
Chapter 8

CONCLUDING REMARKS

In this thesis we have studied geometric flows and the thermodynamic nature of black holes

and have used the former to better understand black hole physics from a geometric point of

view. We had started with a thermodynamic motivation triggered by the intriguing analogy

between the approach of a system to its equilibrium state by maximizing its entropy and

the approach of a system of geometric differential equation, namely Ricci flow to its fixed

point by monotonically increasing some functional called the entropy functional. With this

in mind we had tried to attack the Riemannian Penrose Inequality.

In the process we have studied the evolution of important geometric quantities, the area

of a closed two surface, its compactness and its Hawking mass, which have clear physical

significances in terms of entropy and energy. We have considered two geometric flows sepa-

rately where in the first the metric is varied by a pure Ricci flow and in the second it is varied

by a pure diffeomorphism.

The flow generated by a diffeomorphism does not affect the evolution of the area of an

apparent horizon as it is a minimal surface and we have found that the area of an apparent

horizon linearly decreases with the Ricci flow and ends in a singularity at a finite time.

The rate of change of area of a general round sphere under pure Ricci flow is found to

be bounded from above by its compactness and hence also by its Hawking mass through an

inequality which saturates for the Schwarzschild space. This inequality implies that for all

surfaces in flat space, the Hawking mass is non positive. Also the converse statement, that,

given positive scalar curvature, flat space is the only one for which Hawking mass is non
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positive, is true.

The evolution of compactness is studied under both the flows and it is found that the

compactness remains constant for the Schwarzschild space. In general both compactness and

Hawking mass do not show any definite monotonic behaviour under Ricci flow. The non-

monotonic behaviour is due to “shells” of matter which may cross the surface S of interest.

However, the rate of change of Hawking mass is non positive for the exterior Schwarzschild

space, since it is vacuum.

We have found a maximum principle for the compactness for spherically symmetric ini-

tial data set: If the maximum value of compactness is less than 16π, it always decreases

under a Ricci flow. With this, we are led to the result that the flow exists for all time and

thus we have a clear understanding of the existence of the Ricci flow in spherical symmetry.

We conjecture that the maximum principle for compactness is true more generally (outside

spherical symmetry). Such a principle would have implications for the long term existence

of RF in general.

We have been partially successful while trying to generalize some results to a general

(non spherically symmetric) asymptotically flat three manifold. While we derive some in-

teresting new results, they do not lead to a new proof of the Riemannian Penrose Inequality.

Looking into this problem we have found that this is due to the fact that Perelman’s entropy

which he defined in his gradient formulation of the Ricci flow is not quite the geometric

entropy of black holes as introduced by Bekenstein and Hawking. We have shown that it

is not possible to identify Perelman’s entropy with black hole entropy and have proposed a

new flow, which is very similar to Perelman flow, differing only in that the diffusion constant

is space dependent. The new flow does seem to be connected to geometric entropy of black

holes.

The general Penrose inequality (without restricting to time symmetric data) is an impor-

tant unproved conjecture in the initial value formulation of GR. It would seem necessary to

either prove it or produce a counterexample. Our hope is that the geometric flow techniques

described here will lead to a solution of this important problem.
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Appendix A

POSITIVE MASS THEOREM,
PENROSE INEQUALITY AND
INVERSE MEAN CURVATURE FLOW

INTRODUCTION

In this appendix we describe previous work on the Penrose inequality to bring out the con-

nection with our efforts. This material is mostly review, but there are certain intriguing

similarities, which suggest directions for future work. Using a pure diffeomorphism (instead

of pure Ricci flow) we can see the connection with early work by Geroch, Jang and Wald

[1, 2].

We recall the discussions about Positive Mass Theorem (PMT) and Penrose Inequal-

ity (PI) in chapter (1) where we consider an asymptotically flat, globally hyperbolic

spacetime(M, gµν) (µ, ν = 0, 1, 2, 3) (with signature (−,+,+,+)). Let (Σ, hab,Kab) (a, b =

1, 2, 3) be an initial data set with mass M and A be the area of the outermost apparent horizon.

Then the statements of PMT and PI are as follows:

• Positive Mass Theorem: The PMT states that for a nonsingular asymptotically flat

initial data set, the ADM mass M is nonnegative and vanishes if and only if the initial

data set is that of Minkowski space.

• Penrose Inequality: The Penrose inequality states that if the energy condition holds
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then,

A ≤ 16πM2 (A.1)

. The PI clearly implies PMT, which only states that M ≥ 0.

GEROCH’S ARGUMENT TO PROVE POSITIVE MASS
THEOREM

In 1973 Geroch gave a proof of the PMT [1] for the restricted case of maximal slicing (K :=

habKab = 0) by defining a flow of 2-surfaces in Σ in which the surfaces flow in the outward

normal direction at a rate equal to the inverse of their mean curvatures at each point. The

flow is known as the Inverse Mean Curvature Flow (IMCF). Later in 1977 Jang and Wald

extended the ideas of Geroch to give a proof of the Riemannian Penrose inequality [2].

Geroch’s argument [1] establishes the validity of the PMT for an initial data set (Σ, hab,Kab)

having the topology R3 and with the trace of its extrinsic curvature, K = 0. The constraint

equations in GR and the local energy condition (3.11-3.13) imply that the scalar curvature R

of Σ cannot be negative i.e.,

R ≥ 0. (A.2)

We introduce a function τ on Σ such that the two dimensional surfaces τ = constant in Σ are

nested topological 2-spheres with the innermost surface reducing to a point. For each value

of τ let us assume that S ⊂ Σ is one such surface and ηa = Daτ defines the normal to S . The

unit normal is then given by na = (η.η)−1/2ηa. Let ξa := una has the property that ξaDaτ = 1.

Let v2 := ηaηa. So we have ξaDaτ = uv = 1. So u = 1/v = (ηaηa)−1/2. Note that ηa = ξa/u2

is an exact differential form. Next we consider the function C(τ), which has been introduced

earlier in this thesis by the name “compactness” and which, for each value of τ, is defined as

C(τ) :=
∫

S ∈Σ
(2R − k2)dA (A.3)

where the integration extends over the surface S and R and k denote the scalar curvature and

the trace of the extrinsic curvature of the surface S as a submanifold of Σ, respectively.

Also the Hawking mass (as introduced earlier in the thesis) is defined as
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MH(τ) = A1/2

64π3/2

∫

S⊂Σ
(2R − k2)dA =

A1/2

64π3/2 C(τ). (A.4)

We note that the Gauss-Bonnet theorem implies that
∫

S ∈Σ
RdA = 8π. (A.5)

The trace of the extrinsic curvature k of S ⊂ Σ is defined as

k = Dana. (A.6)

The rate of change of any quantity with respect to τ is its Lie derivative by ξa. The rate of

change of k with respect to τ is then given by

∂k
∂τ
= ξbDb(Dana) = ξbDaDbna − ξbRa

mabnb = ξbDaDbna − uRmbnbnm. (A.7)

Next after a calculation using the Gauss-Codazzi equation and standard projection techniques

in GR [3] we arrive at the result that

d
dτ

C(τ) =
∫

S⊂Σ
[2kD̃aD̃au + ukkabkab − ukR + ukR]dA (A.8)

where D̃a is the covariant derivative operator on the 2-surface S with respect to the induced

metric. Next we suppose that we can choose the 2-surfaces, S , such that

uk = 1. (A.9)

This defines of the flow of the 2-surfaces considered. This is the IMCF. Under this condition

the equation (A.8) becomes

d
dτ

C(τ) = −1
2

C(τ) +
∫

S⊂Σ
[R + (kabkab −

1
2

k2) + 2u−2D̃auD̃au]dA

≥ −1
2

C(τ). (A.10)

But since C(τ) → 0 as the surface reduces to a point, equation (A.10) implies C(τ) ≥ 0

for all τ. As τ → ∞ the surface S expands to a round sphere at infinity and the Hawking

mass MH becomes the ADM mass M. By equation (A.4) we have M ≥ 0. The equality holds

(i.e., M = 0) only if Kab = 0 ans hab is flat, i.e., initial data for flat space.
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ARGUMENT BY JANG AND WALD TO PROVE PEN-
ROSE INEQUALITY

Jang and Wald extended the ideas of Geroch to give a proof of the Riemannian Penrose

inequality [2]. Their argument runs as follows: We consider a time symmetric initial data

set whose apparent horizon H has only one component. It is known that H must have the

topology of a sphere. Consider a nested family of 2-sphere analogous to those used in the

earlier section on Geroch’s argument, but now this family has the additional property that

the surface defined by τ = 0 is H . The family of surfaces for τ > 0 is again defined by the

property of the IMCF that

uk = 1. (A.11)

Now by considering the function

C(τ) :=
∫

S⊂Σ
(2R − k2)dA (A.12)

we again find that
d
dτ

C(τ) ≥ −1
2C(τ) (A.13)

i.e., we have
d
dτ

[exp(τ/2)C] ≥ 0 (A.14)

. On the other hand, the rate of change of area A(τ) of the surface τ = const. is given by

d
dτ

A(τ) =
∫

kudA =
∫

dA = A(τ). (A.15)

Since, the surface τ = 0 is justH , we have

A(τ) = A exp(τ) (A.16)

where A is the area ofH . Equation (A.14) then implies

lim
τ→∞

A(τ)1/2

A1/2 C(τ) ≥ C(0) (A.17)

. Using equation (A.4), the LHS of the equation (A.17) is

lim
τ→∞

A(τ)1/2

A1/2 C(τ) = 64π3/2

A1/2 M. (A.18)
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On the other hand, sinceH is extremal (k = 0), by the Gauss-Bonnet theorem we have

C(0) = 16π. (A.19)

So from equations (A.17, A.18, and A.19) we have

A ≤ 16πM2 (A.20)

which is PI (equation A.1).

CONCLUSION

We note that the effect of varying S in Σ can be achieved by using a diffeomorphism to

change the metric and keeping S fixed. In earlier work (chapter (6)), we took the point of

view that S is fixed and only the tensor field hab is changing. So the equation responsible for

the change in the metric is
dhab

dτ
= Daξb + Dbξa (A.21)

which is the same equation for the rate of change of the metric under IMCF (where we vary

S in Σ) given by the Lie derivative of the metric by ξ. In chapter (6) we have studied the

evolution of geometric quantities of interest under this flow.

The proof of the PMT using Geroch’s argument was only for the restricted case of time

symmetric initial data set (K = 0). Although there is some evidence [4] for believing that all

all nonsingular, asymptotically flat spacetimes must contain at least one asymptotically flat

slice with K = 0, one would still want to prove the most general statement of PMT that an

initially regular spacetime must have M ≥ 0 even if it develops singularities later.

In both the proofs of PMT and PI described above, the existence of the flow of surfaces

as required in the above arguments was assumed. It can happen that as the flow evolves there

appear points where k = 0 and the flow uk = 1 becomes ill defined and difficulties with the

surface evolution can occur.

The work of Huisken and Ilmanen in 1997 [5] reformulated the IMCF in such a way

that the new generalized IMCF always exists. In the new formulation the surface sometimes

96



jumps outward. However when the flow is smooth it equals the original IMCF, and the

Hawking mass still remains monotone.

Geometrically, the idea of Huisken and Ilmanen can be described as follows: Let S (τ) be

the surface resulting from IMCF for “time” τ beginning with the minimal surface S 0. Define

S̃ (τ) to be the outermost minimal area enclosure of S (τ). Typically, S (τ) = S̃ (τ) in the flow,

but in the case that the two surfaces do not coincide, we immediately replace S (τ) with S̃ (τ)

and then continue the IMCF. This is similar in essence to the geometric surgeries done in the

Ricci flow when it hits a singularity in order to continue the flow further.

The proof of PI by the Inverse mean curvature flow applies only for a single black hole

and also it does not work in higher dimensions. Bray considered a flow on the space of three

metrics and presented a technique that proves the inequality for any number of black holes

and which can likely be generalized to higher dimensions [6]. We hope that a combination

of Ricci flow and diffeomorphism can be exploited to give a general approach to the Penrose

inequality.
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Appendix B

EVOLUTION OF THE SCALAR
CURVATURE

Notation:

Our notation will be as follows:

1. For Scalar and Tensor quantities we have the following rules:

• In dimension 4: the index of dimension is explicitly written e.g (4R, 4Rµν) etc.

except for the metric tensor while we use the symbol (g) for the 4 metric, e.g

(gab) etc.

• In dimension 3: the index of dimension is not written explicitly e.g (R,Rab) etc.

while we use the symbol (h) for the 3 metric, e.g (hab) etc.

2. For operators:

• In dimension 4: ’∇’ is for ’Grad’, ’∇2’ is for ’Laplacian’

• In dimension 3: ’D’ is for ’Grad’, ’D2’ is for ’Laplacian’

3. Our metric conventions are those of Poisson [Eric Poisson 2004 A Relativist’s Toolkit

Cambridge Univ. Press]
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General expression for the evolution of the 3 scalar curva-
ture

Here we calculate the general expression for the evolution of the 3-scalar curvature when hab

is varied according to

ḣab = Hab (B.1)

Ṙ =
d
dτ

(hbdRbd) = −RbdHbd + hbdṘbd (B.2)

Hbd = hkbhldHkl. (B.3)

Next we calculate the following term,

hbdṘbd = hbd(DcΓ̇
c
bd − DdΓ̇

c
bc)

= hbd

[

Dc
1
2hce

(

DbHed + DdHeb − DeHbd

)

−Dd
1
2

hce
(

DbHce + DcHeb − DeHbc

)

]

= δ2H − D2(trH) (B.4)

where,

δ2H := DaDbHab = hachbd(DcDdHab) (B.5)

trH := habHab (B.6)

and

D2 := habDaDb. (B.7)

So, we have,

Ṙ =
d
dτ

(hbdRbd) = −RbdHbd + δ2H − D2(trH). (B.8)
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Appendix C

PERELMAN’S GRADIENT
FORMULATION

Perelman flow using the variational technique

Here we give a derivation of the Perelman flow using a variational technique. This is based

on Topping’s exposition of Perelman’s work [Peter Topping 2006 London Mathematical

Society Lecture Notes Series Cambridge University Press]. Let us consider the following

functional :

FP(h, f ) :=
∫

M
(R + |D f |2)e− f dV (C.1)

where,

k̃ := ∂ f
∂τ

(C.2)

now,
∂

∂τ
| D f |2= −HabDa f Db f + 2habDak̃Db f (C.3)

and
∂

∂τ
dV =

1
2

(trH)dV. (C.4)

So,

d
dτ
FP(h, f ) =

∫

M

[

− HabDa f Db f + 2habDak̃Db f − RabHab + δ2H − D2(trH)
]

e− f dV

+

∫

M
(R + |D f |2)

[

− k̃ +
1
2(trH)

]

e− f dV. (C.5)
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We notice the following things :

∫

M
(2habDak̃Db f )e− f dV =

∫

M
−2k̃(D2 f − |D f |2)e− f dV (C.6)

∫

M
(δ2H)e− f dV =

∫

M
(HabDa f Db f − HabDaDb f )e− f dV (C.7)

and
∫

M
−D2(trH)e− f dV =

∫

M
(D2 f − |D f |2)(trH)e− f dV. (C.8)

So,

d
dτ
FP(h, f ) =

∫

M

[

(−Rab − DaDb f )Hab + (2D2 f − |D f |2 + R)(−k̃ +
1
2 trH)

]

e− f dV. (C.9)

We demand that the scaled volume remains constant under the flow :

0 = ∂

∂τ
(e− f dV) = (−k̃ +

1
2

trH)e− f dV. (C.10)

So,

k̃ =
∂ f
∂τ
=

1
2 trH. (C.11)

And we have,

d
dτ
FP(h, f ) =

∫

M

[

(−Rab − DaDb f )Hab

]

e− f dV ≥ 0 (C.12)

i.e., FP is nondecreasing along the flow if we choose the metric hab to be varying according

to the following equation

Hab =
∂

∂τ
hab = −2(Rab + DaDb f ) (C.13)

and hence

k̃ =
∂ f
∂τ
=

1
2 trH = −R − D2 f . (C.14)
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Appendix D

EVOLUTION OF GEOMETRIC
QUANTITIES UNDER PERELMAN’S
RICCI FLOW

The rate of change of 3 scalar curvature under the Perelman
flow

Here we calculate the rate of change of 3 scalar curvature under the Perelman flow. (Here we

follow Perelman’s convention. The sign of f agrees with Perelman and is reversed between

this and the bulk of the thesis).

Method:1

we have for the Perelman flow :

∂

∂τ
hab = −2(Rab + DaDb f ) (D.1)

.

Using,

habhbc = δ
a
c (D.2)

we have,

dhab

dτ
:= hamhbn dhmn

dτ
= − d

dτ
(hab). (D.3)

We move to a local flat coordinate system to calculate the following things :

Γ̇a
bc =

1
2

had(Dbḣdc + Dcḣdb − Ddḣbc) (D.4)
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Ṙa
bcd = DcΓ̇

a
bd − DdΓ̇

a
bc (D.5)

Ṙbd = DcΓ̇
c
bd − DdΓ̇

c
bc. (D.6)

We introduce a standard notation for covariant derivative: T a
b|c := DcT a

b for any tensor

T a
b.

now,

Ṙ = ḣbdRbd + hbdṘbd

= 2|Rbd |2 + (2DbDd f )Rbd + term (D.7)

where,

term = hbdṘbd = hbd(DcΓ̇
c
bd − DdΓ̇

c
bc)

= hbd

[

Dc

{1
2

hce(ḣed|b + ḣeb|d − ḣbd|e)
}

− Dd

{1
2

hce(ḣec|b + ḣeb|c − ḣbc|e)
}

]

= hbdhce

[

{

− Red|bc − (DeDd f )|bc − Reb|dc − (DeDb f )|dc + Rbd|ec + (DbDd f )|ec

}

−
{

− Rec|bd − (DeDc f )|bd − Reb|cd − (DeDb f )|cd + Rbc|ed + (DbDc f )|ed

}

]

= term1 + term2 + term3 + term4. (D.8)

Now,

term1 = hbdhce
[

Reb|cd − Reb|dc

]

= hbd
[

Rc
b|cd − Rc

b|dc

]

= hbd
[

− Rc
mcdRm

b + Rm
bcdRc

m

]

= hbd
[

− RmdRm
b + Rm

bcdRc
m

]

= −RmdRmd + RmcR
mc = 0 (D.9)

and

term2 = −2hbdhceRed|bc

= −hceDc2DbRb
e

= −hceDcDeR = −D2R (D.10)
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where we have used the Bianchi Identity :

2DaRa
c = DcR (D.11)

also,

term3 = 2hbdhceRbd|ec = 2D2R (D.12)

and

term4 = −hbdhce
[

DcDbDeDd f + DcDdDeDb f − DcDeDbDd f

−DdDbDeDc f − DdDcDeDb f + DdDeDbDc f
]

= term(a) + term(b) + term(c) (D.13)

where,

term(a) = −hbdhce
[

(DeDb f )|(dc−cd)

]

= −hce
[

(Deζ
d)|(dc−cd)

]

= −hce
[

− Rd
ldcDeζ

l + Rl
edcDlζ

d
]

= −hce
[

− RlcDeζ
l
]

− Rlc
dcDlζ

d

= hceRlcDeζ
l − Rcl

cdDlζ
d

= hceRlcDeζ
l − hlmRc

mcdDlζ
d = hceRlcDeζ

l − hlmRmdDlζ
d

= 0 (D.14)

where,

ζm := Dm f . (D.15)

We notice that :

term(b) = −hbdhce
[

(DcDbDeDd − DcDeDbDd) f
]

= −hbdhce
[

(DdDeDbDc − DdDbDeDc) f
]

= term(c). (D.16)
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So,

term(b) + term(c) = −2hbdhce
[

(DcDbDeDd − DcDeDbDd) f
]

= −2hbdhce
[

(ζd|(eb−be))|c
]

= −2hce
[

(ζb
|(eb−be))|c

]

= −2hce
[

− Rb
nebζ

n
]

|c

= −2hce
[

Rb
nbeζ

n
]

|c

= −2hce
[

Rneζ
n
]

|c

= −2
[

Rncζn

]

|c

= −2(R c
n )|cζn − 2Rncζn|c

= −ζnDnR − 2RbdDbDd f . (D.17)

Therefore,

Ṙ = ḣbdRbd + hbdṘbd

= 2|Rbd |2 + D2R − ζnDnR

= 2|Rbd |2 + D2R − LζR (D.18)

where,

LζR = ζmDmR. (D.19)

Method:2

This method is a shorter one where we will use the general evolution equation for the three

scalar curvature R:

We have here:

Hab = ˙hab = −2(Rab + DaDb f ) (D.20)

and so,

trH = −2(R + D2 f ) (D.21)
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and we also have the general equation for the evolution of R:

Ṙ = −RabHab + DaDbHab − D2trH. (D.22)

We calculate term by term the above expression of Ṙ:

−RabHab = 2|Rab|2 + 2RabDaDb f . (D.23)

Next we have:

DaDbHab = −2DaDbRab − 2DaDbDaDb f (D.24)

and,

−D2trH = 2D2R + 2D2D2 f . (D.25)

We now note the following identities:

−2DaDbDaDb f + 2D2D2 f = 2Da

[

(DaDbDb − DbDaDb) f
]

= 2Da

[

Rb
dabDd f

]

= 2Da

[

RadDd f
]

= −(DaR)(Da f ) − 2RadDaDd f (D.26)

where to get the last step we had used the Bianchi identity. Collecting all the terms we have:

Ṙ = 2|Rab|2 + D2R − LζR (D.27)

where,

LζR = ζaDaR = (Da f )(DaR). (D.28)
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