
Chapter 2

2.5PN gravitational wave polarizations

from inspiralling compact binaries on

circular orbits: The instantaneous terms

2.1 Introduction

Among the different issues related to waveform modelling discussed in chapter 1, the com-

putation of the higher PN order GW amplitude, or in other words the two independent GW

polarizations, to five halves PN order will be the focus of discussion in this chapter and the

one to follow. The details of the motivation and the background is dealt with in the next

section.

2.1.1 Background

The “chirp” from the inspiral of two compact objects is one of the most plausible GW signals

the ground based GW detectors such as LIGO [17], VIRGO [18] and the space based detector

LISA [138] would look for. The early inspiral will fall in the sensitivity band of the space-

based detectors, where as, the late inspiral will be a good candidate source for the ground-

based detectors. Though these GWs are extremely weak and buried deep in the detector

noise, the large number of precisely predictable cycles in the detector bandwidth would

push the signal up to the level of detection. One can then use the technique of matched

filtering first for the detection of GW and later for the estimation of the parameters of the

binary. In order to have a good detection, it is extremely important to cross-correlate the

detector output with a number of copies of the theoretically predicted signal (corresponding

to different signal parameters) which is as precise as possible, and which remains in accurate

phase with the signal in the sensitivity bandwidth of the detector. This has made general
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relativistic modelling of the inspiralling compact binary (ICB) one of the most demanding

requirements for GW data analysis [96, 103, 136, 105, 104, 36, 46, 47].

The data analysis of a GW chirp signal has two aspects to it. The first is related to the

detection of the signal with high enough signal to noise ratio (SNR) and meeting the required

statistical criteria. The second aspect on the other hand relates to the process of parameter

estimation of the binary. These parameters include the masses, spins, distance to the binary,

its location and orientation in the sky. It is the latter process that is more important for

astrophysical purposes.

2.1.2 Motivation for higher PN order non-restricted waveforms

In matched filtering, one generally tends to use the so-called restricted waveform (RWF)

model, where the phase of the wave is modelled to the highest possible post-Newtonian

(PN) accuracy retaining the amplitude at its lowest Newtonian order involving the main

signal harmonic at twice the orbital frequency [96]. The usual justification for this model

is that while filtering the data the phase information is more important for larger overlap

between the signal and the template. Though for detection the RWF approximation may be

enough [103, 47, 129, 137], the PN corrections to the amplitude will carry useful information

helping better parameter estimation.

Recently, studies using the complete waveform, which includes the contribution from

higher harmonics besides the dominant one, have shown that it may play a vital role in pa-

rameter estimation [124, 123, 121, 122]. The complete waveform carries information which

can break the degeneracy of the model, and allow one to estimate the otherwise badly corre-

lated parameters. In the case of a chirping neutron star binary, the masses of the individual

stars can be better extracted because of the mass dependence of the higher harmonics [124].

In the case of black hole binaries, whose frequencies are too low to be seen in the detector

sensitivity window for long, higher harmonics compensate for the information lost when the

signal does not last long enough to be apparent in the data [124]. An independent study [123]

about the angular resolution of the space-based LISA-type gravitational wave detectors with

a time domain 2PN waveform, showed the importance of including higher PN corrections to

the wave amplitude in predicting the angular resolution of the elliptic-plane detector config-

uration. This is natural since higher order phasing terms carry hardly any new information

about the location and orientation of the source whereas the two polarizations introduce

terms with explicit dependence on the angular parameters which enables better estimation of

the angular resolution of the source.

With this motivation, in the present work we provide the complete 2.5PN accurate ‘plus’

and ‘cross’ polarizations of binaries in quasi-circular orbits. We assume that the binary
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moves in an orbit which is circular. This is the case for most of the binaries which are in the

late stages of inspiral since GW radiation reaction would circularize the orbit [95, 139]. Both

for ground based and space detectors there could be sources with non-negligible eccentricity

and the issues related to the construction of templates for such systems will be addressed

in detail in chapter 6. Also, the present analysis concerns non-spinning binaries. Though

we do not consider the spinning binaries, its is worth pointing out that the GW polarizations

including the spin effects are complete up to 2PN till date [117, 118, 120].

2.1.3 An overview of current calculations of radiation from ICBs

Currently, post-Newtonian (PN) theory provides the most satisfactory description of the dy-

namics of ICBs and gravitational radiation emitted by them. Starting from the gravitational-

wave generation formalism based on the multipolar post-Minkowskian expansions (see the

next Section), the gravitational waveform and energy flux at the 2PN order 1 were computed

by Blanchet, Damour and Iyer [140]. This incorporated the tail contribution at 1.5PN or-

der both in the waveform and in the energy flux; the polarisation states corresponding to

the 1.5PN waveform were calculated in Ref. [141] (note that some algebraic errors in this

reference are corrected in [101]). The 2PN results have been independently obtained using

a direct integration of the relaxed Einstein field equation [67, 97]. The associated polarisa-

tion states (i.e. the “plus” and “cross” polarisation waveforms) were obtained in Ref. [101].

These works provided accurate theoretical templates which are currently used for data anal-

ysis in all the laser interferometric GW detectors like LIGO and VIRGO. Extending the

wave-generation formalism, the 2.5PN term in the energy flux, which arises from a subdom-

inant tail effect, was added in Ref. [98]. In the case of binaries moving in quasi-elliptical

orbits, the instantaneous parts of the waveform, energy flux and angular momentum flux at

2PN order were computed by Gopakumar and Iyer [111]. The polarisations of the waveform

at this order (in the adiabatic approximation) has been obtained more recently [142], and the

phasing of binaries in inspiralling eccentric orbits has also been discussed [112].

The extension of the gravitational wave generation formalism to third post-Newtonian

order, and the computation of the energy flux up to 3.5PN accuracy, was achieved in [143].

To this order, in addition to the “instantaneous” contributions, coming from relativistic cor-

rections in the multipole moments of the source, the results include several effects of tails,

and tails generated by tails. But, unlike at the 2PN or 2.5PN order, where the calculation is

free from ambiguities, at the 3PN order the incompleteness of the Hadamard self-field reg-

ularisation leads to some undetermined constants in the mass quadrupole moment of point

particle binaries (we comment more on this below). On the other hand, the computation of

1As usual the nPN order refers either to the terms ∼ 1/c2n in the equations of motion, with respect to the
usual Newtonian acceleration, or in the radiation field, relative to the standard quadrupolar waveform.
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the binary’s flux crucially requires the 3PN equations of motion (EOM). These were obtained

earlier by two independent calculations, one based on the ADM Hamiltonian formalism of

general relativity [144, 145, 146, 147], the other on the direct 3PN iteration of the Einstein

field equations in harmonic coordinates [148, 149, 150, 151]. Both approaches lead to an

undetermined constant parameter at 3PN when using a Hadamard regularisation, but this

constant has now been fixed using a dimensional regularisation [76, 73]. An independent

method [152, 153, 154], using surface integrals together with a strong field point particle

limit, has yielded results for the 3PN EOM in agreement with those of the first two meth-

ods. In particular, the EOM so obtained are independent of any ambiguity parameter, and

consistent with the end result of dimensional regularisation [76, 73]. The conserved 3PN

energy is thus uniquely determined, and consequently the 3.5PN energy flux, together with

the usual energy balance argument leads to the expression for the evolution for orbital phase

and frequency under GW radiation reaction at the relative 3.5PN order [99].

In the present work, we provide the gravitational waveform from ICBs to still higher

accuracy, namely 2.5PN, which should in consequence be useful for future improved studies

in GW data analysis, for both LIGO-type and LISA-type detectors. We shall include in the

2.5PN waveform instantaneous as well as “hereditary” terms, exactly as they are predicted

by general relativity, completing therefore the 2.5PN generation problem for binaries moving

in quasi-circular orbits initiated in [98]. Using the waveform we next obtain the two “plus”

and “cross” GW polarisations at 2.5PN extending the results of [101]. We shall verify that

the 2.5PN wave form is in perfect agreement, in the test-mass limit for one of the bodies,

with the result of linear black hole perturbations [135].

2.2 The 2.5PN gravitational waveform

2.2.1 Waveform as a functional of multipole moments

In an appropriate radiative coordinate system Xµ = (cT, Xi), the transverse-traceless (TT)

projection of the deviation of the metric of an isolated body from flat metric defines the

asymptotic waveform hTT
km (lower-case Latin indices take the values 1, 2, 3). The leading-

order 1/R part of hTT
km (where R = |X| is the distance to the body) can be uniquely decomposed

[61] into its radiative multipole contributions introduced in Section 1.7.1. Furthermore, the

PN order of the asymptotic waveform scales with the multipolar order l. Hence, at any PN

order only a finite number of multipoles is required, and we have, with 2.5PN accuracy,
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hTT
km =

2G
c4R
Pi jkm(N)

{

Ui j

+
1
c

[

1
3

NaUi ja +
4
3
εab(iV j)aNb

]

+
1
c2

[

1
12

NabUi jab +
1
2
εab(iV j)acNbc

]

+
1
c3

[

1
60

NabcUi jabc +
2

15
εab(iV j)acdNbcd

]

+
1
c4

[

1
360

NabcdUi jabcd +
1

36
εab(iV j)acdeNbcde

]

+
1
c5

[

1
2520

NabcdeUi jabcde +
1

210
εab(iV j)acde f Nbcde f

]

+ O(6)
}

. (2.1)

The UL’s and VL’s (with L = i j · · · a multi-index composed of l indices) appearing in the

above waveform are respectively called the mass-type and the current-type radiative mul-

tipole moments (see discussion in Section 1.7). They are functions of the retarded time

TR ≡ T − R/c in radiative coordinates, UL(TR) and VL(TR). We denote by N ≡ X/R the

unit vector pointing along the direction of the source located at distance R from the detector.

A product of components of N = (Ni)i=1,2,3 is generally denoted NL ≡ NiN j · · · . The Levi-

Civita antisymmetric symbol reads εabi, such that ε123 = +1. The operator Pi jkm represents

the usual TT algebraic projector which is given by

Pi jkm =
1
2
(PikP jm + PimP jk − Pi jPkm

)

, (2.2a)

Pi j ≡ δi j − NiN j . (2.2b)

Using the MPM formalism, the radiative moments entering Eq. (2.1) can be expressed

in terms of the source variables with sufficient accuracy, that is a fractional accuracy of

O(6) ≡ O(c−6) relative to the lowest-order quadrupolar waveform. For this approximation

to be complete, one must compute: mass-type radiative quadrupole U i j with 2.5PN accu-

racy; current-type radiative quadrupole Vi j and mass-type radiative octupole Ui jk with 2PN

accuracy; mass-type hexadecapole Ui jkl and current-type octupole Vi jk with 1.5PN preci-

sion; Ui jklm and Vi jkl up to 1PN order; Ui jklmn, Vi jklm at 0.5PN; and finally Ui jklmno, Vi jklmn

to Newtonian precision. The relations connecting the radiative moments UL and VL to the

corresponding “canonical” moments ML and S L (see Section 1.7 for a short recall of their
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meaning) are given as follows [57, 58, 59]. For the mass-type moments we have

Ui j(TR) = M(2)
i j (TR) +

2GM
c3

∫ TR

−∞
dV

[

ln
(TR − V

2b

)

+
11
12

]

M(4)
i j (V)

+
G
c5

{

−2
7

∫ TR

−∞
dV M(3)

a<i(V)M(3)
j>a(V)

+
1
7

M(5)
a<iM j>a −

5
7

M(4)
a<iM

(1)
j>a −

2
7

M(3)
a<iM

(2)
j>a +

1
3
εab<iM

(4)
j>aS b

}

+O(6) , (2.3a)

Ui jk(TR) = M(3)
i jk (TR) +

2GM
c3

∫ TR

−∞
dV

[

ln
(TR − V

2b

)

+
97
60

]

M(5)
i jk (V)

+O(5) , (2.3b)

Ui jkm(TR) = M(4)
i jkm(TR) +

G
c3

{

2M
∫ TR

−∞
dV

[

ln
(TR − V

2b

)

+
59
30

]

M(6)
i jkm(V)

+
2
5

∫ TR

−∞
dV M(3)

<i j(V)M(3)
km>(V)

−21
5

M(5)
<i jMkm> −

63
5

M(4)
<i jM

(1)
km> −

102
5

M(3)
<i jM

(2)
km>

}

+O(4) , (2.3c)

where the brackets <> denote the symmetric-trace-free (STF) projection, while, for the nec-

essary current-type moments,

Vi j(TR) = S (2)
i j (TR) +

2GM
c3

∫ TR

−∞
dV

[

ln
(TR − V

2b

)

+
7
6

]

S (4)
i j (V)

+O(5) , (2.4a)

Vi jk(TR) = S (3)
i jk(TR) +

G
c3

{

2M
∫ TR

−∞
dV

[

ln
(TR − V

2b

)

+
5
3

]

S (5)
i jk(V)

+
1

10
εab<iM

(5)
ja Mk>b −

1
2
εab<iM

(4)
ja M(1)

k>b − 2S <iM
(4)
jk>

}

+O(4) . (2.4b)

The underlined index a means that it should be excluded from the STF projection. For all

the other needed moments we are allowed to simply write

UL(TR) = M(l)
L (TR) + O(3) , (2.5a)

VL(TR) = S (l)
L (TR) + O(3) . (2.5b)

In the above formulas, M is the total ADM mass of the binary system, which agrees with the

mass monopole moment. The ML’s and S L’s are the mass and current-type canonical source
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moments, and M(p)
L , S (p)

L denote their p-th time derivatives.

The parameter b appearing in the logarithms of Eqs. (2.3) and (2.4) is a freely specifiable

constant, having the dimension of time, entering the relation between the retarded time TR =

T − R/c in radiative coordinates and the corresponding one t − ρ/c in harmonic coordinates

(where ρ is the distance of the source in harmonic coordinates). More precisely we have

TR = t − ρ
c
− 2 G M

c3
ln

(

ρ

c b

)

. (2.6)

The constant b can be chosen at will because it simply corresponds to a choice of the origin

of radiative time with respect to harmonic time.

As recalled in Section 1.7, the “canonical” moments ML, S L do not have generic ex-

pressions valid for all PN orders in terms of the “source” variables. This is why we now

relate the ML’s and S L’s to non-canonical source multipole moments IL, JL, WL, · · · , which

admit closed-form expressions in terms of the source’s stress-energy tensor. At the 2.5PN

order what then remains is to take into account the relation of the 2.5PN canonical mass-type

quadrupole moment to the corresponding non-canonical mass quadrupole in a center-of-mass

frame. This is given by [98, 143] 2

Mi j = Ii j +
4G
c5

[

W (2)Ii j −W (1)I(1)
i j

]

+ O(7), (2.7)

where Ii j is the (non-canonical) source mass quadrupole, and W denotes the “monopole” cor-

responding to the set of moments WL. [We shall need W only at the Newtonian order where

it will be given by (2.16b); see Section 2.2.3 for the expressions of all the source moments in

the case of circular binary systems]. Note that a formula generalizing Eq. (2.7) to all PN or-

ders (and multipole interactions) is not possible at present and needs to be investigated anew

for each specific case. This is why it is more convenient to define the source moments to be

IL and JL (and the other ones WL, · · · , ZL as well, but in view of e.g. Eq. (2.7) these appear

to be much less important than IL, JL) rather than ML and S L. For all the other moments

needed here, besides the mass quadrupole (2.7), we can write, with the required precision,

that ML agrees with the corresponding IL and that similarly S L agrees with JL. Namely we

always have

ML = IL + O(5) , (2.8a)

S L = JL + O(5) , (2.8b)

and we can neglect in the 2.5PN waveform all the remainders in (2.8) except for the case of

2The equation (11.7a) in [143] contains a sign error, but with no consequence for any of the results of that
reference. The correct sign is reproduced here.
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Mi j where the required result is provided by Eq. (2.7). Thus, from now on, the waveform

will be considered a function of the non-canonical source moments IL, JL, and also, of the

“auxiliary” moment W appearing in Eq. (2.7).

2.2.2 Structure of the waveform: Instantaneous and hereditary

contributions

From Eqs. (2.3)–(2.4) it is clear that the radiative moments contain two types of terms, those

which depend on the source moments at a single instant, namely the retarded time TR ≡
T − R/c, referred to as instantaneous terms, and the other ones which are sensitive to the

entire “past history” of the system, i.e. which depend on all previous times (V < TR), and

are referred to as the hereditary terms.

In this work, we find it convenient to further subclassify the instantaneous terms in the

radiative moments into three types based on their structure. The leading instantaneous con-

tribution to the radiative moment UL (resp. VL) from the source moment IL (resp. JL), is of

the form I(l)
L or J(l)

L . We refer to these as instantaneous contributions from the source moments

and denote them by the subscript “inst(s)”. Starting at 2.5PN order, additional instantaneous

terms arise, of the form I(n)
i j I(p)

km or I(n)
i j Jk, in the expressions relating radiative moments to

source moments [see Eqs. (2.3)–(2.4)]. We call such additional terms, the instantaneous

terms in the radiative moment and denote them by the subscript “inst(r)”. Thirdly, from

Eq. (2.7) we see that the replacement of the canonical moments by the source moments also

induces some new terms at the 2.5PN level, of the form I (n)
i j W (p). We shall call such sup-

plementary terms the instantaneous terms in the canonical moment and denote them by the

subscript “inst(c)”.

At the 1.5PN order, the hereditary terms are due to the interaction of the mass quadrupole

moment with the mass monopole (ADM mass M) and leads to the effect of wave tails [57].

Physically, this effect can be visualized as the backscattering of the linear waves (described

by Ii j) off the constant spacetime curvature generated by the mass energy M. This can be

viewed as a part of the gravitational field propagating inside the light cone (e.g. [56]). At

higher PN orders there are similar tails due to the interaction between M and higher moments

Ii jk , Ji j, · · · . In addition, at the 3PN order (however negligible for the present study), there is

an effect of tails generated by tails, because of the cubic interaction between the quadrupole

moment and two mass monopoles, M×M× Ii j [59]. The hereditary term arising at the 2.5PN

order in the radiative quadrupole (2.3a) is different in nature. It is made of the quadrupole-

quadrupole interaction, Ii j × Ikl, and can physically be thought of as due to the re-radiation of

the stress-energy tensor of the linearized quadrupolar gravitational waves. It is responsible

for the so-called “non-linear memory” or Christodoulou effect [155, 156, 157] (investigated
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within the present approach in [57, 58]). So far, all these effects are taken into account in

the calculation of the waveform up to 2PN order [140] and in the energy flux up to 3.5PN

[98, 143, 99]. The two different types of hereditary terms will be denoted by subscripts “tail”

and “memory” and will be dealt with separately in the next chapter.

Summarizing, with the present notation, the total 2.5PN waveform may be written as

hTT
km =

(

hTT
km

)

inst +
(

hTT
km

)

hered , (2.9)
(

hTT
km

)

inst =
(

hTT
km

)

inst(s) +
(

hTT
km

)

inst(r) +
(

hTT
km

)

inst(c) + O(6) . (2.10)

We give each of the above contributions explicitly. The instantaneous part of type (s) reads

(

hTT
km

)

inst(s) =
2G
c4R
Pi jkm

{

I(2)
i j

+
1
c

[

1
3

NaI(3)
i ja +

4
3
εab(iJ

(2)
j)aNb

]

+
1
c2

[

1
12

NabI(4)
i jab +

1
2
εab(iJ

(3)
j)acNbc

]

+
1
c3

[

1
60

NabcI(5)
i jabc +

2
15
εab(iJ

(4)
j)acdNbcd

]

+
1
c4

[

1
360

Nabcd I(6)
i jabcd +

1
36
εab(iJ

(5)
j)acdeNbcde

]

+
1
c5

[

1
2520

NabcdeI(7)
i jabcde +

1
210

εab(iJ
(6)
j)acde f Nbcde f

]

}

, (2.11)

where all the source moments are evaluated at the current time TR. The type (r) is

(

hTT
km

)

inst(r) =
2G
c4R
Pi jkm

G
c5

{1
7

I(5)
a<iI j>a −

5
7

I(4)
a<iI

(1)
j>a −

2
7

I(3)
a<iI

(2)
j>a +

1
3
εab<iI

(4)
j>a Jb

+
1

12
Nab

[

−21
5

I(5)
<i jIab> −

63
5

I(4)
<i jI

(1)
ab> −

102
5

I(3)
<i jI

(2)
ab>

]

+
1
2

Nbc εabi

[

1
10
εpq< jI

(5)
ap Ic>q −

1
2
εpq< jI

(4)
ap I(1)

c>q − 2J< jI
(4)
ac>

]

}

. (2.12)

Apart from two terms involving the source dipole moment Ji or angular momentum, these

terms are made of quadrupole-quadrupole couplings coming from U i j, Ui jk and Vi jk in

Eqs. (2.3)–(2.4) and computed in Ref. [58]. Though, using dimensional and parity argu-

ments, their structure can easily be written down, the computation of the numerical coef-

ficients in front of each inst(r) term needs a detailed study. The inst(c) terms refer to the

instantaneous terms in the “canonical” moment and can be written down as

(

hTT
km

)

inst(c) =
2G
c4R
Pi jkm

G
c5

{

4
[

W (4)Ii j +W (3)I(1)
i j −W (2)I(2)

i j −W (1)I(3)
i j

]

}

, (2.13)
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where W is the particular “monopole” moment introduced in (2.7). Both the inst(r) and

inst(c) terms represent new features of the 2.5PN waveform.

2.2.3 Source multipole moments required at the 2.5PN order

Evidently the above formulas remain empty unless we feed them with the explicit expres-

sions of the source multipole moments, essentially the mass-type IL and current-type JL,

appropriate for a specific choice of matter model. In the present Section, we list the IL’s and

JL’s needed for the 2.5PN accurate waveform in the case of point particles binaries in circu-

lar orbits. This is the extension of the list of moments given in Eqs. (4.4) of [140] for the

computation of the 2PN accurate waveform. We do not give any details on this calculation

because it follows exactly the same techniques as in Ref. [143]. One might note, comparing

the moments listed below with those given in [140], that in extending the waveform to the

higher order there are two kinds of complications: one is computation of existing moments

to higher PN accuracy and the other to compute new higher multipole moments albeit at

the lowest Newtonian order. The former is a harder task than the latter and usually requires

newer inputs since one is obliged to deal with higher order nonlinearities.

For the computation of the waveform up to 2.5PN order the required mass moments are

Ii j = νm STFi j

{

xi j

[

1 + γ

(

− 1
42
− 13

14
ν

)

+ γ2

(

− 461
1512

− 18395
1512

ν − 241
1512

ν2

)]

+
r2

c2
vi j

[

11
21
− 11

7
ν + γ

(

1607
378

− 1681
378

ν +
229
378

ν2

)]

+
48
7

r
c

xiv jνγ2

}

+ O(6) , (2.14a)

Ii jk = νm (X2 − X1) STFi jk

{

xi jk

[

1 − γν − γ2

(

139
330
+

11923
660

ν +
29
110

ν2

)]

+
r2

c2
xiv jk

[

1 − 2ν − γ
(

−1066
165

+
1433
330

ν − 21
55
ν2

)]}

+ O(5) , (2.14b)

Ii jkl = νm STFi jkl

{

xi jkl

[

1 − 3ν + γ

(

3
110
− 25

22
ν +

69
22
ν2

)]

+
78
55

r2

c2
vi jxkl(1 − 5ν + 5ν2)

}

+ O(4) , (2.14c)

Ii jklm = νm (X2 − X1) STFi jklm

{

xi jklm

[

1 − 2ν + γ

(

2
39
− 47

39
ν +

28
13
ν2

)]

+
70
39

r2

c2
xi jkvlm

(

1 − 4ν + 3ν2
)

}

+ O(3) , (2.14d)

Ii jklmn = νm STFi jklmn

{

xi jklmn(1 − 5ν + 5ν2)
}

+ O(2) , (2.14e)

Ii jklmno = νm (X2 − X1) (1 − 4ν + 3ν2) STFi jklmno

{

xi jklmno
}

+ O(1) . (2.14f)
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Further, the requisite current moments are given by

Ji j = νm (X2 − X1) STFi j

{

εabix
javb

[

1 + γ

(

67
28
− 2

7
ν

)

+γ2

(

13
9
− 4651

252
ν − 1

168
ν2

)]}

+ O(5) , (2.15a)

Ji jk = νm STFi jk

{

εkabxai jvb

[

1 − 3ν + γ

(

181
90
− 109

18
ν +

13
18
ν2

)]

+
7

45
r2

c2
εkabxavbi j(1 − 5ν + 5ν2)

}

+ O(4) , (2.15b)

Ji jkl = νm (X2 − X1) STFi jkl

{

εlabxi jkavb [1 − 2ν

+γ

(

20
11
− 155

44
ν +

5
11
ν2

)]

+
4

11
r2

c2
εlabxiav jkb

(

1 − 4ν + 3ν2
)

}

+ O(3) , (2.15c)

Ji jklm = νm STFi jklm

{

εmabxai jklvb
(

1 − 5ν + 5ν2
)}

+ O(2) , (2.15d)

Ji jklmn = νm (X2 − X1)(1 − 4ν + 3ν2) STFi jklmn

{

εnabxai jklmvb
}

+ O(1) . (2.15e)

[We recall that X1 =
m1
m , X2 =

m2
m , and ν = X1X2; the PN parameter γ is defined by (2.17); the

STF projection is mentioned explicitly in front of each term.]

In addition, the current dipole Ji in (2.12) is the binary’s constant total angular momentum

which needs to be given only at Newtonian order: we need also to give the monopolar

moment W which appears inside the inst(c) terms of (2.13) and comes from the relation

(2.7) between canonical and source quadrupoles. We have

Ji = νm εiabxavb + O(2) , (2.16a)

W =
1
3
νm x.v + O(2) . (2.16b)

With all the latter source moments valid for a specific matter system (compact binary in

circular orbit) the gravitational waveform is fully specified up to the 2.5PN order.

2.2.4 Equation of motion of the binary up to 2.5PN

In Section 2.2.3 we have given the list of source multipole moments needed to control the

waveform at the 2.5PN order. In this Section we proceed to calculate the instantaneous terms

[of types (s), (r) and (c)] in the 2.5PN waveform of circular compact binaries. The first step

towards it is the computation of time derivatives of different moments IL, JL (and also W)

using the binary’s EOM up to 2.5PN order. In the present work we will require, for the

computation of the time-derivatives of multipole moments, the EOM for the case of circular
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orbits to 2.5PN accuracy. We denote the PN parameter in harmonic coordinates by

γ ≡ Gm
rc2

, (2.17)

where r = |x| is the binary’s separation (x ≡ y1 − y2 is the vectorial separation between the

particles and v ≡ v1 − v2 the relative velocity and m = m1 +m2 is the total mass of the binary

system. Occasionally we also employ δm = m1 − m2 so that δm
m = X1 − X2. Then the 2.5PN

binary’s acceleration reads3

dv
dt
= −ω2 x − 32 G3

5 c5

m3 ν

r4
v + O(6) , (2.18)

where the explicit 2.5PN term (∼ 1/c5) is the radiation reaction force in the harmonic coordi-

nate system used here. The radiation reaction force plays an important role in our calculation

of the waveform and must be consistently included in all replacements of accelerations at

2.5PN order (however the reaction force yields no contribution to the energy flux at 2.5PN

order for circular orbits [98]). In Eq. (2.18) the orbital frequency ω ≡ 2π/P (where P is

the orbital period) is related to the binary’s separation r in harmonic coordinates with 2PN

accuracy by [158]

ω2 =
G m
r3

{

1 +
[

−3 + ν
]

γ +

[

6 +
41
4
ν + ν2

]

γ2 + O(6)

}

. (2.19)

In the following we shall also need the inverse of Eq. (2.19), i.e. γ in terms of ω, which can

conveniently be written in the form

γ = x

{

1 +
[

1 − ν
3

]

x +
[

1 − 65
12
ν

]

x2 + O(6)

}

, (2.20)

in which we have introduced the gauge invariant frequency-dependent parameter

x ≡
(G mω

c3

)2/3

. (2.21)

2.3 2.5PN accurate instantaneous part of the waveform

Starting from the multipole moments listed in Eq. (2.14) and (2.15) one can evaluate their

time derivatives using the equation of motion of Eq. (2.18). These time derivatives are then

contracted with the unit direction N and inserted into Eqs. (2.11), (2.12) and (2.13). We can

3We systematically use the shorthand O(n) to mean a small post-Newtonian remainder term of the order of
O(c−n).
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finally write down the inst(s) waveform schematically as,

(

hTT
km

)

inst(s) =
2G νm

c4R
Pi jkm

{

ξ
(0)
i j + (X2 − X1)ξ(1/2)

i j + ξ
(1)
i j

+(X2 − X1) ξ(3/2)
i j + ξ

(2)
i j + (X2 − X1) ξ(5/2)

i j + ρ
(5/2)
i j

}

. (2.22)

The instantaneous terms up to 2PN order were already reported in Eqs. (4.5) of Ref. [140].

We have reproduced them in our present computation. We list them below for completeness.

ξ
(0)
i j = 2(vi j − Gm

r
ni j) , (2.23)

ξ
(1/2)
i j = −6

Gm
r

(N.n)
n(iv j)

c
− (vN)

c

{Gm
r

ni j − 2vi j
}

, (2.24)

ξ
(1)
i j =

1
3

(1 − 3ν)
[

(N.n)2γ

{

10
Gm

r
ni j − 14vi j

}

−32 (N.n)(N.v)γn(iv j) +
(N.v)2

c2

{

6vi j − 2
Gm

r
ni j

}

]

−γvi j

(

1
3
+ ν

)

+ γ
Gm

r
ni j

(

19
3
− ν

)

, (2.25)

ξ
(3/2)
i j = (1 − 2ν)

{

65
6

(N.n)3γ
Gm

r
n(iv j)

c
− 46

3
(N.n)(N.v)2γ

c
n(iv j)

+γ(N.n)2 (N.v)
c

[

−43
3
vi j +

37
4

Gm
r

ni j

]

+
(N.v)3

c3

[

−1
3

Gm
r

ni j + 2vi j

]}

+ (N.n)γ(
95 − 18ν

6
)
Gm

r
n(iv j)

c

+
(N.v)

c

[

−2
3

(1 + ν)γvi j +
81 − 2ν

12
γ

Gm
r

ni j

]

, (2.26)

ξ
(2)
i j = γ2ni j

[

−Gm
r

(
361 + 65ν + 45ν2

60
) + (N.v)2(

101 − 295ν − 15ν2

15
)

−Gm
r

(N.n)2(
309 − 995ν + 195ν2

15
) +

86
5

(N.n)2(N.v)2(1 − 5ν + 5ν2)

− 94
15

Gm
r

(N.n)4(1 − 5ν + 5ν2)

]

+vi j

[

−γ2(
419 + 1325ν + 15ν2

60
) − γ (N.v)2

c2
(1 − 3ν − ν2)

+γ2(N.n)2(
163 − 545ν + 135ν2

15
) + 2

(N.v)4

c4
(1 − 5ν + 5ν2)

+
128
15

γ2(N.n)4(1 − 5ν + 5ν2) − 30γ
(N.v)2(N.n)2

c2
(1 − 5ν + 5ν2)

]

+n(iv j)γ

[

γ(N.n)(N.v)(
176 − 560ν + 80ν2

5
) − 20(N.n)

(N.v)3

c2
(1 − 5ν + 5ν2)
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+
228
5
γ(N.n)3(N.v)(1 − 5ν + 5ν2)

]

. (2.27)

At the 2.5PN order, most of the terms vanish when the two masses are equal (X1 = X2)

like at the previous “odd order approximations” 0.5PN and 1.5PN. However there is also an

extra contribution, denoted by ρ(5/2)
i j in Eq. (2.22). This consists of two parts:

(

ρ
(5/2)
i j

)

reac =

− 64
5 ν

Gm
r

γ2

c n(iv j) which arises directly from the 2.5PN radiation-reaction term in the EOM

given by Eq. (2.18); and
(

ρ
(5/2)
i j

)

quad = − 192
7 ν Gm

r
γ2

c n(iv j) which comes from the 2.5PN contri-

bution in the mass quadrupole (2.14). We find

ρ
(5/2)
i j = −1408

35
ν

Gm
r
γ2

c
n(iv j) . (2.28)

The other contributions follow from a long but straightforward computation starting from the

multipole moments listed earlier, and read as

ξ
(5/2)
i j =

{

ni j

[

γ

c3

{(

1
3
− 4

3
ν + ν2

)

(N.v)5

}

+
γ2

c

{(

1199
180

− 539
45

ν − 101
60

ν2

)

(N.v)3

+

(

263
10
− 526

5
ν +

789
10

ν2

)

(N.n)2(N.v)3

}

+
Gm

r
γ2

c

{(

−263
72
+

553
90

ν +
17

120
ν2

)

(N.v)

+

(

−757
12
+

8237
60

ν − 433
20

ν2

)

(N.n)2(N.v)

+

(

−2341
72
+

2341
18

ν − 2341
24

ν2

)

(N.n)4(N.v)

}]

+n(iv j)

[

γ

c3

{(

−74
3
+

296
3

ν − 74 ν2

)

(N.n)(N.v)4

}

+
γ2

c

{(

5161
90
− 5612

45
ν +

461
30

ν2

)

(N.n)(N.v)2

+

(

1811
15
− 7244

15
ν +

1811
5

ν2

)

(N.n)3(N.v)2

}

+
Gm

r
γ2

c

{(

−479
60
+

187
6

ν − 9
4
ν2

)

(N.n)

+

(

−5587
90
+

1282
9

ν − 65
2
ν2

)

(N.n)3

+

(

−3787
180

+
3787
45

ν − 3787
60

ν2

)

(N.n)5

}]
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+vi j

[

1
c5

(

2 − 8 ν + 6 ν2
)

(N.v)5

+
γ

c3

{(

−4
3
+

10
3
ν

)

(N.v)3 +

(

−158
3
+

632
3

ν − 158 ν2

)

(N.n)2(N.v)3

}

+
γ2

c

{(

−536
45
− 1531

45
ν − 1

15
ν2

)

(N.v)

+

(

1345
36
− 799

9
ν +

245
12

ν2

)

(N.n)2(N.v)

+

(

2833
60
− 2833

15
ν +

2833
20

ν2

)

(N.n)4 (N.v)

}]}

, (2.29)

where we recall that n = x/r and the parameter γ is defined by (2.17). This completes the

computation of all the inst (s) terms up to 2.5PN.

Next we must compute the instantaneous (r) and (c) parts of the waveform for the com-

pact binaries in circular orbits. These parts are purely of order 2.5PN. The inst(c) part is

computed starting from the expression for W in Eq. (2.16b), but it turns out to be zero for

circular orbits. We find

(

hTT
km

)

inst(r) =
2G νm

c4R
Pi jkm

ν γ2

c

{

−84
5

G m
r

(N.n)(N.v) ni j + 28(N.n)(N.v)vi j

+
G m

r

(

64
35
− 192

5
(N.n)2

)

n(iv j) + 16(N.v)2n(iv j)
}

, (2.30a)

(

hTT
km

)

inst(c) = 0 . (2.30b)

2.3.1 Calculation of ‘plus’ and ‘cross’ polarizations

Given an orthonormal triad (N, p, q), consisting of the radial direction N to the observer, and

two unit polarisation vectors p and q, transverse to the direction of propagation, we define

the two “plus” and “cross” polarisation waveforms by

h+ =
1
2

(pi p j − qiq j)h
TT
i j , (2.31a)

h× =
1
2

(piq j + qi p j)h
TT
i j , (2.31b)

in which the projector Pi jkm present in front of the TT waveform may be omitted.

In the case of circular binary systems we shall adopt for p the vector lying along the

intersection of the orbital plane with the plane of the sky in the direction of the “ascending

node” N , i.e. the point at which the bodies cross the plane of the sky moving toward the

detector, and q = N × p. Following the convention of Ref. [101], the unit vector joining
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Figure 2.1: The geometry of the binary system. The vectors p, q and N are shown. This
figure is adapted from Ref [67].

the particle 2 to the particle 1, i.e. n = (y1 − y2)/r where r = |y1 − y2|, is given by n =

p cos φ + (q cos i + N sin i) sinφ, where i denotes the orbit’s inclination angle and φ is the

orbital phase, namely the angle between the ascending node and the direction of body one.4

The unit direction of the velocity, i.e. λ such that v = rωλ (for circular orbits), is given by

λ = −p sinφ + (q cos i + N sin i) cosφ (see Fig. 2.1).

Using Eq. (2.29) and the expressions for the polarizations in Eq. (2.31) we compute the

polarization corresponding to the instantaneous part of the waveform. This is only one part

of the total 2.5PN polarization since in addition to the instantaneous terms discussed here,

the final expression include equally important hereditary contributions to be discussed in the

next chapter. The final 2.5PN polarization including the instantaneous and hereditary part is

presented at the end of chapter 3.

2.3.2 Comments on the 3PN instantaneous waveform

In Section 2.2.3 we have given the list of source multipole moments needed to control the

waveform at the 2.5PN order. The computation of the 3PN waveform obviously requires

4The angle φ in our convention differs by π
2 from the same in Refs. [140, 142]. We follow here the

convention of BIWW [101], that is related to the BDI one [140, 142] by φBDI = φBIWW − π
2 .
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more accurate versions of these moments as well as new moments, which all together would

constitute the basis of the computation of the 3PN gravitational wave polarizations. Thus,

even though the 3PN mass quadrupole moment [143] and 3PN accurate EOM [144, 145, 148,

149, 146, 147, 150, 151, 76, 73] are available, the present level of accuracy is not sufficient

enough to compute the 3PN waveform.5

The source multipole moments at 3PN order, would yield the control of the inst(s) part

of the waveform, as well as the tail terms, but we have to consider also other types of con-

tributions, which are not all under control. The main reason for the present incompleteness

at 3PN order is that the instantaneous terms of type (r) and (c), generalizing (2.12)–(2.13) to

the 3PN order, are not computed.

Recall that the inst(r) contribution denotes the instantaneous terms in the relations con-

necting the radiative moments UL, VL to the “canonical” moments ML and S L (see (2.3)–

(2.4)). Though one can guess the structure of these terms at the 3PN order using dimensional

and parity arguments, the numerical coefficients in front of each of them require detailed (and

generally long and tedious) computation. For instance, in the 3PN waveform we shall need

the radiative mass-type octupole moment Ui jk at the 2.5PN order, and therefore we have to

know what is the remainder term O(5) in Eq. (2.3b) which we do not know at present (such

a calculation would notably entail controlling the quadratic interactions between one mass

and one current quadrupole, Mi j × S kl, and between one mass quadrupole and one octupole,

Mi j ×Mklm). Similarly for the radiative current-type quadrupole Vi j given by (2.4a). We have

also to compute the 1.5PN terms in the corresponding expressions of U i jklm and Vi jkl.

Concerning the inst(c) terms, which are the instantaneous terms coming from the differ-

ence between the canonical moments ML, S L and the general canonical moments IL, JL, [c.f.

Eqs. (2.7)–(2.8)], one cannot even guess their structure. The crucial new input we would

need at 3PN order concerns the relation between the canonical mass octupole Mi jk and cur-

rent quadrupole S i j to the corresponding source moments Ii jk and Ji j at 2.5PN order, using

for instance an analysis similar to the one in [98].

5We are speaking here of the 3PN waveform. The computation of the 3PN flux is less demanding, because
each multipolar order brings in a new factor c−2 = O(2) instead of O(1) in the case of the waveform, which
explains why it is possible to control it up to the 3.5PN order in [143].
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