

�
� 247�2

198
� 371�

198
þ 1273

792

�
x2 þ

�
400 427 563

75 675 600
� 26

21
eulerlog1ðxÞ

�
x3

þ
�
169

63
eulerlog1ðxÞ � 12 064 573 043

1 816 214 400

�
x4 þOðx5Þ; � (B3)

f44ðx;�Þ ¼ 1þ 2625�2 � 5870�þ 1614

330ð3�� 1Þ xþ 23 740 185�3 � 106 831 480�2 þ 50 799 672�� 4 536 144

1 801 800ð3�� 1Þ x2

� 2

�
1 132 251 120

156 080 925
eulerlog4ðxÞ � 5 992 751 383

156 080 925

�
x3 þOðx4Þ; (B4)

f42ðx;�Þ ¼ 1þ 285�2 � 3530�þ 1146

330ð3�� 1Þ x� 2 707 215�3 þ 28 154 560�2 � 26 861 688�þ 5 538 096

1 801 800ð3�� 1Þ x2

�
�
1 132 251 120

312 161 850
eulerlog2ðxÞ � 5 180 369 659

312 161 850

�
x3 þOðx4Þ; (B5)

f55ðx;�Þ ¼ 1þ 512�2 � 1298�þ 487

78ð2�� 1Þ xþ 50 569

6552
x2 þOðx3Þ; (B6)

f53ðx;�Þ ¼ 1þ 176�2 � 850�þ 375

78ð2�� 1Þ xþ 69 359

10 920
x2 þOðx3Þ; (B7)

f51ðx;�Þ ¼ 1þ 8�2 � 626�þ 319

78ð2�� 1Þ xþ 28 859

4680
x2 þOðx3Þ; (B8)

2. Odd-parity fJ‘m’s

Let us focus now on the odd-parity case and list the fJ‘m in which the Newton-normalized angular momentum ĵ has been
factorized as an effective source. We have

fJ21ðx;�Þ ¼ 1þ
�
23�

42
� 59

28

�
xþ

�
85�2

252
� 269�

126
� 5

9

�
x2 þ

�
88 404 893

11 642 400
� 214

105
eulerlog1ðxÞ

�
x3

þ
�
6313

1470
eulerlog1ðxÞ � 33 998 136 553

4 237 833 600

�
x4 þOðx5Þ; (B9)
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fJ32ðx;�Þ ¼ 1þ 320�2 � 1115�þ 328

90ð3�� 1Þ xþ 39 544�3 � 253 768�2 þ 117 215�� 20 496

11 880ð3�� 1Þ x2

þ
�
110 842 222

4 729 725
� 104

21
eulerlog2ðxÞ

�
x3 þOðx4Þ; (B10)

fJ43ðx;�Þ ¼ 1þ ð160�2 � 547�þ 222Þ
44ð2�� 1Þ xþ 225 543

40 040
x2 þOðx3Þ; (B11)

fJ41ðx;�Þ ¼ 1þ ð288�2 � 1385�þ 602Þ
132ð2�� 1Þ xþ 760 181

120 120
x2 þOðx3Þ: (B12)

3. Odd-parity fH‘m’s

We finally list the odd-parity fH‘m in which the effective energy Ĥeff has been factorized as an effective source. We have

fH21ðx;�Þ ¼ 1þ
�
5�

7
� 3

28

�
xþ

�
79�2

168
� 485�

126
� 97

126

�
x2 þ

�
70 479 293

11 642 400
� 214

105
eulerlog1ðxÞ

�
x3

þ
�
107

490
eulerlog1ðxÞ þ 9 301 790 917

1 412 611 200

�
x4 þOðx5Þ; (B13)

fH32ðx;�Þ ¼ 1þ 365�2 � 590�þ 148

90ð3�� 1Þ xþ 16 023�3 � 93 976�2 þ 612�þ 6192

3960ð3�� 1Þ x2

þ
�
96 051 082

4 729 725
� 104

21
eulerlog2ðxÞ

�
x3 þOðx4Þ; (B14)

fH43ðx;�Þ ¼ 1þ 524�2 � 1135�þ 402

132ð2�� 1Þ x� 1667

3640
x2 þOðx3Þ; (B15)

fH41ðx;�Þ ¼ 1þ 332�2 � 879�þ 338

132ð2�� 1Þ xþ 145 021

120 120
x2 þOðx3Þ: (B16)

APPENDIX C: COMPLETE EXPRESSIONS OF THE �‘m’S FOR 2 � ‘ � 8

We finally list the ‘‘hybridized’’ expressions of all the even- and odd-parity �‘m’s obtained from the corresponding f‘m’s
with the proviso explained above that the ‘-th power of the hybridized �‘m presented here would generate some specific

�-dependent higher-order coefficients cf‘m
n0 ð�Þ, which differ from the cf‘m

n0 ð� ¼ 0Þ listed in, e.g., the equations of

Appendix B. In the odd-parity case, we only list the J -normalized �J
‘m’s obtained from the fJ‘m’s. For completeness

and future reference we present the �‘m’s explicitly up to ‘ ¼ 8 included.

�22ðx;�Þ ¼ 1þ
�
55�

84
� 43

42

�
xþ

�
19 583�2

42 336
� 33 025�

21 168
� 20 555

10 584

�
x2

þ
�
10 620 745�3

39 118 464
� 6 292 061�2

3 259 872
þ 41�2�

192
� 48 993 925�

9 779 616
� 428

105
eulerlog2ðxÞ þ 1 556 919 113

122 245 200

�
x3

þ
�
9202

2205
eulerlog2ðxÞ � 387 216 563 023

160 190 110 080

�
x4 þ

�
439 877

55 566
eulerlog2ðxÞ � 16 094 530 514 677

533 967 033 600

�
x5 þOðx6Þ;

(C1)
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�J
21ðx;�Þ ¼ 1þ

�
23�

84
� 59

56

�
xþ

�
617�2

4704
� 10 993�

14 112
� 47 009

56 448

�
x2 þ

�
7 613 184 941

2 607 897 600
� 107

105
eulerlog1ðxÞ

�
x3

þ
�
6313

5880
eulerlog1ðxÞ � 1 168 617 463 883

911 303 737 344

�
x4 þOðx5Þ; (C2)

�33ðx;�Þ ¼ 1þ
�
2�

3
� 7

6

�
xþ

�
149�2

330
� 1861�

990
� 6719

3960

�
x2 þ

�
3 203 101 567

227 026 800
� 26

7
eulerlog3ðxÞ

�
x3

þ
�
13

3
eulerlog3ðxÞ � 57 566 572 157

8 562 153 600

�
x4 þOðx5Þ; (C3)

�J
32ðx;�Þ ¼ 1þ 320�2 � 1115�þ 328

270ð3�� 1Þ xþ 3 085 640�4 � 20 338 960�3 � 4 725 605�2 þ 8 050 045�� 1 444 528

1 603 800ð1� 3�Þ2 x2

þ
�
5 849 948 554

940 355 325
� 104

63
eulerlog2ðxÞ

�
x3 þOðx4Þ; (C4)

�31ðx;�Þ ¼ 1þ
�
� 2�

9
� 13

18

�
xþ

�
� 829�2

1782
� 1685�

1782
þ 101

7128

�
x2 þ

�
11 706 720 301

6 129 723 600
� 26

63
eulerlog1ðxÞ

�
x3

þ
�
169

567
eulerlog1ðxÞ þ 2 606 097 992 581

4 854 741 091 200

�
x4 þOðx5Þ; (C5)

�44ðx;�Þ ¼ 1þ 2625�2 � 5870�þ 1614

1320ð3�� 1Þ x

þ 1 252 563 795�4 � 6 733 146 000�3 � 313 857 376�2 þ 2 338 945 704�� 511 573 572

317 116 800ð1� 3�Þ2 x2

þ
�
16 600 939 332 793

1 098 809 712 000
� 12 568

3465
eulerlog4ðxÞ

�
x3 þOðx4Þ; (C6)

�J
43ðx;�Þ ¼ 1þ 160�2 � 547�þ 222

176ð2�� 1Þ x� 6 894 273

7 047 040
x2 þOðx3Þ; (C7)

�42ðx;�Þ ¼ 1þ 285�2 � 3530�þ 1146

1320ð3�� 1Þ x

þ�379 526 805�4 � 3 047 981 160�3 þ 1 204 388 696�2 þ 295 834 536�� 114 859 044

317 116 800ð1� 3�Þ2 x2

þ
�
84 823 8724 511

219 761 942 400
� 3142

3465
eulerlog2ðxÞ

�
x3 þOðx4Þ; (C8)

�J
41ðx;�Þ ¼ 1þ 288�2 � 1385�þ 602

528ð2�� 1Þ x� 7 775 491

21 141 120
x2 þOðx3Þ; (C9)

�55ðx;�Þ ¼ 1þ 512�2 � 1298�þ 487

390ð2�� 1Þ x� 3 353 747

2 129 400
x2 þOðx3Þ; (C10)

�J
54ðx;�Þ ¼ 1þ 33 320�3 � 127 610�2 þ 96 019�� 17 448

13 650ð5�2 � 5�þ 1Þ xþOðx2Þ; (C11)

�53ðx;�Þ ¼ 1þ 176�2 � 850�þ 375

390ð2�� 1Þ x� 410 833

709 800
x2 þOðx3Þ; (C12)
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�J
52ðx;�Þ ¼ 1þ 21 980�3 � 104 930�2 þ 84 679�� 15 828

13 650ð5�2 � 5�þ 1Þ xþOðx2Þ; (C13)

�51ðx;�Þ ¼ 1þ 8�2 � 626�þ 319

390ð2�� 1Þ x� 31 877

304 200
x2 þOðx3Þ; (C14)

�66ðx;�Þ ¼ 1þ 273�3 � 861�2 þ 602�� 106

84ð5�2 � 5�þ 1Þ xþOðx2Þ; (C15)

�J
65ðx;�Þ ¼ 1þ 220�3 � 910�2 þ 838�� 185

144ð3�2 � 4�þ 1Þ xþOðx2Þ; (C16)

�64ðx;�Þ ¼ 1þ 133�3 � 581�2 þ 462�� 86

84ð5�2 � 5�þ 1Þ xþOðx2Þ; (C17)

�J
63ðx;�Þ ¼ 1þ 156�3 � 750�2 þ 742�� 169

144ð3�2 � 4�þ 1Þ xþOðx2Þ (C18)

�62ðx;�Þ ¼ 1þ 49�3 � 413�2 þ 378�� 74

84ð5�2 � 5�þ 1Þ xþOðx2Þ; (C19)

�J
61ðx;�Þ ¼ 1þ 124�3 � 670�2 þ 694�� 161

144ð3�2 � 4�þ 1Þ xþOðx2Þ; (C20)

�77ðx;�Þ ¼ 1þ 1380�3 � 4963�2 þ 4246�� 906

714ð3�2 � 4�þ 1Þ xþOðx2Þ; (C21)

�J
76ðx;�Þ ¼ 1þ 6104�4 � 29 351�3 þ 37 828�2 � 16 185�þ 2144

1666ð7�3 � 14�2 þ 7�� 1Þ xþOðx2Þ; (C22)

�75ðx;�Þ ¼ 1þ 804�3 � 3523�2 þ 3382�� 762

714ð3�2 � 4�þ 1Þ xþOðx2Þ; (C23)

�J
74ðx;�Þ ¼ 1þ 41 076�4 � 217 959�3 þ 298 872�2 � 131 805�þ 17 756

14 994ð7�3 � 14�2 þ 7�� 1Þ xþOðx2Þ; (C24)

�73ðx;�Þ ¼ 1þ 420�3 � 2563�2 þ 2806�� 666

714ð3�2 � 4�þ 1Þ xþOðx2Þ; (C25)

�J
72ðx;�Þ ¼ 1þ 32 760�4 � 190 239�3 þ 273 924�2 � 123 489�þ 16 832

14 994ð7�3 � 14�2 þ 7�� 1Þ xþOðx2Þ; (C26)

�71ðx;�Þ ¼ 1þ 228�3 � 2083�2 þ 2518�� 618

714ð3�2 � 4�þ 1Þ xþOðx2Þ; (C27)

�88ðx;�Þ ¼ 1þ 12 243�4 � 53 445�3 þ 64 659�2 � 26 778�þ 3482

2736ð7�3 � 14�2 þ 7�� 1Þ xþOðx2Þ; (C28)

�J
87ðx;�Þ ¼ 1þ 38 920�4 � 207 550�3 þ 309 498�2 � 154 099�þ 23 478

18 240ð4�3 � 10�2 þ 6�� 1Þ xþOðx2Þ; (C29)
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�86ðx;�Þ ¼ 1þ 2653�4 � 13 055�3 þ 17 269�2 � 7498�þ 1002

912ð7�3 � 14�2 þ 7�� 1Þ xþOðx2Þ; (C30)

�J
85ðx;�Þ ¼ 1þ 6056�4 � 34 598�3 þ 54 642�2 � 28 055�þ 4350

3648ð4�3 � 10�2 þ 6�� 1Þ xþOðx2Þ; (C31)

�84ðx;�Þ ¼ 1þ 4899�4 � 28 965�3 þ 42 627�2 � 19 434�þ 2666

2736ð7�3 � 14�2 þ 7�� 1Þ xþOðx2Þ; (C32)

�J
83ðx;�Þ ¼ 1þ 24 520�4 � 149 950�3 þ 249 018�2 � 131 059�þ 20 598

18 240ð4�3 � 10�2 þ 6�� 1Þ xþOðx2Þ; (C33)

�82ðx;�Þ ¼ 1þ 3063�4 � 22 845�3 þ 37 119�2 � 17 598�þ 2462

2736ð7�3 � 14�2 þ 7�� 1Þ xþOðx2Þ; (C34)

�J
81ðx;�Þ ¼ 1þ 21 640�4 � 138 430�3 þ 236 922�2 � 126 451�þ 20 022

18 240ð4�3 � 10�2 þ 6�� 1Þ xþOðx2Þ: (C35)
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