Chapter 5

Parameter estimation of coalescing
supermassive black hole binaries with
LISA

5.1 Introductionto Laser Interferometer Space Antenna

5.1.1 The LISA configuration

Detection of low frequency GWSs (< 1Hz) is not feasible with the ground based detectors
because of seismic noise. Laser Interferometer Space Antenna (in short LISA) is a planned
space based GW observatory sensitive to GWs of frequency 107> — 1Hz [192, 193]. Typical
sources in this frequency band include a wide variety of short period binaries (both galactic
and extra galactic), stochastic GW background generated by some physical processes such
as inflation in the very early universe, extreme mass ratio inspirals of a stellar mass BH
falling into a supermassive BH (SMBH) companion and inspiral and consequent merger of
two SMBH binaries which is the topic of discussion of this chapter (See Ref [164] for a
review on the science potential of LISA).

LISA is a (equilateral) triangular space craft constellation, whose distance between adja-
cent arms is 5 million kilometers. This constellation will orbit around the sun with a 20° lag
w.r.t earth. The constellation will have a tilt of 60° with the ecliptic plane which contains the
sun and the earth.

LISA, like the ground based detectors, is not a ‘pointed instrument’ but an all-sky monitor
with a quadrupolar antenna pattern. The time varying length of the LISA arms, caused by
the incident GW signal, is what is measured. With its three arms, one can construct two
linearly independent differences. Thus LISA will be able to measure both the polarizations
of the incident GW simultaneously. For triangulating a source in the sky with the ground
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based detectors, one will need a three detector network. LISA, on the other hand, with
its orbital motion induced modulations can locate the source without requiring the second
interferometer, though the second interferometer improves the estimation.

The orbital motion of LISA induces frequency, phase and amplitude modulations which
encode the information about the source’s location and orientation. The amplitude modula-
tion is caused by the change in the detector’s antenna pattern in the sky due to the orbital
motion. Translational motion of the detector towards and away from the source during its
orbital motion causes frequency modulation due to Doppler effect. Variation with time of
the two antenna pattern functions modulates the phase of the wave. (See [194] for a discus-
sion about these effects and how one can subtract out these effects while analysing the data).
The resultant antenna pattern which captures all these modulations is discussed later in the
chapter in Sec 5.3.3.

5.1.2 Data analysis for LISA: Time delay interferometry

Maintaining the giant LISA constellation in space is a challenging task for the experimenters.
Unlike the ground based detector case, its impossible to bounce the laser beams between
different arms because of the large arm lengths involved. Hence Doppler tracking will be
employed to track the space crafts with laser beams. One will have six Doppler data streams
due to the exchange between three arms.

Phase fluctuations in the master laser causes laser phase noise which is the most important
noise source several orders of magnitude larger than the instrumental noise. Cancelling the
laser phase noise is an important issue for LISA to achieve the design sensitivity. Since it is
impossible to maintain equal arm lengths, the cancellation of laser phase noise is a non-trivial
ISsue.

A strategy to overcome this problem is to combine different data streams with appropriate
time delays so as to cancel the laser noise. This is called time delay interferometry (TDI) [25,
26, 27] (See [28] for a review). By properly time shifting the data generated by each readout,
one can construct observables which are not only insensitive to the laser phase noise and
optical bench motions but also account for different couplings to gravitational radiation and
to the other system noises.

In the present work, however, we shall not use the TDI variables. Instead we work with
a simplified assumption that noises in the two detectors are uncorrelated.
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5.2 Gravitational wave astronomy with L1SA

5.2.1 Astrophysical sources for LISA

Most of our near-by galaxies harbour supermassive black holes (BH) at their centre [195].
If this is the case, then merger of such galaxies would produce a binary system composed
of two supermassive BHs. Simulations indicate that there could be primordial supermassive
BH binaries at the centres of the first galaxies [196]. An understanding of the formation and
evolution of these binaries is very important from the view point of cosmology and struc-
ture formation. Many of these binaries coalesce under gravitational wave (GW) radiation
reaction within Hubble time. Supermassive BH binaries in the mass range 10*-10"M,, will
emit gravitational waves (GW) of frequency 10~*-10-! Hz during its adiabatic inspiral phase
which can be observed by the proposed space-borne GW missions such as LISA [192, 197]
with high ( ~ a few thousands) signal to noise ratio (SNR) up to very high redshifts (~ 10).
Many earlier have investigated the implications of these observations in the context of
astrophysics, cosmology and testing general relativity and its alternatives. LISA observations
of BH coalescences can be used to study the growth of BHs as the universe evolved and for
mapping the distribution of BHs as function of the redshift [198, 21, 199]. LISA will be able
to measure luminosity distances to the sources with an accuracy ~ 1 — 10%. If the redshift
associated with the event is known by electromagnetic observations, these sources can be
used as very high precision standard candles and to study the distance-redshift relation [200,
201]. Ref [202] discussed the potential of LISA to observe binaries containing a BH in the
intermediate mass regime ( ~ 103M,,) and use it as a probe of strong field aspects of gravity.

5.2.2 Test of strong-field gravity using LISA

LISA could probe many strong gravitational field effects which are not possible to explore
with other observational means. Both inspiral and ring-down GW signals can be used for
this. Refs [203, 204, 24] studied the possibility of using the quasi-normal mode oscillations
to test the no-hair theorem of general relativity since these modes will be characterized only
by the mass and angular momentum of the BH (in general relativity). Hughes and Menou
examined another possibility [205] assuming LISA detects both inspiral and ring-down sig-
nals from the same source. By measuring the total mass independently from both the inspiral
and ringdown signals one can estimate the mass difference which will be the mass-energy
lost due to GWSs. They suggested that an extension of this idea including spin effects could in
principle test the BH area theorem. Further, inspiral of a stellar mass BH into a SMBH will
be another interesting source for LISA using which many properties of the central SMBH
can be probed including the possibility to map the spacetime by following the geodesic mo-
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tion of the stellar mass BH (See e.9.[206, 207]) and measuring the multipole moments of the
spacetime.

LISA will provide an unique opportunity to test general relativity and its alternatives.
Will and his co-workers have discussed the potential of LISA to test general relativity as
well as its alternatives like Brans-Dicke theory and massive graviton theories [208, 209].
Recently this issue was discussed in a more realistic scenario of spinning binaries using 2PN
phasing [21, 199]. Blanchet and Sathyaprakash proposed another test based on the post-
Newtonian (PN) GW phasing formula by measuring the 1.5PN GW tail effect and showing
how it can be used as a test of general relativity [186, 187]. This proposal was recently
generalized to higher PN order terms in the phasing formula in Refs [190, 22, 23] and it was
argued that such a test would allow one to probe the nonlinear structure of gravity.

5.2.3 Parameter estimation problem in the LISA context

A very accurate parameter extraction scheme is central to performing all these analyses. A
parameter estimation scheme based on matched filtering, similar to that for the ground based
detectors such as LIGO and VIRGO, will be employed for LISA also. An efficient matched
filtering would in turn demand a very accurate model of the gravitational waveform. In
order to compute the gravitational waveform from a compact binary system, one solves the
two-body problem in general relativity perturbatively using different approximation schemes
since no exact solutions for this problem exist till date. The final waveform can be expressed
as a post-Newtonian expansion which is a power series in v/c where v is the gauge indepen-
dent velocity parameter characterising the source (See Ref. [44] for an exhaustive review on
the formalism). In our notation £ refers to half a PN order.

Since the information about the phase is more important for the process of matched filter-
ing, one uses a simplified model of the inspiral waveform (the so called restricted waveform)
where phase is modelled to a high PN order but retaining only the Newtonian amplitude.
In doing so, one is neglecting the effect of other harmonics [101, 102] in the waveform and
also the higher order PN corrections to the dominant harmonic at twice the orbital frequency.
In the present study, we deal only with the restricted waveform in the Fourier domain ob-
tained using stationary phase approximation. The phasing formula for nonspinning binaries,
is presently complete up to 3.5PN order [97, 99, 100]. In the case of spinning binaries,
the phasing formula with all spin effects (spin-orbit and spin-spin interactions) included is
available to 2PN order [117, 118]. Recently the 2.5PN phasing formula with spin-orbit cou-
pling was obtained in Refs [119, 160]. We discuss its possible implications for parameter
estimation in the concluding section.

The implications of the higher PN order phasing in the context of parameter estima-
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tion problem has been investigated by different authors. Based on the framework set up by
Refs [184, 185], Cutler and Flanagan [103] investigated the importance of the 1.5PN phas-
ing formula [96]. The effect of including the spin-orbit coupling parameter at 1.5PN order
into the space of parameters was one of interesting issues addressed. Next, two independent
works by Krolak et al. [104] and Poisson and Will [105] analysed the problem of parameter
estimation using the 2PN phasing formula of Ref. [97]. Inclusion of the 2PN spin-spin cou-
pling term at 2PN and its effect on estimation of the other parameters was the focus of their
analysis.

The work discussed in the previous chapter investigated the effect of the 2.5, 3 and 3.5PN
terms for the parameter estimation of nonspinning binaries in the LIGO and VIRGO cases
(a similar work was carried out independently by Berti and Buonanno [210]). Using the
covariance matrix calculations, they inferred that by employing the 3.5PN phasing instead of
the 2PN one, the estimation of chirp mass and symmetric mass ratio improves by 19% and
52% respectively for the ground based detectors such as LIGO and VIRGO.

Cutler was the first to address the problem of parameter estimation in the LISA con-
text [193]. He used the 1.5PN waveform including the spin-orbit effect and studied the
estimation of errors associated with the mass parameters as well as distance and angular res-
olution of the binary. Seto investigated the effect of finite arm length of LISA using 1.5PN
phasing [211]. Vecchio revisited the parameter estimation with the 1.5PN waveform [212]
where he used the waveform for circular orbit but with “simple precession” (as opposed to
non-precessing case of [193]) and examined the implications of it for the estimation of dis-
tance and angular resolution. Various aspects of the 2PN parameter estimation, such as the
spin-spin coupling, was investigated by different authors [198, 21, 199]. Ref [21] studied
the effect of spin terms in testing alternate theories of gravity with the LISA observations.
Refs [198, 199] also addressed the issue of mapping the merger history of massive BHs us-
ing LISA observations with the 2PN phasing. While all these calculations are within the
restricted waveform approximation where the PN corrections to the amplitude is completely
neglected, there are investigations about the effect of including these amplitude corrections
in the context of parameter estimation [123, 124, 121, 122].

Other than the covariance matrix approach, which is valid only in the high SNR limit,
there have been proposals in literature addressing the parameter estimation problem using
Monte-Carlo methods. In Ref [173], the authors compared the error estimates obtained using
the covariance matrix with the Monte-Carlo simulations. Recently parameter estimation
schemes based on Bayesian statistics using Markov chain Monte-Carlo (MCMC) method
also has been proposed and implemented in the ground based detector context [213, 214] and
the LISA case [215, 216]. Using the 2PN waveform Ref [215] found that posterior parameter
estimation distribution of the extrinsic parameters obtained using MCMC methods are in
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excellent agreement with those computed using Fisher matrix whereas there is a systematic
overestimate of the errors by Fisher matrix for the intrinsic parameters.

In the present work we extend the earlier analyses to the observation of GW inspirals
of supermassive BH binaries by LISA. Coalescences of BHs of masses 10* — 10’ M, at a
luminosity distance of 3 Gpc are considered. We assume LISA will observe these events
for one year duration. Using the 3.5PN phasing we calculate the errors associated with the
estimation of the mass parameters, distance and angular resolution and compare them to the
corresponding 2PN results. We also study the effect of orbital motion on parameter estima-
tion by comparing these results with other two cases, one where LISA pattern functions are
not used and another when LISA is considered to be a two detector network instead of a
single Michelson interferometer.

The rest of the chapter is organized as follows. Sec. 5.3 discusses all the necessary inputs
required for the chapter such as a brief introduction to parameter estimation using covariance
matrix, noise model for LISA, model for the waveform and some other conventions followed
in the chapter. Secs 5.4 and 5.5 discuss the main results and their implications and Sec. 5.6
contain a summary and finally Sec 5.7 the future directions.

5.3 The3.5PN parameter estimation for LI1SA: Modelsand
assumptions

5.3.1 Parameter estimation using the covariance matrix

We summarize the theory of parameter estimation in the context of Gaussian random detector
noise, addressed in the GW context first by Finn and Chernoft [184, 185] and implemented
by Cutler and Flanagan [103]. Let us assume an inspiral GW signal is detected meeting the
necessary detection criteria and that one needs to extract the intrinsic and extrinsic param-
eters from the signal by matched filtering. In the next paragraph, we briefly summarize the
parameter estimation theory explained in detail in chapter 4

For sources like inspiralling compact binaries, where a prior source modelling is possible
to predict the gravitational waveform, matched filtering is an ideal method both for detection
as well as parameter estimation of the signal [166]. In matched filtering, the detector output
is filtered using a bank of theoretical templates with different signal parameters. The param-
eters of the template which obtains the best signal-to-noise ratio (SNR) gives the “measured”
values of the signal parameters. These values, in general, will be different from the “actual”
values due to the presence of noise. The problem of parameter estimation addresses the
question of how close are the measured values to the actual ones and what the associated er-
rors are in the estimation of different parameters. For a given signal, different realizations of
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noise lead to different sets of best-fit parameters of the signal. When the background noise
Is a stationary, random, Gaussian process, at high enough SNRs the best-fit values of the
parameters have a Gaussian distribution centered around the actual values of the parameters.

If A' denotes the actual value of the parameters and A'+AA', the measured value, then the
root mean square difference AA' obeys a Gaussian distribution: p(A4;) « exp (—Fi JALAA / 2)
where I}, the Fisher information matrix constructed from the Fourier domain representation
of the waveform, is given by

in 02 (F)D;(F) + 0y (F)Re(f
ri,-:szf F(F)hy(f) + (),()OIf (5.

. Sn(f)

Here, hi(f) := 6h(f)/84', h(f) is the Fourier domain gravitational waveform and S (f) is the
(one-sided) noise power spectral density of the detector. It also follows that the root-mean-
square error in measuring A' is given by o = VET, where £ = I'"! is called the covariance
matrix. The non-diagonal elements of the covariance matrix define the correlation coefficient

between two parameters: ¢l := % Repeated indices are not summed over in the above

expressions. Finally, the SNR p can be expressed in terms of the Fourier domain signal h(f)
as o ()
fin f |

=4 f | df. 5.2
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In the present case of LISA the A' denoting the set of our chosen parameters are given
by {te, ¢e, M, 1, D, bs, b1, 0s,6.}. In the case where pattern functions are not included the
above set reduces to {t., ¢c, M, n}. The additional elements of the parameter set denote the
distance, orientations and locations of the source in the sky specified with respect to the fixed
solar system based coordinate system.

In the above integrals, the upper limit of integration is ffij, = Min[ fiso, fena], Where fig, is
the frequency of the innermost stable circular orbit for the test particle case, i, = (63?71 m)~*
and fypper cOrresponds to the upper cut-oft of the LISA noise curve feq = 1Hz. We have
chosen the lower limit of frequency fi, = Max[ fin, fiower] Where fi, is calculated by assuming
the signal lasts for one year in the LISA sensitivity band and fiyer, the low frequency cut-off
for LISA noise curve, is assumed to be 10°Hz?.

5.3.2 Model for the LISA noise curve

We follow the noise model of LISA as given in Ref [21] which is a slightly modified version
of [217]. The noise spectral density consists of a non-sky averaged part [217] and confusion

1Another way of choosing the limits of integration is to calculate the time over which the signal will last
once it enters the LISA band. See [198] for example, where the duration of the signal is calculated using the
expression for t(f). It assumes fiower = 10~*Hz and 3 year mission time for LISA.
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noise due to the galactic and extra-galactic white dwarf binaries [218, 219, 217]. The total
instrumental plus confusion noise reads as

SNSA(f)
dN/df)

Sh(f) = min{ ,s,TSA(f)+sga'(f)}+s‘;xga'(f), (5.3)

exp (—KT -1

mission

where Sﬁ‘SA(f) refers to the non-sky averaged part of spectral density. The noise contri-
butions from the galactic and extra-galactic white-dwarf binaries are represented by S Ea'(f)
and S 7%(f), respectively, and dN/d f refers to the number density of galactic white-dwarf
binaries per unit GW frequency. The corresponding expressions are given by

-4
SNSA(f) = [9.18x 1072 (1—;&) +1.59 x 1074
f 2
+9.18x 1078 (—] | Hz, (5.4a)
1Hz
SE(f) = 21x10% f Hz* (5.4b)
h 1 Hz ’
| i f -7/3 .
ex—gal _ - _
SPT(f) = 4.2x10 (_1 HZ) Hz 1, (5.4c)
11/3
‘;_';' = 2x10°%Hz? (#) , (5.4d)

where Tpission IS the duration of LISA mission. See Sec Il C of Ref [21] for a detailed
summary.

5.3.3 The waveform model

LISA with its three arms is essentially equivalent to a pair of two-arm detectors. We consider
two cases: one where we assume the estimation of mass parameters is not affected because
of their correlations with the angular variables and second when we estimate the associated
errors with angular variables and luminosity distance of the source. Since the information
about the angular variables are encoded in the so-called pattern functions which describes
the orbital motion of LISA, in the first case we use a waveform which is averaged over the
pattern functions. In the second case, we do not average over the pattern functions and use
the information from the LISA orbital motion to discuss the estimation of angular resolution
and luminosity distance to the source. Further, in the second case we consider cases when (i)
LISA is a single two arm-detector and (ii) as a two detector network in order to understand
the effect of network configuration for parameter estimation. The LISA antenna patterns,
describing its orbital motion, is given in [193] which is used for the present study (also see
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Appendix A of Ref [21] for these expressions).

Unlike the ground based detectors where the two arms have an angle 90°, the LISA arms
are at 60°. As shown by Cutler [193], the relative strain amplitude in the LISA case can
be simply related to the 90° interferometer case by multiplying the latter by a factor v3/2.
Using this input, the Fourier domain waveform within the stationary phase approximation
can be written down as [193, 21]

V3

ho(f) = 7m-”‘ie“ﬂ(f), a=1L11, (5.5a)
1 MS/G
= o D (5.5b)

where « labels the interferometer, f the GW frequency and M, the chirp mass which is
related to total mass m = m; + m, and symmetric mass ratio 7 = mym,/m? by M = *°m.
The luminosity distance to the source is denoted by D,. The GW phase () appearing in
the formula is completed up to 3.5PN [100, 99, 143] and its Fourier domain representation
is given in [47, 106]. We find it more convenient to write it as

k=7

() =2n fto— o+ ) akik, (5.6)
k=0

where v = (=m )3 is the PN variable which is related to gauge independent source velocity
in system of units where G = 1 = ¢ which we follow henceforth in the chapter. Eq (4.18) of
chapter 4 gives the «a for different valuesofk =0---7.

In the case where we do not average the pattern functions, the waveform can be written
as [21]

A, (f) = ? A FT/6 (D) {% Aa(t(f))} e-i(epaltMreot(M) (5.7)
where ¢,,(t(f)) and ¢p(t(f) are the polarization phase and Doppler phase respectively [193].
A, (t(f)) correspond to the amplitude modulations induced by the LISA’s orbital motion.
A, (t(f)) and ¢po(t(f)) depends on the pattern functions F¢(t) and F(t) and hence vary with
time. For convenience, all the essential equations related to the response of LISA [193, 21]
are given below.

In the equations below, ‘barred’ quantities are in the fixed-solar system based coordi-
nate systems and those ‘unbarred’ are in the rotating LISA frame. We assume that noise is
symmetric in each pair of the LISA arms and hence treat LISA to be consisting of two inde-
pendent Michelson interferometers in the shape of an equilateral triangle. Compared to the
ground based detector case, the resultant waveform will have an overall ? factor to account
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for the equilateral geometry [193]. The pattern functions are given by

1
> (1 + cos? 63) c0s 2¢s COS 2y

F (0s, ¢s, ¥s)
— C0S fs SN 2¢s SiN 2y

1 .
F(6s. ¢s, ¥s) 5(1 + C0S? 03) €0S 2¢s Sin 2ys

+ C0S s SiN 2¢5 COS 2Yrs (5.8)

and

Fl(0s, ¢s — ;—T,lﬁs),
Fl(0s, ¢s — ;—r,l//s)- (5.9)

Fi(0s, ¢s,¥s)

Fi(6s, ¢s, ¥s)

In the above equations we have denoted by (s, ¢s) the source location and by s the polar-

ization angle defined as A A
L-z—(L-n)(z-n)

n-(Lxz) (510

tanys(t) =

L, z and —n being the unit vectors along the orbital angular momentum, the unit normal to
LISA’s plane and the GW direction of propagation, respectively.
The waveform polarization and Doppler phases in the above equations are given by :
2(L - n)Fx(t)

_ -1
Ppo(t) = tan @ R0l (5.11a)

ep(t) = ? R sin 65 cos(a(t) — ¢s) , (5.11b)

where @ = I, 11, with R = 1 AU and ¢(t) = ¢ + 2nt/T. Here T = 1 year is the orbital period
of LISA, and ¢ is a constant that specifies the detector’s location at time t = 0. Since we
consider nonprecessing binaries L2 points in a fixed direction (Q_L, o).

To express the angles (6s, ¢s, ¥s) evaluated with respect to the rotating detector-based
coordinate system as function of the angles (0_3, s, 6., 1) evaluated with respect to the fixed
solar-system based coordinate system, we use the following relations [193]:

cosfs(t) = % cos fs — ? sin 6s cos(a(t) — ¢s) , (5.12a)
_ 2nt [ V3cos6s + sinfscos(a(t) — ¢s)
¢s() = ao+— +tan 25002 NG (0 — <) . (5.12b)

where «q is a constant specifying the orientation of the arms att = 0. We take ap = 0
and ¢, = 0, corresponding to a specific choice of the initial position and orientation of the
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detector [193]. Also,

Z-n = cosbs, (5.13a)
. 1 — 3. —

L-z = Ecos o, — %/_sm 6Lcos (¢(t) — oL) , (5.13b)
L-n = cos6.cosbs+sind, sinbs cos (¢, — ¢s) (5.13c)

~ 1 - - = —
n-(Lxz) = ESIHHLSIHHSSIn(gbL—ng)
V3
—TCos¢(t)(cos 6, sinfs sin ¢s — €S fs Sin G, sin ¢L)
V3.
—TSlngb(t)(COS Os sin@, cos ¢ — cosH, sinbs cos ¢5) . (5.13d)

For 3.5PN accurate expression for t(f) in Eq (5.7) we use the following relation

2rt(f) = % (5.14)
This can be rewritten as
7
t(f) = tc—Ztﬁvk, (5.15)
k=0

and values of t; is given in Refs [47, 106] which can readily be used.
For calculations where LISA is assumed to be a two detector network, we calculate the

SNR and Fisher matrix using
pNetwork — /plz +p|2|, (5.16)

rhework — ol (5.17)

The errors for the two detector case are obtained inverting the total Fisher matrix following
the procedure outlined in Sec. 5.3.1.

Throughout the chapter we assume a cosmological model with zero spatial curvature
Q. =0and Q) + Qv = 1, where Q) and Q, refers to the contributions to the total density
from matter and cosmological constant. Hubble’s constant is assumed to be Hy = 70 km s7*
Mpc~. The luminosity distance is given by

1+z (7 dz/
D == f . (5.18)
0 0 [QM(l +Z ) + QA]

where z denotes the redshift of the source.
We calculate the Fisher matrix for the different configurations of LISA using the cor-
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responding waveforms and invert it to get the covariance matrix. The elements of the co-
variance matrix are used for discussing the errors and correlation coefficients of different
parameters in the next section. While discussing the trends with the PN orders, its useful
to keep in mind that apart from the usual phase y(f), there are additional PN series of t(f)
both in the amplitude and phase when pattern functions are included, which can influence
the results.

5.4 Parameter estimation with pattern aver aged waveform

In this section we discuss the parameter estimation in the LISA case using pattern averaged
waveform of Eq (5.5b). Parameter estimation with the non-pattern averaged waveform (as
in Eq 5.7) is more complex since the estimated errors strongly depend on the location and
orientation of the source (see the Sec. 5.5 below) which enter the calculation via the pattern
functions. The ideal way to deal with the situation will be to perform Monte Carlo simula-
tions for different binaries located and oriented randomly in the sky [198, 212, 21, 199]. A
recent work [21] (which addressed the parameter estimation problem using the 2PN wave-
form including spin effects) compared the results of a Monte Carlo simulation with the result
obtained using pattern averaged waveform (see Tables V, VI and VIII of Ref [21]). It found
that the results in both the cases are in excellent agreement. The results presented in this
section about the improved parameter estimation with the pattern averaged waveform, may
hence give a reasonably good idea about the full problem where the LISA pattern functions
are included and it is considered to be a two detector network. We emphasize that the re-
sults quoted here have to be supported by Monte Carlo simulations similar to Ref [21] (see
concluding remarks in Sec. 5.6).

54.1 Improved parameter estimation of equal mass binaries with the
3.5PN phasing

We discuss the performance of the 3.5PN restricted waveform from the parameter estimation
point of view for the pattern-averaged case discussed above. Our aim is to study the variation
of errors in different parameters with the total observed mass? of the binary for different PN
orders. This would not only give us an idea of the improvement brought in by the use of
higher order phasing but also about the convergence of the PN series for the problem of
parameter estimation. We have checked our codes by reproducing the results at 2PN with
that in Table 11l and V of Ref [21] for the nonspinning case. The important results of our

2By total mass, we always refer to the total redshifted mass m’(1 + z), where m’ is the actual source mass
and z is the redshift of the source. This is the mass that is observed by the GW observations.
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Figure 5.1: Variation of errors with the total observed mass for different PN order restricted
waveforms for LISA. The pattern averaged waveform is used. The convergence of the results
is evident in both the cases. Sources are assumed to be at 3 Gpc.

study are discussed in detail in what follows. The errors in estimation of different parameters
for a 2 x 10°M, binary at 3 Gpc is provided in Table | for different PN orders in the phasing.

5.4.2 Improvement in estimation of mass parameters and the PN
convergence

Improvement due to higher order terms: We plot in Fig. 5.1 the variation with mass of the
errors in chirp mass and n for different PN orders. There is significant improvement in
the estimation by the use of the 3.5PN phasing instead of the 2PN one especially for more
massive systems. For a prototypical system of a binary BH each of mass 106M,, we find
that the chirp mass and r improve by 11% and 39% respectively. Improvement is higher for
more massive systems. For a 2 x 10’ M, binary, the chirp mass and » improves by 14% and
45%. They are similar to the results for the ground based detectors as discussed in [220] but
in an entirely different mass range. For a typical binary in its sensitivity band, LISA will be
able to measure chirp mass with an incredibly small fractional accuracy of ~ 1078 and » by
about ~ 1074,

Variation with mass: The estimation of the chirp mass worsens with increase in total
mass of the binary whereas the estimation of  improves initially and then decreases. These
effects can be understood as follows. When the total mass increases there are two competing
effects in action: the increase in errors with mass, since signal lasts for smaller duration, and
the variation of SNR with mass, which is a characteristic of the noise curve. For chirp mass
the errors increase so rapidly that the variation in SNR does not affect the trend and the errors
continue to increase monotonically with mass. For n, there is trade-off between these two
competing effects which accounts for the minima in the curve.
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Figure 5.2: Variation of errors in t. with the total observed mass for different PN order
restricted waveforms for LISA. The pattern averaged waveform is used. The convergence
of the results is evident from the plot. Sources are assumed to be at 3 Gpc.

5.4.3 Errors in coalescence time

Measuring the time of coalescence of a binary system is important to carry out electro-
magnetic observation of the event associated with the binary merger. We discuss the trends
in the estimation of t; below.

Fig. 5.2 displays the variation of errors in t; with increasing mass of the source and across
the PN orders. The errors in t. show trends similar to that of [220], i.e., with increase in PN
order the errors oscillate in a sense opposite to the mass parameters and in going from 2PN
to 3.5PN there is a net degradation in its estimation, which is about 43% for the 2 x 106M,,
system considered. This was explained in chapter 4 based on the correlations between t., M
and 5. It was noticed that both ¢, and c,, are positive and follow the same trend as the
error in t.. Increase in these correlations implied a worsened estimation of t..

5.4.4 Post-Newtonian convergence in the parameter estimation context

Since the PN series is an asymptotic series, the rate of convergence of the results is a very
important issue for detection as well as parameter estimation. We use the word ‘convergence’
to mean that the difference (in errors) between two consecutive PN orders is smaller as we
go to higher PN orders. As remarked in Refs. [103, 105], if the parameter estimation scheme
is based on a lower order (2PN) phasing, the systematic errors due to the absence of higher
order terms may be more than the statistical errors caused by the noise. Since we study here
the implications of 3.5PN phasing, we examine the convergence of the series based on our
results for different PN orders.

As Fig. 5.1 reveals, though there will be improvement by using the 3.5PN phasing instead
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Table 5.1: Variation of errors in different parameters and number of GW cycles with PN
order. Errors are calculated with the pattern averaged waveform. The system considered is a
binary of mass 2 x 10°M,, at a luminosity distance of 3 Gpc. Most of the features regarding
the improvement in parameter estimation, convergence of the PN series and correlation with
number of GW cycles are captured in this table.

PN Order At AMI/M An/n Neycles
(sec) (1079) (1074

1PN 0.2474 6.217 6.287 2414.03
1.5PN 0.3149 3.648 1.427 2310.26
2PN 0.3074 3.694 1.572 2305.52
2.5PN 0.3947 3.320 0.9882 2314.48
3PN 0.3435 3.377 1.033 2308.73
3.5PN 0.4399 3.300 0.9661 2308.13

of the 2PN one, most of the improvement seems to come from the transition between 2PN
and 2.5PN after which the series continues to show its characteristic oscillatory behaviour,
but with smaller amplitude, suggesting that phasing at orders higher than 3.5PN may not
cause much improvement (see Table ).

5.4.5 Parameter estimation and Number of GW cycles

In Ref. [220], the correlation between the improvement in errors across different PN orders
and the number of total and useful GW cycles [46] was studied. It was found that though
they are good indicators of how the errors at each order vary with the total mass of the
system, they alone cannot explain the variation of errors across different PN orders in the
context of ground based detectors. We confirm this feature in the LISA context. We recover
the results in Table I and 1l of Ref [21] as a check of our calculation. Table 5.1 shows
how the errors and total GW cycles vary with increasing PN orders. One would expect an
improved (worsened) estimation if number of GW cycles increases (decreases) between two
consecutive PN orders if they were solely responsible for the trends. From the table it is clear
that from 1PN to 1.5PN and 1.5PN to 2PN, the errors in chirp mass and n do not conform to
the above expectation. The same is the case in going from 3PN to 3.5PN. Finally, trends in
t. being opposite to that of the other two mass parameters lead one to conclude once again
that the number of GW cycles is not sufficient to understand the variation of errors across
different PN orders.

Irrespective of whether the total number of GW cycles is very high (~ 10°)(as in the case
of LISA) or low (~ hundreds) (as for the ground based detectors) the PN trends in parameter
estimation are too complicated to be explained solely in terms of this. The number of GW
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cycles and change in SNR with mass can account for the variation of errors in chirp mass
and n with the total mass of the binary.

5.4.6 Parameter estimation for unequal mass binaries

Lastly we perform a similar analysis for unequal mass systems where < 0.25. For larger
mass ratios (7 = 10~° or smaller in our case), the Fisher matrix becomes ill-conditioned [21]
and hence we restrict ourselves to the inspiral of a binary consisting of an intermediate mass
BH (IMBH) and a SMBH rather than stellar mass-SMBH inspirals. An IMBH of 10*M,
inspiralling into a SMBH of 10°M,, constitutes our prototypical system. This system at a
distance of 3 Gpc will have a SNR of a few hundreds. We find that the improvement due
to the inclusion of higher order terms is more dominant here than for the equal mass binary
case. For the prototypical system considered above, we find an improvement of 11% for the
chirp mass and 52% for 7 in the pattern-averaged case. For a 10*—10" M,, binary, where SNR
is ~ 100, the improvement is even more: 20% and 62% respectively 3. Our calculations do
not apply to the extreme mass ratio case of, say, 10M, — 10°M,. This is because the Fisher
matrix obtained in this case is very much ill-conditioned.

This larger improvement for the unequal mass binaries is not a special feature of the
LISA noise curve; for the ground based detectors also a similar feature exists. But unlike in
the LISA case, where many such unequal mass binaries are astrophysically plausible, for the
ground based detectors such sources are not prototypical.

5.4.7 Effect of low frequency cut-off chosen

All the calculations so far, and hence the results, have been based on the optimistic possibility
that the low frequency sensitivity of LISA can be extrapolated from 104 Hz to 10=° Hz. As
argued in Ref [21], this significantly improves the parameter estimation. We quantify the
effect of this choice of lower cut-off by comparing our previous results with the one where
LISA is assumed to be ‘blind’ below 10~*Hz.

As discussed in Sec. 5.3.1, we have chosen the lower limit of integration in all the calcu-
lations assuming that the system is observed for one year before coalescence, when f = fig.
By this procedure, the lower cut-off for a 2 x 105°M,, binary is about 10~* Hz. This means
for systems with masses higher than 2 x 10°°M,, (and hence a lower fi,) the lower limit of
integration for one year observation time will be less than 10~* Hz. If we assume LISA is
not sensitive to signals below 10~* Hz, these systems will be observed effectively for less

3Using a calculation of the number of GW cycles, Ref [221] has emphasized the need for higher order PN
modelling of the IMBH-SMBH binaries. The effects of eccentricity could also play an important role in the
dynamics of such binaries.
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Figure 5.3: The variation with PN order of errors of chirp mass and n with the total observed
mass for different PN order restricted waveforms for LISA the lower frequency cut-offs f; =
10~ Hz and f, = 107°. The pattern averaged waveform is used. The sources are assumed to
be at 3 Gpc.

than a year leading to a significant decrease in the number of GW cycles and consequent
degradation in parameter estimation (for a 2 x 108M,, binary, a lower cut-off of 10~° Hz will
give 2308 GW cycles as opposed to 608 if the cut-off was 10~* Hz). Thus for binaries whose
masses are higher than 2 x 10°°M,, the choice of lower cut-off frequency will affect the
results reported here. Fig. 5.3 displays the variation of 2PN and 3.5PN errors in chirp mass
and n corresponding to the two different lower frequency cut-offs we have chosen. Indeed, as
is evident from the plot, the errors start to deviate for binaries whose masses are greater than
2 x 1055M,,. For a 2 x 10" M,, system, using 10~° Hz as cut-off instead of 10~* Hz improves
the estimation of chirp mass by about 150 times and that of n by 40 times. These results
confirm the need to push to the extent possible the lower frequency sensitivity of LISA.

Regarding the improvement in parameter estimation in going from 2PN to 3.5PN, calcu-
lation with a cut-off of 104 Hz shows that for a 2 x 10’ M,, binary the difference in going
from 2PN to 3.5PN would be 22% and 60% (as opposed to 13% and 45% with 10~° Hz) for
chirp mass and 7 respectively. The number of GW cycles for a cut-off of 10~* Hz is just 7
whereas with a 10~ Hz cut-off it is as large as 540. Therefore, with a cut-off of 10~* Hz,
one is only observing the very late inspiral of the system* whereas with a cut-off of 10~° Hz,
the inspiral phase is dominant. The significantly larger variation in parameter estimation in
going from 2PN to 3.5PN with the 10~* Hz cut-off could be due to the generally accepted
fact that higher order terms in the phasing formula are more important as one approaches the
last stable orbit.

4Inspiral waveforms would be inadequate in this case. Theoretical approximants, e.g. Effective one body
[48, 49] may have to be employed to model this phase of the binary’s dynamics.
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5.5 Parameter estimation without pattern averaging

Having discussed in detail the various aspects of parameter estimation using pattern aver-
aged waveform and factors which affect the process, we now turn our attention to the pa-
rameter estimation without pattern averaging. Obviously the source’s location, orientation
and luminosity distance to the source gets added to the space of parameters which was four
dimensional in the previous case. Unlike the ground based detectors, LISA can measure the
distance, location and orientation of the source with a single detector because of the modu-
lations due to its orbital motion [192, 193]. Besides, using LISA as a two detector network
improves the estimation of angular resolution of the source [193]. In this section we will
discuss the improvement brought in by the higher order terms using non-pattern averaged
waveform for LISA. We check our code, which now includes the pattern functions, by re-
producing the results of [193] at 1.5PN with their signal and noise models.

But as mentioned earlier, the strong dependence of the errors on the angular variables
makes our analysis for selected values of angles (following Cutler [193]) non-generic. The
best way to deal with this situation is to perform Monte Carlo simulations, similar to [198,
212, 21, 199]. However we notice that certain general conclusions can still be drawn from
these specific cases and this will be the topic of discussion of the following section.

5.5.1 Comparison of different detector configurations

We compare the estimation of errors with different detector configurations now. The final
errors, in comparison with the pattern averaged case, will depend on the following:

1. The value of SNR corresponding to the set of angles chosen
2. The change in SNR relative to the pattern averaged case and
3. The worsening of the errors due to the introduction of the new parameters.

For the pattern averaged case, since there are no pattern dependent parameters, the total pa-
rameter space is essentially 4 dimensional, the parameters being {t¢, ¢, M,n}. When we
make a transition from the pattern averaged to the non-pattern averaged case, five new pa-
rameters {D., u, &, &1, s} corresponding to the distance to the source, its location and ori-
entation are added to the space of parameters. The parameter space is now nine dimensional
significantly higher than the earlier four dimensional one. This increase in dimensionality of
the parameter space leads to an increase in the errors of the four existing parameters. On the
other hand, the introduction of pattern functions results in a change of SNR depending on
the four angles chosen. The final picture is a complex interplay of all these features.
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Figure 5.4: Variation of the signal to noise ratio, relative errors in chirp mass and relative
errors in  with the total observed mass of the binary for different choices of location and
orientation of the source. Sources are assumed to be at a luminosity distance of 3 Gpc
and a non-pattern averaged waveform is used. Angle:1 corresponds to { g = 0.5, g =
-08,¢. = 3,65 = 1}. Angle:2is {u = 0.2, ¢ = —0.6,¢. = 3,¢s = 1} and Angle:3

{w=08, =034 =2 ¢s=>5} The errors thus depend very much on the position and
orientation of the source in the sky.

The errors in chirp mass and n together with SNR is displayed in Fig. 5.4 for three
set of angles from the seven given in [193]. The three configurations corresponding to
the pattern averaged, non-pattern averaged with one detector and finally the two detector
network (without pattern averaging) are considered. As is evident from the plot, the SNR
and hence the errors crucially depend on the location and orientation of the source. Also,
there can be orientations which may have a lower SNR than for the pattern averaged case
(see third column e.g.). However an interesting conclusion from the figure (and from the
runs corresponding to other values of angles which are not displayed) is that among the
three effects which influence the parameter estimation without pattern averaging, the value
of SNR seems to be the most dominant one. The smallest errors in the plot correspond to
the configuration with the largest SNR. Between the pattern averaged and the one detector
case, the effect of correlations due to the additional parameters play a significant role. For
example, in the second column, though the one detector case has larger SNR, the errors
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are smaller for the pattern averaged case for this reason. We do not discuss the percentage
improvement arising from the higher order PN terms since it depends very much on the
orientation of the source. Exhaustive Monte Carlo simulations have to be performed to have
a detailed understanding of this.

We conclude with a remark about the estimation of angular resolution and distance as
observed from the limited set of angles we have considered. The estimation of distance and
angular resolution is not improved much because of the additional phasing terms. This is
not surprising, since the additional terms in the phasing formula do not carry any informa-
tion about location or orientation of the binary. One may need to go beyond the restricted
waveform approximation in order to achieve this. Some preliminary studies in this regard
[121, 122, 123, 124, 125, 126] are consistent with the same. Going beyond the restricted
waveform approximation would mean including the amplitude corrections to the waveform
from the two GW polarizations, currently completed up to 2.5PN order [101, 102]. This is
because the amplitude terms are functions also of the angular positions of the source in the
sky, the introduction of which could break different degeneracies, allowing better parameter
estimation [123, 124].

5.6 Summary of results

The significance of higher order phasing terms is investigated in the LISA case for different
sources using a pattern averaged waveform model. Using the 3.5PN inspiral waveform
instead of the 2PN one which is currently employed in the GW experiments, mass parameters
can be estimated with improved precision for LISA. Major conclusions of this study are as
follows.

e For an equal mass binary of 2 x 108M,, at a luminosity distance of 3 Gpc, the improve-
ment in chirp mass due to PN corrections in phasing formula beyond 2PN, is ~ 11%
and that of  is ~ 39%. For larger mass systems, the improvement is even more.

e Similar to the ground based detector case discussed in chapter 4, t. shows trends op-
posite to that of the two mass parameters and estimation of it is worse by 43% for a
2 x 108M,, system.

e Most of the improvement (worsening) comes from the change from 2PN to 2.5PN tran-
sition after which the errors continue to oscillate, but with smaller amplitude indicating
convergent behaviour beyond 2.5PN order.

e Correlation between the number of GW cycles is re-examined in the space based con-
text. The number of GW cycles is a good indicator of how the errors vary with mass
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but not across different PN orders.

e Parameter estimation for unequal mass binaries is also studied in the LISA context.
The improvement in parameter estimation is more pronounced for binaries with un-
equal masses. For a binary consisting of an intermediate mass BH of 10*M, and
a SMBH of 10°M,, the improvements in chirp mass and n are 20% and 62% re-
spectively. Our calculations do not apply to the extreme mass ratio case of, say,
10M, — 106M,,. This is because the Fisher matrix obtained in this case is very much
ill-conditioned.

e The effect of the lower cut-off frequency we have chosen (10~° Hz) on the parameter
estimation is studied by comparing the calculation with the more modest cut-off of
104 Hz. Having a lower cut-off frequency 10~° Hz, the parameter estimation improves
very much for binaries whose masses are greater than 2 x 10%°M,.

e The estimation of the luminosity distance to the source and its location and orientation
is also studied using the non-pattern averaged waveform for selected source directions
and orientations. They do not improve significantly by the use of the restricted 3.5PN
template.

e Our analysis is based on a few systems with a few chosen orientations and hence cannot
draw very general conclusions. However some general properties of the variation of
errors with mass, using the non-pattern averaged waveform is discussed.

The very high accuracy parameter extraction possible with LISA will make it a useful tool
of astrophysics and provide thorough probes of strong field aspects of gravity in the future.

5.7 Futuredirections

e Monte Carlo simulations for the non-pattern averaged case:
Exhaustive Monte Carlo simulations are required in order to understand the effect of
higher PN terms for LISA when the non-pattern averaged waveform is used since the
parameter estimation in this case strongly depends on the location and orientation of
the source. We plan to take up this problem in the near future.

e Parameter estimation beyond the Fisher matrix:
It may be interesting to employ Markov chainMonte Carlo methods for parameter esti-
mation [216, 215] and compare the results with the ones obtained using the covariance
matrix. Extending this to the present context would surely be interesting and should
be addressed.
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e Parameter estimation using the full waveform:

Our present study uses the restricted waveform approximation ignoring the presence
of higher harmonics (beyond the leading quadrupolar frequency which is twice the
orbital frequency) and neglects the amplitude corrections, in particular, to the lead-
ing harmonic from the higher PN order ‘+” and “x’ polarizations. Recently Van den
Broeck examined [125] the effect of inclusion of the above mentioned effects in the
detection problem where he used the 2.5PN polarization [102] together with the 3.5PN
phasing [99, 100]. He found that the restricted waveform significantly over-estimates
the SNR. Parameter estimation with the full waveform in the LISA context may be
an interesting problem to investigate since the amplitude terms contain additional in-
formation about the location and orientation of the binary and may improve, e.g., the
estimation of angular resolution of the source in the sky.

e Effect of 2.5PN spin terms in parameter estimation:
Using the recent results for the 2.5PN phasing with spin-orbit coupling included [160,
119], one can investigate the effect of the inclusion of the 2.5PN spin terms. The
analysis may be carried out both for the nonprecessing case (similar to [21]) and with
simple precession (similar to [212]) and one can compare the results. Robustness of
these results obtained using Cramer-Rao bound can be contrasted with a more rigorous
bounds using Markov Chain Monte Carlo methods.

¢ Including information about merger and ringdown:
Recently Luna and Sintes [191] examined the effect of including the ringdown infor-
mation while performing the parameter estimation for compact binaries. They found
significant improvement in error estimation when the total waveform was considered
to be inspiral followed by ringdown in the case of LIGO and VIRGO. In the LISA
context it may be interesting to do a similar exercise and study the results. One may
also want to use the effective one-body (EOB) approach to model the late inspiral and
the merger phase which will account for all the three phases of binary evolution. The
correctness of using the EOB waveform to model merger may still be an open question.

e Parameter estimation with TDI variables:
In the present analysis we have considered the noise of the two detectors to be uncor-
related. This is not true in reality. A more realistic analysis of the problem should
involve and deal with the time delay interferometric variables [28].
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