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We show that the phase appearing in neutrino flavor oscillation formulae has a geometric and

topological contribution. We identify a topological phase appearing in the two flavor neutrino oscillation

formula using Pancharatnam’s prescription of quantum collapses between nonorthogonal states. Such

quantum collapses appear naturally in the expression for appearance and survival probabilities of

neutrinos. Our analysis applies to neutrinos propagating in vacuum or through matter. For the minimal

case of two flavors with CP conservation, our study shows for the first time that there is a geometric

interpretation of the neutrino oscillation formulae for the detection probability of neutrino species.
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I. INTRODUCTION

The phenomenon of neutrino flavor oscillation results
from the phase difference acquired by the mass eigenstates
due to their time evolution while propagating in vacuum or
in matter. The observation of neutrino flavor oscillations in
solar, atmospheric, reactor, and accelerator experiments
reveal the remarkable fact that the neutrinos exhibit sus-
tained quantum coherence even over astrophysical length
scales [1,2]. It is then natural to ask what we can learn
about neutrinos from these coherent phases. Here, we
address the issue of geometric and topological phases
involved in the physics of neutrino oscillations.

On the theoretical front, it is well known that the phe-
nomenon of neutrino oscillations cannot be accommodated
within the standard model (SM) of particle physics.
Therefore, the experimental observation of neutrino oscil-
lations provides a concrete evidence for the requirement of
physics beyond the SM and neutrinos have been an inten-
sive area of research in the past several years.

The study of geometric phases in the context of neutrino
oscillations has been carried out in the past by several
authors [3–18], but none of the papers seem to provide a
unified perspective on the problem taking into account the
different avatars of geometric phase. It is worthwhile to
stress here that one needs to be cautious while interpreting
claims in the literature as they crucially depend on which
version of the geometric phase one is dealing with. We will
first summarize the related literature and then focus on the
specific question that we address in this paper. We mostly
restrict our attention to the case of two neutrino flavors and
the CP (CP stands for charge-conjugation and parity)
conserving situation, which is the minimal scenario for
studying the physics of oscillations. We find, in contrast
to earlier studies of this problem that the geometric phase
appears even in this minimal context.

Let us first review the papers that are connected to
Berry’s [19] cyclic adiabatic phase. Berry studied phases

that appear when the Hamiltonian of a quantum system
depends on parameters that are varied slowly and cycli-
cally. Nakagawa [3] followed this work by an elegant paper
in which he pointed out that the geometric phase could also
arise in systems where adiabatic theorem did not hold. The
key point made by Nakagawa was that while for existence
of geometric phases, adiabatic condition was not necessary
(this was also independently pointed out by Aharonov and
Anandan [20]), the adiabatic theorem itself could be most
easily understood in terms of geometric arguments. As an
application of his general formalism, Nakagawa consid-
ered two flavor neutrino oscillations in matter. He con-
cluded that the Berry phase played no role in this situation.
The topological phase in the two flavor neutrino case,
which is the central result of the present paper, was missed
in his work because he restricted himself to a limited
region in the parameter (ray) space and did not consider
generalizations of the geometric phase that allow for quan-
tum collapse.
Subsequent work on Berry’s geometric phase and neu-

trinos exploited the spin degree of freedom of neutrinos
and its interaction with the transverse magnetic field lead-
ing to geometric effects and spin flip. Since at that time,
spin precession was a plausible solution to the solar-
neutrino problem, there is a body of work by several
authors on the subject of geometric phase effects in this
context, both in the absence and presence of matter and
mass-splitting terms [4–11]. However, in the present sce-
nario, spin flavor precession is disfavored as the leading
solution to the solar-neutrino problem at 99.86% C.L. [21],
which makes it phenomenologically uninteresting. Also,
we would like to mention that in the present study, spin
plays only a passive role, and we shall not discuss this
particular aspect any further.
Naumov [12–15] studied geometric phases for two and

three flavor neutrino oscillations taking into account the
optic potentials [22] induced by coherent forward scatter-
ing of neutrinos against the background matter via SM
interactions. The slowly changing parameters in the
Hamiltonian were identified as a set of optic potentials*poonam@rri.res.in
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qðtÞ, which were connected to the refractive indices of
neutrinos in a medium. For the naturally existing cyclic
cases like spherically symmetric or sandwich-like density
profiles, he found that the geometric (or topological) phase
was zero for both two and three flavors due to only one of
the optic potentials appearing in an essentialmanner in the
Hamiltonian. Note that the two terms ‘‘topological’’ and
‘‘geometric’’ were used interchangeably in Naumov’s
works. Here, we will make a distinction between the two
terms. The topological phase refers to phase factors that are
insensitive to small changes in the circuit, while geometric
phases are sensitive to such changes.

In a more recent paper, He et al. [16] carried out a
detailed study of the Berry phase in neutrino oscillations
for both two and three flavors, active and sterile mixing,
and with inclusion of nonstandard interactions. For the
particular case of two flavor oscillations in matter, they
claimed that the Berry phase can only appear if nonstan-
dard (R-parity violating supersymmetry) neutrino-matter
interactions are taken into account.

All the above papers [3,12–16] claim that the geometric
phases do not appear in the oscillation probabilities for the
case of two flavor neutrinos with CP conservation in
vacuum or in matter as long as neutrino-matter interactions
are standard, i.e. coherent forward scattering is induced by
charged current interaction of electron neutrino (�e) with
electrons in matter. The above claims can be understood as
the necessity of having at least two essential parameters in
the Hamiltonian to detect curvature. Because of the ab-
sence of flavor changing neutral currents in the SM, it turns
out that for the case of ordinary electrically neutral matter,
even though one has two varying parameters—electron
number density (ne) and neutron number density (nn),
only one of these will appear in an essential way in the
Hamiltonian and hence the Berry’s geometric phase is
expected to be zero. The other parameter nn just adds a
global phase to the time-evolved neutrino flavor state and
hence does not affect oscillation. But also it is worth
stressing that if both the conditions of having a nontrivial
multidimensional parameter space as well as cyclic evolu-
tion of the states in parameter space were satisfied, the net
geometric phase (resulting from the difference between the
geometric phases picked up by the individual mass eigen-
states) would have appeared in the formulae for detection
probability and hence been observable.

Next, we will briefly review and summarize papers deal-
ing with geometric phases that are generalizations of the
Berry phase [20,23,24] in the context of neutrinos [17,18].
Such geometric effects can appear under less restrictive
conditions than those required for Berry’s version of the
geometric phase. In fact such phases can appear even in
situations where there are no parameters varying in the
Hamiltonian and the evolution is not necessarily cyclic or
unitary. Note, however, that in general the geometric
phases appearing in transition amplitudes are global phases

that do not have any observable consequences. To observe
such a phase one needs a split-beam interference experi-
ment in which a beam is spatially separated into two parts
that suffer different histories. Such an experiment is hard to
design for neutrinos because they interact so weakly and
are nearly impossible to deflect or confine. This renders
such phases uninteresting as they are not observable as far
as neutrinos are concerned. Our aim here is to explore
whether there are geometric effects that survive at the level
of detection probabilities that are directly measurable
quantities.
Blasone et al. [17] claimed that Berry’s phase was

present in the physics of neutrino oscillation in vacuum
even for the two flavor CP conserving case. Their argu-
ment is based on the fact that under Schrödinger evolution,
the pure flavor states come back to themselves after one
period (T) of oscillation having acquired an overall phase.
This overall phase was shown to be a sum of a pure
dynamical phase and a part that depended on the mixing
angle only and independent of energy and masses of the
two mass states (hence, geometric). They called this extra
phase the Berry phase. Note that this phase picked up by a
neutrino flavor state arises purely due to Schrödinger evo-
lution of the system giving a closed loop in the Hilbert
space but not due to any slowly varying parameters leading
to adiabatic evolution of the Hamiltonian itself. Hence,
strictly speaking it is the Aharonov-Anandan cyclic phase
[20] that generalized Berry’s adiabatic phase to situations
where the adiabaticity constraint did not apply and only the
cyclic condition is met. Also, we should note that since the
phase obtained was a global phase at the amplitude level, it
does not appear in measurable quantities like neutrino
appearance or survival probabilities as mentioned above.
After Berry’s [19] seminal paper on this subject,

Ramaseshan and Nityananda [25] pointed out that
Berry’s phase had a connection with the phase obtained
by Pancharatnam [23] in the fifties in his study on inter-
ference of polarized light. These insights were carried over
to the ray space of quantum mechanics by Samuel and
Bhandari [24]. They showed that the two seemingly differ-
ent geometric phases obtained by Berry and Pancharatnam
(appearing under different sets of conditions) could be
described in a unified framework. They also pointed out
that geometric phases are not restricted to unitary, cyclic,
and adiabatic evolution [19] of a quantum system and can
appear in an even more general context that allows for
quantum collapses, which occur during measurements.
Following this line of thought, Wang et al. [18] extended
the study of Blasone et al. [17] to obtain noncyclic
geometric phases for two and three flavor neutrinos in
vacuum. Their claim can be understood as follows.
Consider the Schrödinger evolution of a quantum state
over an arbitrary time period from � ¼ 0 to �. Now this
open loop (noncyclic) Schrödinger evolution of a quantum
state over a time � can be closed by a collapse of the time-
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evolved quantum state at � onto the original state at � ¼ 0
by the shorter geodesic curve joining the two states in the
ray space [24]. The phase associated with the complex
number (rei�) representing the inner product of the original
state vector and the time-evolved state vector (with the
dynamical phase removed) has a pure geometric origin.
This noncyclic geometric phase was evaluated by Wang
et al. [18] for both the two and three flavor cases. But,
again note that this phase will be unobservable as it only
appears at the level of amplitude.

The main purpose of the present work is to establish that
Pancharatnam’s phase does appear in detection probabil-
ities and hence is directly observable. For the simplest case
of two flavors in vacuum or in constant density matter
(restricting to SM interactions) with CP conservation, we
obtain a Pancharatnam phase of �, and this leads to an
elegant geometric interpretation of the neutrino oscillation
formulae. We also make a direct connection of this phase
with the Herzberg and Longuet-Higgins topological phase
[26] in molecular physics. We show that the Pancharatnam
phase of � remains even in the presence of slowly varying
matter density, and this can be ascribed to the topological
nature of this phase. Inclusion of CP violation can change
the topological nature of the phase and make it a path-
dependent geometric phase.

Although one should do a full three flavor analysis for a
complete treatment, we work in an effective two flavor
approximation that is fairly justified [27,28] due to the
smallness of �13 and hierarchy of mass splittings
(j�m2

21=�m
2
32j<<1) and in addition on matter interac-

tions being standard.1 In many physical situations, obser-
vations depend on mainly one mixing and one mass
squared splitting. Conventionally, �12 and �m2

21 describe

oscillations of solar neutrinos, while �23 and �m2
32 are

used to describe atmospheric neutrinos. The mixing angle
�13 gives small effects on both solar and atmospheric
neutrinos. Working with only two flavors is of course
advantageous as the results obtained are physically more
transparent and can be visualized in analogous situations in
optics and the Poincaré sphere can be used as a calcula-
tional tool to study the system.

For the ease of visualization of the phenomena of oscil-
lations, in the past several authors have discussed simple
pictorial depiction of neutrino oscillations in terms of
precession of a (pseudo) spin vector in three-dimensional
space in a variety of contexts for the case of two neutrino
flavors [30–37]. Below we give a brief account of the
papers dealing with geometric representation of neutrino
flavor oscillations. Harris and Stodolsky [30] addressed the
question of a unified treatment of generic two-state sys-

tems (including particle mixing involving two neutrino
types) in media using density matrices. It was shown that
the equation of motion for the polarization vector repre-
sented the precession of polarization vector about a vector
representing an effective magnetic field (which could result
from the mass terms in vacuum or matter terms). Kim et al.
[31] discussed the analogy of solar-neutrino oscillations
with that of precession of electron spin in a time-dependent
magnetic field. They applied this picture in the limit of
adiabatic approximation. Stodolsky [32] described the evo-
lution of a statistical ensemble (neutrinos from supernovae
or in the early Universe) applying the density matrix
approach [30] and showed that oscillations in presence of
mixing and matter interactions in a thermal environment
could be viewed in terms of precession. Kim et al. [33]
derived the geometric picture for two and three flavor
neutrinos and applied it to nonadiabatic as well as adiabatic
cases. Thomson and McKellar [34] treated the case of
neutrino background giving rise to nonlinear feedback
terms in the equation of motion for polarization vectors
and gave a pictorial representation for the same. Enqvist
et al. [35] describe visualization of oscillations of a thermal
neutrino ensemble of the early Universe. The geometrical
representation in wave packet treatment of oscillations was
discussed by Giunti et al. [36]. As in optics, the Poincaré
sphere is a convenient tool for visualizations and calcula-
tions pertaining to neutrino oscillations, particularly in
looking for geometric effects.
This paper is organized as follows: In Sec. II, we develop

an analogy between the neutrino flavor states and polarized
states in optics since such a mapping allows for a conve-
nient visualization of geometric effects. We then go on to
show in Sec. III that the Pancharatnam phase does appear
in the detection probabilities of neutrino species in the two
flavor neutrino system in vacuum and also in matter. We
conclude with a discussion of our key result and future
directions in Sec. IV. Throughout we set @ ¼ c ¼ 1.

II. CORRESPONDENCE BETWEEN TWO FLAVOR
NEUTRINOS AND POLARIZATION STATES IN

OPTICS

Since the concept of Pancharatnam’s phase was devel-
oped in the context of optics, it is worthwhile to first
develop a correspondence between the mathematics of
two flavor neutrino states and polarization states in optics.
Let us first recall the conditions under which the two flavor
neutrinos and polarization states in optics can be analyzed
within an unified framework.

A. Two flavor neutrinos

In the ultrarelativistic limit, the Dirac equation for two
flavor neutrinos (antineutrinos) can be reduced to a
Schrödinger form [22,38] written in terms of a two-
component vector of positive (negative) energy probability
amplitude. This is analogous to Maxwell’s equations re-

1It turns out that in the presence of nonstandard interactions
during propagation, it is possible to do the analysis with only two
flavors for the case of solar neutrinos, while a complete three
flavor analysis is needed for the case of the atmospheric neu-
trinos [29].
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ducing to the linear Schrödinger form for the polarization
states in optics in the paraxial limit [39].

The two neutrino flavor states can be mapped to a two-
level quantum system with distinct energy eigenvalues,
Ei ’ pþm2

i =2p in the ultrarelativistic limit along with
the assumption of equal fixed momenta (or energy)
[37,40]. In the presence of matter, the relativistic disper-
sion relation Ei ¼ fðp;miÞ gets modified due to the
neutrino-matter interactions (in an electrically neutral ho-
mogeneous medium) leading to

Ei¼� ¼
�
pþm2

1 þm2
2

4p
þ VC

2
þ VN

�
� 1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð! sin2�Þ2 þ ðVC �! cos2�Þ2

q
; (1)

where ! ¼ �m2=2p with mass splitting �m2 ¼ m2
2 �m2

1

and p ’ E being the fixed momentum (energy) of the

neutrino. � is the mixing angle in vacuum. VC ¼ffiffiffi
2

p
GFne ¼ 7:6� 10�14Ye� eV and VN ¼

� ffiffiffi
2

p
GFnn=2 ¼ �3:8� 10�14Yn� eV are the respective

effective potentials due to coherent forward scattering of
neutrinos with electrons (via charged current interactions)
and neutrons (via neutral current interactions). GF ¼
1:16637� 10�5 GeV�2 parameterizes the weak interac-
tion strength (Fermi constant). VC and VN depend on the
electron (ne) and neutron (nn) number densities (in units of
cm�3). ne=n ¼ �Ye=nNAvo, where � is the mass density in

g cm�3, Ye=n is the relative electron (neutron) number

density, and its value is roughly �0:5 for Earth matter,
and NAvo is the Avogadro’s number. Setting VC ¼ VN ¼ 0,
we recover the vacuum case.

Note the fact that although there are two densities ne and
nn appearing in the eigenvalues, it is only ne that appears in
a nontrivial way (through VC) in the flavor Hamiltonian

H � ¼
�
pþm2

1 þm2
2

4p
þ VC

2
þ VN

�
Iþ 1

2

� VC �! cos2� ! sin2�
! sin2� �ðVC �! cos2�Þ

� �
: (2)

The above Hamiltonian [Eq. (2)] also describes an inho-
mogeneous medium provided the scale of variation of
matter induced potential VC is slow compared to the scale
of the order of @=ðEþ � E�Þ), hence ensuring no transi-
tions between the mass eigenstates. This defines the adia-
baticity condition [37,40]. As neutrinos traverse a density
gradient, at a particular value of ne the diagonal elements
of H� can vanish causing an interchange of flavors irre-
spective of the value of the vacuum mixing angle �. This
phenomenon of resonant conversion in matter is known as
the Mikheyev-Smirnov-Wolfenstein (MSW) effect
[41,42].

The off-diagonal form of the Hamiltonian in flavor basis
(both in vacuum and matter) leads to flavor oscillations of
neutrinos, which is the only mechanism that mixes the

neutrinos of different generations or flavors while preserv-
ing the lepton number (note that the absence of flavor
changing neutral currents prevents any flavor change
within the SM). Also note that the matter term appears in
diagonal elements only so in the absence of vacuum mix-
ing, neutrinos of different flavors cannot mix. The term
proportional to the identity gives an overall phase to each
of the mass eigenstates and hence does not affect oscilla-
tions. This corresponds to the gauge freedom of any state
of a two-level quantum system [3].
In the next subsection, we describe the polarized states

in optics in the language of quantum mechanics.

B. Polarized states in optics

Polarization optics is mathematically identical to the
evolution of a two-state quantum system. In a helicity basis
for polarized light, we can write jRi and jLi representing
right and left circular polarizations. A general polarized
light beam j�i can then be expanded in this basis as j�i ¼
�jRi þ �jLi, where j�j2 þ j�j2 ¼ N, the intensity of the
beam of polarized light. We can parameterize an arbitrary
state of polarized light by

j�i ¼ ffiffiffiffi
N

p
expfi�g cosð	=2Þ expð�i
=2Þ

sinð	=2Þ expði
=2Þ
� �

; (3)

where N is the total intensity, which is normalized to unity,
and the angles 	 and 
 (where 0 � 	 � � and 0 � 
 �
2�) describe the state of polarization of the beam, repre-
sented on the two-dimensional unit sphere (S2) called the
Poincaré sphere. Orthogonal polarization states are anti-
podal points of the sphere. � is the overall phase of the
beam. The states on the sphere are defined modulo this
overall phase of � and represent the ray space [43]. The
north pole (	 ¼ 0) represents right circular light and the
south pole (	 ¼ �) represents left circular light. States on
the equator (	 ¼ �=2) represent linear polarizations. Any
other point on the surface of the sphere represents elliptic
polarization. The Poincaré sphere is a useful device to
visualize the changes in the state of polarization of a light
beam traversing through a medium.
The mapping between the polarized states and a two-

level quantum system originates from the following fact.
Neglecting absorption effects,2 the effect of different me-
dia can be encoded in terms of 2� 2 Hermitian matrix
(Hamiltonian). The time evolution of optical states in a
medium is governed by a Schrödinger-like equation with
the medium represented by the most general form of
Hamiltonian for a two-level system given by

H ¼ A�x þB�y þ C�z þDI; (4)

where, the coefficients of the three traceless Pauli matrices,

2The incoherent scattering cross section for neutrinos
(10�44 cm2 for 1 MeV neutrinos impinging on target of mass
1 MeV) is extremely small as compared to photons in a medium.
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A, B, and C are responsible for generating rotations of
incident optical states about x, y, z axes on the Poincaré
sphere. D just adds an overall phase that can be absorbed
in a redefinition of the state. Hence, given an arbitrary
medium, it can be represented by a Hamiltonian as men-
tioned above, and the eigenstates of the Hamiltonian rep-
resent those optical states that do not suffer any change
(when incident on such a medium) in their state of polar-
ization except for picking up an overall phase shift. The
polarization of any other state (other than the eigenstates)
incident on this medium will undergo a periodic change.
On the Poincaré sphere this can be visualized as a rotation
of the incident state vector about the axis defined by a line
joining the two eigenstates of the Hamiltonian.
Mathematically, these unitary rotations on the Poincaré
sphere are generated by e�iHt. This is identical to unitary
time evolution generated by the Hamiltonian of the quan-
tum states in the Hilbert space. The quantum-mechanical
analogue of the Poincaré sphere is the Blöch sphere, which
geometrically represents the space of pure states of a two-
level quantum system.

Nonvanishing values of A, B, C simultaneously pa-
rameterize the effect of an elliptically birefringent me-
dium. Circular (linear) birefringence are special cases
where the conditions A, B ¼ 0 and C, D � 0 (B, C ¼
0 and A, D � 0) are satisfied.

C. Neutrinos and optics analogy

We can now describe the isomorphism between neutrino
states and polarized states in optics. The complete set of
states for two flavor neutrino system can be represented on
the Poincaré sphere just like the optical states as depicted
in Fig. 1. For convenience we define a new coordinate #,
which goes from 0 ! 2� as we traverse the unit great
circle in the x� z plane. In terms of the old coordinates,
the points 	, 
 ¼ 0 are now labeled by # ¼ 	, and the
points 	,
 ¼ � are labeled by # ¼ 2�� 	. If we assume
that the flavor states are the north and south poles of the
Poincaré sphere, then the mass eigenstates are represented
by the two antipodal points lying on an axis making an
angle 2� ¼ # with respect to the polar axis. States on the
equator coincide with the mass eigenstates for the special
case of maximal mixing (� ¼ #=2 ¼ �=4), which corre-
sponds to complete flavor conversion (MSW effect).
Geometrically, the MSW effect can be viewed as rotation
about an equatorial axis, rotating the north pole into the
south pole.

Ignoring the term proportional to the Identity, the neu-
trino Hamiltonian [Eq. (2)] both in vacuum or matter can
be recast in exactly the same form given by [see Eq. (4)]

H � ¼ !

2
½ðsin#Þ�x � ðcos#Þ�z�; (5)

where ! ¼ �m2=2p and the mixing angle � is replaced

by #=2.3 Comparing the two Hamiltonians [Eqs. (4) and
(5)] we see that the neutrino Hamiltonian represents a
medium with elliptic birefringence. And neutrino oscilla-
tions can be viewed as the neutrino flavor state precessing
[37] about the line joining the mass eigenstates (analogous
to elliptic axis) induced by the time-evolution operator
e�iH�t on the Poincaré sphere. In the language of neutrino
optics, both vacuum and matter exhibit elliptic birefrin-
gence property with different elliptic axes.
The absence of flavor changing neutral currents in the

SM gives rise to a real form of the Hamiltonian (B ¼ 0),
and it corresponds to a CP-conserving situation. The ei-
genvectors (also called mass eigenstates) of Eq. (5) are
given by

j#;þi ¼ cosð#=2Þ
sinð#=2Þ

� �
and j#;�i ¼ � sinð#=2Þ

cosð#=2Þ
� �

:

(6)

Note that states j#;þi and j#;�i are orthogonal antipodal
points on the Poincaré sphere, which always lie on the
great circle formed by the intersection of the x� z plane
with the Poincaré sphere. Mass eigenstates lying outside
the x� z plane imply CP violation. This fact has very
interesting consequences for the physics of geometric
phases in CP nonconserving situations [44].

FIG. 1 (color online). Neutrino states on the Poincaré sphere.
The flavor states j��i and j��i are the two antipodal points on

the z axis, while j#;�i correspond to the mass (energy) eigen-
states lying on an axis making an angle # with respect to the z
axis.

3In defining the Poincaré sphere, it is useful to work with half
angles #=2 as it allows for a mapping of the entire set of states
on to a two-dimensional sphere S2 as # changes from 0 to 4�.
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III. PANCHARATNAM’S PHASE IN THE TWO
FLAVOR NEUTRINO SYSTEM

The Pancharatnam phase:- We give a brief introduction
to the idea of Pancharatnam’s phase in quantum-
mechanical language along the lines of Refs. [24,43,45].
Given any two nonorthogonal states jAi and jBi in the
Hilbert space describing a system, a notion of geometric
parallelism between the two states can be drawn from the
inner product hAjBi. The two states are said to be parallel
(in phase) if hAjBi is real and positive, which defines the
Pancharatnam connection (or rule). Geometrically, it im-
plies that the norm of the vector sum of the two states
jjðjAiþjBiÞjj2¼hAjAiþhBjBiþ2jhAjBijcosðphhAjBiÞ
is maximum. Physically, it implies that if we let the two
states interfere with each other the resulting state will have
maximum probability (intensity). Note that if jAi is in
phase with jBi, and jBi is in phase with jCi, then jCi is
not necessarily in phase with state jAi. The phase differ-
ence between the states jCi and jAi is the Pancharatnam
phase, and it is equal to half the solid angle� subtended by
the geodesic triangle A, B, C on the Poincaré sphere for a
two-level system at its center. In general, for an n-level
system, the space of states is given by CP n�1 (CP stands
for complex projective), which reduces to the Poincaré
sphere (S2) for a two-level system (n ¼ 2). Nonin-
tegrability of Pancharatnam’s connection follows from
the nontransitivity of the rule.

Pancharatnam’s phase reflects the curvature of projec-
tive Hilbert space (ray space) and is independent of any
parameterization or slow variation. Thus, it can also appear
in situations where the Hamiltonian is constant in time. All
one needs is that the state has a nontrivial trajectory on the
Poincaré sphere. This condition is met naturally for neu-
trinos since they are produced and detected as flavor states
(which are not the stationary mass eigenstates) and hence
they automatically explore the curvature of the ray space
(Poincaré sphere) under the Schrödinger time evolution.
Furthermore, note the fact that Schrödinger evolution (pos-
sibly) interrupted by measurements can lead to
Pancharatnam’s phase. If we take any state and subject it
to multiple quantum collapses (such that consecutive col-
lapses are between nonorthogonal states) and bring it back
to itself, then the resulting state is given by jAihAjCi�
hCjBihBjAi, where the phase of the complex number
hAjCihCjBihBjAi is given by �=2.

The Herzberg and Longuet-Higgins phase and
CP-conserving neutrino Hamiltonian:- Let us reexamine
the form of the neutrino Hamiltonian given by Eq. (5) and
the eigenvectors given by Eq. (6). Note that the eigenvec-
tors depend only on a single parameter # and satisfy

j#;�i ¼ �j# þ �;�i ¼ �j# þ 2�;�i
¼ �j# þ 3�;�i ¼ j# þ 4�;�i: (7)

The minus sign picked up by both the mass eigenstates as
we change # from 0 ! 2� is precisely the Herzberg and

Longuet-Higgins phase [26,46] of �, which was first ob-
tained in the context of molecular physics in 1963. So, we
note that just by looking at the form of the Hamiltonian for
neutrino system, we should expect the Herzberg and
Longuet-Higgins phase to appear. Also, note that the space
of rays for the real neutrino Hamiltonian is the great circle
(S1) lying on the x� z plane of the Poincaré sphere
(Fig. 1) and global structure of the eigenvectors is a
Möbius band. The variation of # results in parallel trans-
port of the mass eigenstates (with dynamical phase re-
moved) following the parallel transport rule along #,

=mh#�j d

d#
j#�i ¼ 0: (8)

This parallel transport rule (formally referred to as natural
connection) has an anholonomy defined on the Möbius
band and this leads to the topological phase of �. The
topological phase factor � depends on the vector potential
A# given by

� ¼
I

A#d# ¼
I

=mh#�j d

d#
j#�id#: (9)

This vector potential A# is nonintegrable, and this is the
anholonomy of the connection. Physically, this corre-
sponds to half a unit of magnetic flux piercing the origin
of the x� z plane, encircling which leads to this topologi-
cal phase. And, the origin of the circle is connected to the
null Hamiltonian (i.e. all elements are zero), which corre-
sponds to the degeneracy point.
Naively speaking, one would think that this phase will be

impossible to access for neutrinos because we do not have
a handle on the mixing angle #=2 to be varied in a
controlled way from # ¼ 0 ! 2�. The key point to under-
stand here is the fact that as long as we carry out a quantum
evolution of a state in a closed loop enclosing the point of
singularity (degeneracy point, origin of the Poincaré
sphere), which can be achieved either via adiabatic varia-
tion of # or via Schrödinger evolution interrupted by
collapses, one will always get this phase. However, note
that in the former case, the amplitude of the initial state
undergoing evolution does not change but in the latter case,
it diminishes. In what follows, we will show that the
transition probability for neutrinos actually does carry
imprints of such a topological phase, which can be explic-
itly derived using Pancharatnam’s prescription. We then
show that the phase of � actually appears there and is in
fact observed by all the experiments carried out so far.
The topological phase in two flavor neutrino oscillations

(invoking collapses and adiabatic evolution):- In what
follows, we consider the most general situation, i.e. neu-
trinos are traversing through matter with slowly varying
density (i.e. # is a slowly varying parameter changing from
#1 to #2). Vacuum or constant density matter will be
special cases where # is a constant.
In order to see the effect of geometric phases, usually

one performs a split-beam experiment. In the case of
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optics, one separates a beam into two parts in space, and
each part traverses a different path. Finally, the beams are
recombined to observe the relative phase shift as they
interfere. In optics, the reflective and refractive property
of the medium is exploited to make devices like mirrors
and lenses, which facilitates designing of such experiments
in the laboratory. In the case of neutrinos, such a procedure
is not possible owing to the fact that the refractive index is
extremely small (nrefr � 1 ’ 10�19 for neutrinos of energy
1 MeV in ordinary matter). Treating the Sun (with density
� ¼ 150 g cm�3 in the core) as a spherical lens for a
neutrino beam of energy 10 MeV passing through it, one
gets the focal length to be around 1018R� [22], which is
about 105 times the size of our galaxy. Spatially split-beam
interference experiments with neutrinos are clearly impos-
sible. However, the fact that neutrinos are produced and
detected as flavor states allows us to think of the time
evolution of neutrinos as a split-beam experiment in energy
space as depicted in Fig. 2.

Let us consider a neutrino created as a flavor state j��i
(for example, neutrinos produced inside the Sun are pre-
dominantly in the electron neutrino flavor state, j�ei) and
detected as another flavor state, j��i (j��i can either be a

j�ei, i.e. survival of the same electron neutrino flavor or a
j��i, i.e. appearance of muon neutrino flavor), then

j��i ¼ ��þj#1;þi þ ���j#1;�i; (10)

where j#1;�i are the eigenstates of H�ð#1Þ. Now we
consider an adiabatic evolution of the mass eigenstates
from j#1;�i to j#2;�i due to a slow enough variation of
background density such that no mixing between the two
eigenstates is ensured under time evolution, and j#1;�i
evolves to

j#1;�i ! e�iD�j#2;�i
with D� ¼ � 1

2

Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð! sin#Þ2 þ ðVC �! cos#Þ2

q
dt0

þ
Z t

0

�
pþm2

1 þm2
2

4p
þ VC

2
þ VN

�
dt0; (11)

as the dynamical phases, relevant both for the vacuum case
(VC ¼ VN ¼ 0) and in the presence of varying matter
density profile and t is the time of flight of the neutrino.
The quantities that depend on time (or distance) are VC and
VN defined earlier [see Eq. (1)]. Note that the states j#1;�i
are j#2;�i are connected via parallel transport rule
[Eq. (8)] on the Poincaré sphere. The two time-evolved

states e�iD�j#2;�i are finally recombined to form a flavor
state at the detector.
In order to see this explicitly, let us proceed as follows:

The amplitude for the transition between states �� ! �� is

given by

A ð�� ! ��Þ ¼ h��jUj��i; (12)

where U is the unitary evolution operator given by

U ¼ e�iDþj#2;þih#1;þj þ e�iD�j#2;�ih#1;�j:
(13)

Inserting two complete sets of states in the amplitude,

Að�� ! ��Þ ¼
Xþ

i;j¼�
h��j#2; iih#2; ijUj#1; jih#1; jj��i

¼ h��j#2;þih#2;þjUj#1;þih#1;þj��i
þ h��j#2;�ih#2;�jUj#1;�ih#1;�j��i:

(14)

Note that the cross terms do not contribute in the adiabatic
limit. Upon substituting Eq. (13) in Eq. (14), we get

Að�� ! ��Þ ¼ e�iDþh��j#2;þih#1;þj��i
þ e�iD�h��j#2;�ih#1;�j��i: (15)

Then the probability for flavor transition �� ! �� is given

by

P ð�� !��Þ¼ jAð�� !��Þj2
¼h��j#1;þih#2;þj��ih��j#2;þih#1;þj��i

þh��j#1;�ih#2;�j��ih��j#2;�i
�h#1;�j��iþ½h��j#1;�ieiD�

�h#2;�j��ih��j#2;þie�iDþ

�h#1;þj��iþ c:c:�: (16)

The cross term in Eq. (16) is related to the interference
term resulting from the two path interferometer depicted in
Fig. 2. Upon dropping the dynamical phase, we have
h��j#1;�ih#2;�j��ih��j#2;þih#1;þj��i, which can be

viewed as a series of closed loop quantum collapses with
intermediate adiabatic evolutions given by j��i !
j#1;þi ! j#2;þi ! j��i ! j#2;�i ! j#1;�i ! j��i,
which essentially covers a great circle in the x� z plane as
is shown in Fig. 3(a). This closed trajectory subtends a
solid angle of � ¼ 2� at the center of the great circle.

FIG. 2 (color online). Schematic of a split-beam experiment
for neutrinos in energy space. j��i and j��i are the two flavor

states, while j#1;�i and also j#2;�i correspond to two sets of
mass (energy) eigenstates. j#1;�i are adiabatically evolved to
states j#2;�i, respectively (upon removing the dynamical
phase).
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Hence, without any further calculation, we can immedi-
ately predict that the phase of the interference term will be
� (half the solid angle) due to Pancharatnam’s prescrip-
tion. On the circle, each of the individual collapse pro-
cesses that essentially projects a state with given angle # to
another state with different angle #0 can be thought of as an
infinite series of infinitesimally close collapses between
states defined as j#i and j# þ �#i as far as geometric
phases are concerned. The entire closed loop of collapses
with intermediate adiabatic evolutions mentioned above
can be viewed as a smooth variation of # from 0 ! 2�
in the limit �# ! 0 hence making a direct connection to
the Herzberg and Longuet-Higgins phase mentioned
above. Nonetheless, we must note that the evolution of a
state is unitary under infinitesimal collapses (�# ! 0
limit), while it is nonunitary under finite collapses leading
to a loss in intensity (probability). But the geometric phase
of the evolving state remains unaltered for the two cases
mentioned above.

For the case when �¼�, i.e. survival probability, it is
easy to see that the collapses do not form a closed loop
enclosing the origin and therefore the interference term
will not pick up any phase. This case is depicted in
Fig. 3(b).

In a simpler situation when # does not change, i.e. the
case of vacuum or constant density matter, the number of
states will be fewer (in the absence of variation of density,
j#1;�i is the same as j#2;�i) and the collapses are given
by j��i ! j#1;þi ! j��i ! j#1;�i ! j��i. As long as

the collapses lead to closed loop encircling the origin, we
will obtain this topological phase. So this phase of �
appears whether we consider vacuum and/or ordinary mat-
ter with constant density or with slowly changing (but
noncyclic) electron number density. This is due to the
topological character of this phase, which will be preserved

as long as we have CP-conserving (real) Hamiltonian and
states are always lying on a great circle in the x� z plane
in the Poincaré sphere.
Next we write down an explicit expression for the ob-

servable quantities, i.e. appearance and survival probabil-
ities for two neutrino flavors. Using the general expression
obtained in Eq. (16), the appearance probability for tran-
sition �e ! �� is given by4

P ð�e ! ��Þ ¼ U?
eþð�1ÞU�þð�2ÞU?

�þð�2ÞUeþð�1Þ
þ U?

e�ð�1ÞU��ð�2ÞU?
��ð�2ÞUe�ð�1Þ

þ ½U?
e�ð�1ÞeiD�U��ð�2ÞU?

�þð�2Þe�iDþ

� Ueþð�1Þ þ c:c:�: (17)

Note that the matrix Uð�Þ is the lepton mixing matrix
(defined in a basis where the charged lepton mass matrix
is diagonal). It is also referred to as the Pontecorvo-Maki-
Nakagawa-Sakata matrix [47,48] and connects the flavor
states to the mass eigenstates. For the 2� 2 case, it is a real
orthogonal rotation matrix given by

U ð�Þ ¼ cos� sin�
� sin� cos�

� �
: (18)

Substituting the elements of Uð�Þ we get

P ð�e ! ��Þ ¼ cos2�1sin
2�2 þ sin2�1cos

2�2

þ ½2 cosðDþ �D�Þ�ð� sin�1Þ
� cos�2 sin�2 cos�1: (19)

z

x

z

x

| β

| 1, +

| 2, +

| 1,

| 2,

| α α

| 1, +

| 2, +

| 1,

| 2,

1 2 1 2

(b)(a )

FIG. 3 (color online). Two representative cases depicting the collapse processes (dashed red lines) with intermediate adiabatic
evolutions upon removing the dynamical phase (dotted blue lines) on the great circle (S1) arising due to the cross term h��j#1;�i�
h#2;�j��ih��j#2;þih#1;þj��i in the probability. The initial flavor state j��i is on the positive z axis, while final flavor state ��i is
not necessarily its antipodal point. The two sets of mass eigenstates are antipodal points on two axes making angles #1 and #2,
respectively with respect to the z axis. Case (a) corresponds to appearance probability [P ð�� ! ��Þ] for which we get a cyclic loop in
# space. (b) The collapse processes for survival probability [P ð�� ! ��Þ] does not enclose any loop.

4In order to connect with the standard expressions used in
neutrino literature, we shall revert to � instead of #=2.
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We note that there are four inner products appearing in the
interference term in the final expression for the probability
out of which the first three inner products, viz.,
h#1;þj�ei ¼ Ueþð�1Þ ¼ cos�1 > 0, h��j#2;þi ¼
U?

�þð�2Þ ¼ sin�2 > 0 and h#2;�j��i ¼ U��ð�2Þ ¼
cos�2 > 0 clearly implying that these states are mutually
parallel to each other in pairs according to Pancharatnam’s
rule, which is to have the inner product of any two states
real and positive, while the last one h�ej#1;�i ¼
U?

e�ð�1Þ ¼ � sin�1 < 0 by Pancharatnam’s rule has j�ei
antiparallel to j#1;�i, since the physically allowed values
for the mixing angles �1 and �2 are within the interval
½0; �=2� for �m2 > 0 [40]. (On the Poincaré sphere, the
corresponding #1 and #2 can take values between ½0; ��.)
The minus sign appearing in the interference term is thus
the Pancharatnam’s phase of � appearing in the neutrino
oscillation formula (see Fig. 3(a)).

If in a hypothetical situation, for some range of parame-
ters�1 and�2, the first three of the inner products are real
and negative (i.e. the states are aligned antiparallel to each
other or completely out of phase), while the fourth inner
product is real and positive (the states are in phase) then
also we will have this minus sign. The nontransitivity also
holds here leading to the nontrivial topological phase of �.
This situation where the inner product becomes real and
negative defines an ‘‘antiparallel’’ rule (in the same spirit in
which Pancharatnam defined his rule of two states being
‘‘in phase or parallel’’) would correspond to the norm of
the vector sum of the two states being at its minimum
value. Physically, this implies the interference of the two
given states would be destructive and the resulting state
will have minimum intensity or a dark fringe in optics.

The existence of Pancharatnam’s phase of � can be
simply connected to the fact that the mixing matrix Uð�Þ
matrix for two flavors is an orthogonal rotation matrix
parameterized by the mixing angle� of which one element
has a negative sign. Thus, this phase is built into the
structure of Uð�Þ matrix.

The survival probability is given by

P ð�e ! �eÞ ¼ cos2�1cos
2�2 þ sin2�1sin

2�2

þ ½2 cosðDþ �D�Þ� sin�1 cos�2 sin�2

� cos�1: (20)

Note that in the case of survival probability, the cross term
does not pick up any nonzero topological phase, and
geometrically this is exactly what we had expected from
Fig. 3(b). The loop in # space is open in this case, and this
is what leads to this result. The topological phase of the
interference term in survival probability is zero, while it is
� in the case of the appearance probability, and this fact is
in accord with unitarity.

The above expressions [Eqs. (19) and (20)] reduce to the
standard results [27,37,40,49] for vacuum if we substitute
�1 ¼ �2 ¼ �,

P ð�e ! ��Þ ¼ sin22�sin2
�m2l

4E
and

P ð�e ! �eÞ ¼ 1� sin22�sin2
�m2l

4E
;

(21)

where in the ultrarelativistic limit, we can use t ’ l and p ’
E leading to D� ¼ ��m2l=2E [see Eq. (11)] for the
vacuum case (VC ¼ VN ¼ 0). In constant density matter,
the quantities � and �m2 in Eq. (21) are replaced by their
respective renormalized values in matter, �m and ð�m2Þm
but the form of the expression will remain the same. Hence,
our result is consistent with the standard neutrino oscilla-
tion formulation, and it provides a clear geometric inter-
pretation of the phenomenon of neutrino oscillations. More
precisely, the standard result for neutrino oscillations is in
fact a realization of the Pancharatnam topological phase.

IV. DISCUSSION

As mentioned in the introduction, the existing work on
the subject of geometric phases in neutrino oscillations led
to the widespread belief that the two flavor neutrino oscil-
lation formulae in CP conserving situations were devoid of
any geometric or topological phase component.
Appearance of the cyclic Berry phase was dismissed on
the grounds of not having any time-varying parameter in
vacuum and having only one essential parameter (thereby
enclosing no area) in the case of normal matter [3,12–16].
Concerning the appearance of the general geometric phase
in the two flavor neutrino case for propagation in vacuum,
there are claims reporting its appearance [17,18]. But, it
should be noted that such terms appeared only at amplitude
level and as argued earlier, a phase appearing in the am-
plitude can be observed only via a split-beam experiment,
which is not feasible to design in the case of neutrinos.
In this paper, we have examined the minimal case of two

flavor neutrino oscillations and CP conservation. Contrary
to all existing claims in the literature concerning the geo-
metric or topological phase in two flavor neutrino oscilla-
tion probabilities, our study provides the first clear
prediction that a topological phase of � exists at the
probability level even in the minimal case of CP conser-
vation. We show that it is inherently present in the physics
of neutrino oscillations via the structure of the Pontecorvo-
Maki-Nakagawa-Sakata neutrino mixing matrix. This ex-
istence of this topological phase is linked to the presence of
a flux line of strength � at the origin of ray space, which is
connected to the degeneracy point associated with the null
Hamiltonian.
Pancharatnam’s idea is quite useful in terms of predic-

tive power as it allows for a clear visualization of the
appearance of such a phase due to geometric effects with-
out doing any algebra. Our prescription is general as it
contains effects due to collapses and also due to adiabatic
evolution. In the absence of either of these, one would get
the same phase. So no matter what the details are, as long
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as the singular (degeneracy) point is enclosed by a cyclic
loop (in the space of rays) as # is varied from 0 ! 2�, we
will get this phase, and this is due to its topological robust-
ness. The adiabatic and collapse processes both conspire in
such a fashion that the net phase would always be �. This
does not happen for geometric phases.

The topological phase obtained in this paper is a con-
sequence of anholonomy, which can arise in situations
even when there is no curvature. The most striking ex-
ample of this is the Aharonov-Bohm effect [46]. To expe-
rience the effect of anholonomy, the main requirement is to
encircle the singular point, this fact was exploited by
Herzberg and Longuet-Higgins in pointing out the topo-
logical phase in molecular physics. On the other hand, for
Berry’s phase to appear, a net curvature is a must which is
fulfilled by having at least two essential parameters in the
Hamiltonian varying cyclically. This is an important dis-
tinction between the geometric phases as obtained by
Herzberg and Longuet-Higgins and by Berry.

If we consider mixed flavor states5 instead of the pure
flavor states, there will be a greater number of physical
situations (or, possible diagrams for the interference term
like the ones shown in Fig. 3 for pure flavor states) that can
be explored to see if one encircles the singular point or not.
A mixed state corresponds to a general point on the surface
of the Poincaré sphere like an elliptically polarized state in

optics. If the mixed states are such that they lie on the x� z
plane, it will always lead to the same quantized topological
phase of �. But, for a general mixed state lying anywhere
else on the Poincaré sphere, the phase will be geometric in
nature.
It might be a nontrivial task to extend our geometrical

interpretation to the case of three neutrinos flavors because
it will involve a higher dimensional sphere (the ray space is
CP 2 for the three level quantum system).
It is natural to ask what happens when we invoke CP

violation. In vacuum, CP violation cannot be induced in
the two flavor case as a consequence of CPT invariance
and unitarity [28]. However, matter with constant or vary-
ing density can induce CP violation via the coherent for-
ward scattering of neutrinos with background matter. If we
introduce CP violation induced by background matter with
constant density [28], we still expect to get the same phase
of � as we have two pairs of orthogonal states that will
always lie on a great circle. If the density is varying slowly
(adiabatic condition holds), then the intermediate states
(connected by adiabatic evolution) will be lifted from the
great circle, hence resulting in a path-dependent solid
angle, and the phase will be geometric [44].

ACKNOWLEDGMENTS

The author is deeply indebted to J. Samuel and S. Sinha
for numerous useful discussions leading to the present
work and critical comments on the manuscript. Support
from the Weizmann Institute of Science, Israel during the
initial stages of this project is gratefully acknowledged.

[1] M.C. Gonzalez-Garcia and M. Maltoni, Phys. Rep. 460, 1
(2008).

[2] R. Z. Funchal, contribution to Neutrino 08, May 27,
Christchurch, New Zealand (unpublished).

[3] N. Nakagawa, Ann. Phys. (N.Y.) 179, 145 (1987).
[4] J. Vidal and J. Wudka, Phys. Lett. B 249, 473 (1990).
[5] C. Aneziris and J. Schechter, Int. J. Mod. Phys. A 6, 2375

(1991).
[6] C. Aneziris and J. Schechter, Phys. Rev. D 45, 1053

(1992).
[7] A. Y. Smirnov, Pis’ma Zh. Eksp. Teor. Fiz. 53, 280 (1991).
[8] A. Y. Smirnov, Phys. Lett. B 260, 161 (1991).
[9] E. K. Akhmedov, A.Y. Smirnov, and P. I. Krastev, Z. Phys.

C 52, 701 (1991).
[10] M.M. Guzzo and J. Bellandi, Phys. Lett. B 294, 243

(1992).
[11] V.M. Aquino, J. Bellandi, and M.M. Guzzo, Phys. Scr. 54,

328 (1996).
[12] V. A. Naumov, JETP Lett. 54, 185 (1991).
[13] V. A. Naumov, Sov. Phys. JETP 74, 1 (1992).
[14] V. A. Naumov, Int. J. Mod. Phys. D 1, 379 (1992).

[15] V. A. Naumov, Phys. Lett. B 323, 351 (1994).
[16] X.-G. He, X.-Q. Li, B.H. J. McKellar, and Y. Zhang, Phys.

Rev. D 72, 053012 (2005).
[17] M. Blasone, P. A. Henning, and G. Vitiello, Phys. Lett. B

466, 262 (1999).
[18] X.-B. Wang, L. C. Kwek, Y. Liu, and C.H. Oh, Phys. Rev.

D 63, 053003 (2001).
[19] M.V. Berry, Proc. R. Soc. A 392, 45 (1984).
[20] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593

(1987).
[21] O. G. Miranda, J. Math. Phys. (N.Y.) 37, 121 (2006).
[22] G. G. Raffelt, Stars as Laboratories for Fundamental

Physics: The Astrophysics of Neutrinos, Axions, and

Other Weakly Interacting Particles (University of

Chicago Press, Chicago, 1996).
[23] S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247

(1956).
[24] J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339

(1988).
[25] S. Ramaseshan and R. Nityananda, Curr. Sci. 55, 1225

(1986).

5Here, mixed state refers to a superposition of pure flavor
states and should not be confused with the mixed states in the
density matrix language, which are not pure.

POONAM MEHTA PHYSICAL REVIEW D 79, 096013 (2009)

096013-10



[26] G. Herzberg and H. C. Longuet-Higgins, Discuss. Faraday
Soc. 35, 77 (1963).

[27] T.K. Kuo and J. Pantaleone, Rev. Mod. Phys. 61, 937
(1989).

[28] E. K. Akhmedov, Phys. Scr. T121, 65 (2005).
[29] A. Bandyopadhyay et al. (ISS Physics Working Group),

arXiv:0710.4947.
[30] R. A. Harris and L. Stodolsky, Phys. Lett. 116B, 464

(1982).
[31] C.W. Kim, W.K. Sze, and S. Nussinov, Phys. Rev. D 35,

4014 (1987).
[32] L. Stodolsky, Phys. Rev. D 36, 2273 (1987).
[33] C.W. Kim, J. Kim, and W.K. Sze, Phys. Rev. D 37, 1072

(1988).
[34] M. J. Thompson and B.H. J. McKellar, Phys. Lett. B 259,

113 (1991).
[35] K. Enqvist, K. Kainulainen, and J. Maalampi, Nucl. Phys.

B349, 754 (1991).
[36] C. Giunti, C.W. Kim, and U.W. Lee, Phys. Lett. B 274, 87

(1992).
[37] C.W. Kim and A. Pevsner, Neutrinos in Physics and

Astrophysics (Harwood Academic Publishers, Chur,
Switzerland, 1993).

[38] A. Halprin, Phys. Rev. D 34, 3462 (1986).
[39] N. Mukunda, R. Simon, and E. C. G. Sudarshan, J. Opt.

Soc. Am. A 2, 1291 (1985).
[40] M. C. Gonzalez-Garcia and Y. Nir, Rev. Mod. Phys. 75,

345 (2003).
[41] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).
[42] S. P. Mikheyev and A.Y. Smirnov, Sov. J. Nucl. Phys. 42,

913 (1985).
[43] J. Samuel, Pramana 48, 959 (1997).
[44] P. Mehta (work in progress).
[45] M.V. Berry, J. Mod. Opt. 34, 1401 (1987).
[46] A. Shapere and F. Wilczek, Geometric Phases in Physics

(World Scientific, Singapore, 1989).
[47] B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958).
[48] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys.

28, 870 (1962).
[49] J. D. Walecka, Introduction To Modern Physics:

Theoretical Foundations (World Scientific, Singapore,
2008).

TOPOLOGICAL PHASE IN TWO FLAVOR NEUTRINO . . . PHYSICAL REVIEW D 79, 096013 (2009)

096013-11


