
Chapter 4

From Polymers to Membranes: Elastic
Properties of Red Blood Cells

Recently experiments have been conducted to investigate the behavior of live human red

blood cells under optical forces generated using both linearly and circularly polarized light

[1, 2]. These experiments have shown that a normal human RBC, which has a biconcave disk

shape, approximately 8 µm in diameter, deforms into a folded shape upon being placed in an

optical trap; the trapped RBC subsequently rotates when circularly polarized laser radiation

is used. The rotational speed is controlled by the magnitude of the laser power that is applied.

Experiments carried out using RBCs from mice, which have a range of diameters (4-8 µm),

show that the rotation speed also depends upon cell size [2].

There is also another aspect of the study besides the elasticity of cell membranes - micro-

manipulation of biological matter using light; this topic is of great current interest because

of its relevance to fundamental research as well as applications. Confinement of a single

cell in an optical trap is one recent example of how optically-generated forces affect cellular

dynamics. Recent advances have enhanced the capability of applying and sensing forces

and displacements with magnitudes in the picoNewtons and nanometer ranges, respectively,

and with corresponding sensitivities of femtoNewtons and sub-nanometers. Optical forces

that lie in the range 1-50 pN are capable of physically deforming a cell without causing cell

death: this has been demonstrated [3] in trapping experiments involving single red blood

cells (RBCs).

This chapter[4] is devoted to understanding the physics behind the folding and rota-
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tion of RBCs. We present here the results of a study on the optically-induced folding and

rotation of a red blood cell kept under buffered conditions that are close to physiological

conditions. Experiments that involve optically-driven processes and devices carry a distinct

advantage since forces can be applied without mechanical contact. Consequently, there has

been a resurgence of interest in optically-driven micro-motors. Following the classic seven-

decade-old experiment of Beth [5], which demonstrated the conversion of optical energy into

mechanical energy, leading to rotation of micron-sized quartz crystals in circularly polarized

light, other non-contact modes of rotation have been demonstrated in micro-structures com-

prising specially shaped dielectrics and birefringent particles [6, 7, 8]. While the rotation

induced by optical forces can be finely controlled, because it depends on parameters like in-

cident laser power and polarization state, in hitherto existing work the stringent constraint on

the shape and microfabrication of rotors continues to be a key challenge. Thus, experiments

involving optical trapping of naturally occurring material, like a live red blood cell (RBC)

[1, 2] or other single living cells [9] is of great relevance since these obviate the need for

microfabrication of special shapes.

The collapse of structures under compressive mechanical stress, or under their own

weight, is of wide interest in many fields [10], and such instabilities have been studied in

the classical elasticity of rods and plates [10, 11]. When a structure is subjected to compres-

sion it undergoes large displacements transverse to the load, and buckles, as can be readily

demonstrated with a drinking straw or a ball pen refill. The buckling process is relevant not

only to macroscopic systems described by classical elasticity, but also to microscopic objects

like semiflexible polymers, biological membranes and metallic films. We notice here that the

Euler instability also affects a red blood cell placed under the delicate compressive forces of

an optical trap [12].

The chapter is organized as follows. We first summarize our experimental observations.

After presenting a brief overview, from a physics perspective, of the structural properties

of RBCs, we present a simple model that captures the observations that we have made in

our experiments. The subsequent section deals with the predictions made by our theoretical
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model and some numerical estimates as a test of the theoretical model. We end with some

concluding remarks.

4.1 Experimental Observations

The motivation behind the theoretical model was a set of experiments performed by the

Atomic and Molecular Physics group at the Tata Institute of Fundamental Research; we

shall briefly mention the essential experimental details below.

The measurements on live RBCs were conducted using a single-beam optical trap [1]

comprising a 1064 nm, 1 W diode pumped Nd:YVO4 laser whose light was sharply focused

with a 100X oil-immersed objective of large numerical aperture (NA=1.3). A red blood

cell under physiological pH conditions was optically trapped within the focal volume of the

beam. The cell was observed to fold when subjected to a trapping force of the order of 10

pN (corresponding to laser power of ∼20 mW). Upon removal of the optical trap (blocking

the laser beam), the RBC was observed to unfold to its original biconcave shape. When

circularly polarized laser light was used, the folded RBC was observed to rotate[2].

These experimental observations have been reported elsewhere [1, 2, 9]. Below we sum-

marize the observations here for the sake of completeness.

We begin with the observations of folding (see Fig.(4.1)):

1. The RBC folds in the optical trap and unfolds when the trap is off. It is observed that

the cell folds and does not flip as can be checked from the fact that the folded RBC

exhibits a width (∼3.8 µm) that is almost twice that of the thickest part of the unfolded

cell.

2. The folding time (which ranges from 250 ms to seconds depending on the intensity of

the trapping beam) is much smaller than the unfolding time (typically ∼ 14s).

3. If the incident beam is linearly polarized, the long axis of the folded RBC aligns itself

in the direction of the electric field of the incident trapping laser beam and faithfully

follows the electric vector as the polarization is rotated.
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Figure 4.1: A cartoon diagram of the folding RBC

The experimental observations pertaining to RBC rotation can be summarized as follows:

1. The folded RBC rotates in circularly polarized light but not in linearly polarized light.

The sense of rotation depends on the sense of circular polarization.

2. The rotational speed has been shown to be controlled by the magnitude of the laser

power that is applied.

4.2 Structure of RBC-s: an overview

The standard picture of a red blood cell is that of a semi inflated bag containing a viscoelas-

tic incompressible fluid, the cytoplasm. The bag is a plasma membrane consisting of a

phospholipid bilayer containing other macromolecules, which form the cytoskeleton. The

cytoskeleton is a protein network whose links are spectrin filaments (length ∼200 nm) meet-

ing at junctions of short actin filaments (length ∼37 nm). Other proteins like ankyrin bind

the mesh as a whole to the cytoplasmic side of the phospholipid bilayer. This protein net-
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work is important in determining the elastic and mechanical properties of the cell which are

characterized by the elastic constants of the membrane. In particular, the elastic modulus for

area compressibility K is in the range ∼3-6 × 105 pN µm−1, the elastic modulus for shear S

is ∼5-7 pN µm−1 and the bending elastic modulus B is ∼0.2 pN µm [13]. For displacements

in the micron range, it is clear that the elastic energies of bend, shear and compression are in

the ratio 1 : 50 : 106, that is,

Ebend � Eshear � Ecomp.

In other words, it is easier to bend the cell than to shear it and it is hardest to compress it. A

detailed analysis of the cell shape and elasticity of the red blood cell may be found in [14].

Our focus here is to study a particular aspect of RBC elasticity which involves buckling of

the cell in the presence of light forces.

The elastic properties of the RBC are biologically crucial as they permit it to squeeze

through narrow capillaries. The natural unstressed shape of the RBC is determined by the

elastic properties of the membrane, its area and the enclosing volume. Under the action of

external forces, the red cell deforms but recovers its original shape when the forces are re-

moved. The bilayer provides resistance to bending and the cytoskeleton resists shear as well

as compression. Earlier studies of RBC elasticity have been carried out using techniques

like micro-pipette aspiration, laminar shear flow, and optical stretchers. We reiterate that the

present study focuses on live cells, maintained under physiological conditions. The experi-

ments that have motivated this piece of work are distinct from a recent work on the exertion

of optical forces on cells that are no longer alive [15].

4.3 A simplified theoretical model

The main experimental observations can be adequately captured by a simple model which

is independent of the detailed structure of the RBC membrane. What is appealing about the

model is its simplicity, that it reproduces the main experimental findings, and the fact that it

makes predictions that we are able to experimentally test.
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4.3.1 Cell folding

In the theoretical model the biconcave geometry of the RBC is neglected and it is considered

to be a flat disk shaped elastic membrane with an energy cost for bending and deformation.

The elastic energy for the RBC disk has two terms [16]: (i) the energy cost associated

with the extrinsic (mean) curvature[17] of the membrane, Ec = B
∫

d2σ(H)2, where d2σ rep-

resents an area element, B is the bending modulus, H is the membrane’s extrinsic curvature,

and (ii) the energy cost of the strain internal to the membrane (shear and compression) that is

given by an integral over the membrane of the square of the strain tensor and is characterized

by the Lamé constants [11]. So, an unstrained RBC is a disk with zero intrinsic and extrinsic

curvatures. The model describes the lowest energy modes of deformation of the system in

which the effects of shear and compression are neglected and the system is described purely

in terms of the bending energy. The membrane only assumes shapes with zero intrinsic cur-

vature because it takes far greater energy to change the intrinsic geometry[17] . Apart from

the membrane’s elastic energy there is also energy associated with the optical trap,

Etrap = −
t
2

∫

d2σεI(x, y), (4.1)

where t is the thickness of the membrane, ε is the dielectric constant of the RBC relative to

the buffer solution and I(x, y) is the local light intensity in the focal plane. The higher the

intensity, the lower is the potential

V(x, y) = −1
2

tεI(x, y). (4.2)

We expand the potential in a Taylor series around the minimum of the potential (z is chosen

along the direction of propagation of light),

V(x, y) = 1
2A(x2 + y2) + V0, (4.3)

where A is a constant proportional to the incident laser power and V0 is the minimum value of

the potential. Ec is lowest when the RBC is flat and unfolded. Etrap is lowest when the RBC

is at the bottom of the potential. The shape of the membrane is determined by a competition

between Ec and Etrap.
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So, when the trap is switched on, for high enough laser power the trap energy overcomes

the elastic energies of the membrane and folds it, and when the laser trap is switched off,

the flat state is more favorable. The constraint of preserving the intrinsic geometry forces

the membrane to assume a cylinder-like shape (Fig. 4.1) rather than any other shape that has

non-zero intrinsic curvature. The allowed configurations of the elastic membrane are similar

to the allowed configurations of a disk made of paper: it can be bent into a cylinder, but

not into a sphere as this deforms its internal geometry. An analysis of the two competing

energy terms shows that the threshold power needed for folding is inversely proportional to

the cube of the linear dimension of the cell. This is a prediction of the model which can

be tested against future experiments on this system. Notice that we restrict ourselves to the

lowest energy description that would dominate the physics of buckling. One can imagine

other structures, for instance, a corrugated sheet that would be consistent with the constraint

of fixed intrinsic geometry but such a structure would pertain to a higher energy and is

neglected in the present analysis. The experimental observations also support the low energy

description.

As noted, the model describes the folding of the trapped RBC as an analog of the buckling

instability [11, 12]. Although the RBC is modeled as a 2D disk, it bends only in one direction

because of the constraint of preserving intrinsic geometry and so the problem can be treated

as essentially one dimensional, similar to a compressed rod. The analysis is simplified by

focusing on the lowest energy mode of deformation, in which the RBC assumes a shape

which is part of a cylinder of radius R. The order parameter used is α = 2d/R, where d is

the RBC radius. α = 0 corresponds to R = ∞, the unfolded state; a non-zero α describes a

curved configuration. We would expect the energy of bending to be proportional to α2, since

bending in either direction costs the same amount of energy, Ec = a(dα)2/2, where a is a

constant related to the bending modulus. Similarly, the trap energy is also symmetric in α

and can be expressed as Etrap = −b(dα)2/2, where b is a constant proportional to the intensity

of the laser radiation. The competition between Ec and Etrap determines the stability of the

folded state.
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4.3.2 Cell rotation

We now consider the rotation of a trapped RBC. From the observation that the long axis of the

RBC always follows the polarization vector one can infer that the folded RBC is birefringent.

Thus it follows that in the presence of circularly polarized light the folded RBC will rotate.

While this can be understood using the Maxwell stress tensor of the classical electromagnetic

field [18], we note here that the same results can be obtained in a more transparent way by

invoking the spin of the photon. In passing through the folded, birefringent RBC, the light

polarization changes from circular to elliptical. The difference in spin angular momentum is

imparted to the RBC, thus exerting a torque on it causing it to rotate. The photon “spin” is

best described by the Poincarè sphere where for spin=1~, the north pole (θ = 0◦) represents

right circularly polarized light with angular momentum ~ while the south pole (θ = 180◦)

represents left circularly polarized light, with angular momentum −~. Linearly polarized

light carries no spin angular momentum and is represented along the equator while all other

points on the sphere represent elliptically polarized light.

The change in angular momentum caused by a single photon is equal to the change in

cos θ and, therefore, to the change in the z-coordinate of the Poincaré sphere, multiplied by

the unit ~ of angular momentum. One can express the torque as the total angular momen-

tum transferred per unit time: τ = γN~ = γP/ω, where γ = 1 − cos[2πt(n1 − n2)/λ] is a

dimensionless number, the change in the z coordinate on the Poincaré sphere (here t is the

thickness of the sample, n1 and n2 are the refractive indices of the ordinary and the extraordi-

nary ray respectively and λ is the wavelength of light used), N is the number of photons per

second, and P is the power of the incident light (number of photons per second multiplied

by the energy ~ω of each photon). We, therefore, expect the torque that is generated to be

proportional to the incident laser power as is, indeed, observed in our measurements. At low

laser powers (i.e below the threshold value), the cell does not fold and is not intrinsically

birefringent. We emphasise that our interest is in the regime of high laser power. In this

regime the cell is already folded into a cylindrical form and is intrinsically birefringent and

its birefringence is independent of the laser power, since it has reached saturation.
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Circularly polarized light exerts a torque on the cell which causes it to rotate in the

surrounding viscous medium. Since we are in the low (<< 1.0) Reynold’s number regime

we would expect the angular velocity Ω to be proportional to the torque τ:

τ = ξΩ, (4.4)

where ξ is the frictional drag coefficient given by [19]

ξ =
(π/3)ηL3

ln( L
2r ) − 0.447

. (4.5)

From the observed angular velocity we calculate the torque to be large, 1100 pN- nm,

using the value L = 7 µm for the length of the cylinder, r=2 µm for the radius of the cylinder

and η = 0.0013 Nsm−2 for the viscosity of the surrounding liquid.
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Figure 4.2: Dependence of the torque on the laser power
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4.4 Predictions

The time scales for folding and unfolding can also be understood in our model with two

parameters: the depth of the trap that is represented by b (experimentally controlled by the

light intensity), and the membrane stiffness represented by a. When α deviates from 0, it

experiences a restoring force, F = (a − b)dα. Note that all measurements were made at low

Reynolds number where viscous forces dominate over the negligible [20] inertial forces. As

in any viscous medium, the force F causes a motion whose “velocity” α̇ is proportional to

the applied force α̇ ∝ (a− b)α. From this we conclude that the timescale for folding is given

by

Tfold = Γ/(b − a), (4.6)

or in terms of the folding rate,

1/Tfold ∝ P − P0, (4.7)

where P0 is the critical laser power for folding. Since velocities are directly proportional

to forces, timescales are inversely proportional to forces. The higher the force, the smaller

the timescale. This picture explains why the folding time is much shorter than the unfolding

time. The trap force induces folding and the process is fast. On turning the trap off, the

membrane spontaneously and slowly relaxes back to its flat state as there are no forces to

keep it folded. The unfolding time is measured to lie in the range of 10-15 s, considerably

slower than folding times that lie in the range of a few hundred milliseconds to seconds. We

note that the difference between folding and unfolding times that has been measured is, of

course, inconsistent with the possibility of a trapped cell simply undergoing a flipping action.

Our model predicts that by controlling the light intensity one can change the folding time. As

the laser power is lowered, the folding time is expected to increase and at a certain low power,

when the trap energy just cancels the elastic energy, we expect to see large fluctuations in

the shape of the membrane. This is because at this power level there is no restoring force in

the α variable. The membrane is floppy and susceptible to Brownian fluctuations[21]. These

large shape fluctuations have been experimentally seen. We should note that the folding
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time depends on the RBC size besides the laser power; typically an RBC of 8µm diameter

exposed to a laser power ∼ 50 − 70 mW will take a few hundred milliseconds to fold.

Measurements of the dependence of the folding rate on normalized laser power are shown

in Fig.(4.3); our results are in accord with the predictions of our model.

Figure 4.3: Variation of folding time with incident laser power for an RBC of 6 µm in
diameter.

4.5 Numerical Estimates

In this section we present numerical estimates of the threshold laser power P0, folding time

Tfold for a laser power of 50 mW and the angular speed Ω of rotation of the trapped cell.

a) Threshold laser power P0: The optical force experienced by the cell is given by

F = f N~ω
c (4.8)

where ~ω/c is the momentum of each photon, N is the number of photons per sec, and f is

the difference in the refractive index of the RBC and the buffer solution(density contrast). If
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s is the spot size, then the optical energy is given by

Etrap = f Ps/c (4.9)

where P = N~ω is the laser power.

The threshold laser power is obtained by equating the optical trap energy to the elastic

bending energy:

P0 = Bc/ f s (4.10)

We put f = 0.1, s = 0.5 µm and B ∼ 200 pN-nm; then P0 ∼ 4 mW.

b) Folding Time: We shall first derive approximate expressions for the bending and the

trap energies in the electromagnetic picture. We use these expressions for making numerical

estimates which is the focus of this section.

Bending Energy: Let the bending occur along the y-axis; if the diameter of the folded cell

along the y-axis be a part of a circle of radius R then the extrinsic curvature is

H = 1
R

where

2d = Rα.

The bending energy is given by

Ec = B
∫

d2σ(H)2 = B
∫ d

−d
dx
∫ dCosα/2

−dCosα/2
dy 1

R2 (4.11)

Carrying out the integrations and retaining terms upto order quadratic in the cosine term, we

get

Ec =
1
2

2B
d2 (dα)2 =

1
2a(dα)2 (4.12)

Trap Energy: The optical trap energy is given by

Etrap = −
t
2

∫

d2σεI(x, y). (4.13)
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When the cell is in a folded state, the spot is not a circle but an ellipse with semi-major axis

d and semi-minor axis dCos(α/2); so the integration has to be done over the area of this

ellipse. Neglecting the spatial variation of the intensity and replacing

I(x, y) = Io exp−(x2 + y2)/2

in the integrand by Io we get

Etrap =
1
2
πεtIo

8
(dα)2 =

1
2

b(dα)2. (4.14)

Substituting the following values - B ∼ 200 pN-nm, Io = 50mW/(µm)2, t = 1.5 µm and ε =

2.38 × 10−12C2/N − m2 [22], we get a = 0.32 × 10−4 pN/nm and b = 0.7 × 10−4 pN/nm.

Estimate of Γ and Tfold: On dimensional grounds, using Eqn.(5.4) and the relation be-

tween linear and rotational velocity, one can show that Γ ∼ ξ/L2; the expression for ξ is

given by Eqn.(5.5). We estimate Γ ∼ 0.8 × 10−4 pN − s/nm.

We have the following expression for the folding time[19]:

Tfold =
Γ

(b − a) (4.15)

which for Γ ∼ 0.8 × 10−4 pN-s/nm, a ∼ 0.32 × 10−4pN/nm and b ∼ 0.7 × 10−4 pN/nm at a

laser power of 50 mW turns out to be Tfold = 2.1sec which is consistent with experimental

observation[See Fig.4.3].

c) Rotational Speed: In the low Reynold’s number regime, the torque τ is related to the

rotational speed Ω by the relation τ = ξΩ. An estimate of the torque can be made from the

expression τ = γN~ = (γPλ)/(2πc); λ ∼ 1000 nm and γ = 2 for the difference (n1 − n2) ∼

0.1[23]. We get an estimate of ∼ 1100 pN-nm for the torque for cell thickness t ∼ 1 micron

and a laser power of 20 mW . Using η = 0.0013 Ns/metre-squared, ξ = 4.08×103 pN-nm-sec

and the value of torque as estimated above we get the following estimate for the rotational

speed Ω : Ω ∼ 0.27 Hz. This is consistent with experimental observation [2].
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4.6 Discussions and Concluding Remarks

We have discussed the results of a combined experimental and theoretical study of folding

and rotation of an RBC in an optical trap. The elastic properties of the RBC are a sensitive

function of the pH of the buffer solution. We emphasize that our experiments were carried

out under physiological conditions. The main observation is that a single red blood cell,

when placed in an optical trap folds into a rod-like shape; if the trapping laser beam is

circularly polarized, the folded RBC rotates. A simple theoretical model based on the notion

of Euler buckling instability appears to capture the physics of folding. The rotation of the

cell is understood in terms of a simple picture involving the Poincarè sphere. The predictions

that emerge from the model have been successfully tested experimentally. In future it would

be interesting to explore the roles of terms beyond the harmonic ones treated here in the

energy expressions and try to probe these effects experimentally. We notice that the orders

of magnitude of the torques achieved in these experiments are significantly higher than those

achieved in quartz crystals. The birefringence of quartz is considerably lower than that of

liquid crystals, which consist of long molecules. Long biomolecules also appear in the RBC

cytoskeleton. The RBC is birefringent in the folded state only and not in the unfolded state.

This is suggestive of form birefringence [18] which stems from the shape of the object rather

than an intrinsic property of the material. However this effect is known to be second order

in the refractive index contrast between the RBC and the buffer solution and therefore a

quantitatively a small effect. A more plausible model for the birefringence of the folded RBC

is the following. In the folded state, the long biomolecules constituting the cytoskeleton of

the RBC, which are aligned along the axis of the cylinder contribute to birefringence similar

to the manner in which the very long organic molecules lined up in a liquid crystal give

it birefringent properties. In the unfolded state the cytoskeletal biopolymers are randomly

oriented in the plane transverse to the incident beam and thus do not cause birefringence.

Further investigations are needed to confirm this model of birefringence.
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