
Chapter 6

ENERGY, ENTROPY AND THE RICCI
FLOW

6.1 INTRODUCTION

The Ricci flow [1, 2, 3, 4] has been used by mathematicians to understand the topology of

three manifolds. It appears likely that these mathematical developments will also be useful

in physics in the study of geometric theories like general relativity. The Ricci flow is a

(degenerate) parabolic differential equation, and is very similar to the heat equation. We

hope that this will help us understand thermodynamic features of GR.

In this chapter we look at the Ricci flow to see how some physically interesting quantities

evolve with the flow. Energy and entropy are quantities of physical interest from the ther-

modynamic point of view. In general relativity these quantities take on a purely differential

geometric meaning: the entropy is related to the area of horizons and the energy to the ADM

mass at infinity. In the present chapter we write down the equations governing the general

evolution of these quantities (without assuming any particular symmetry such as spherical

symmetry) and derive some inequalities relating them. In this context let us recall our initial

motivation. In the seventies, Roger Penrose, in an attempt to pick holes in the “establishment

view” of gravitational collapse, which includes the idea of cosmic censorship, wrote down

an inequality relating the ADM mass of an initial data set for GR and the area of apparent

horizons it contained: M ≥
√

A/16π. A counterexample to this inequality would imply a

flaw in the establishment view. No counter example has so far been found.
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6.2 GEOMETRIC QUANTITIES OF INTEREST

We have already introduced the following geometric quantities in chapter (4). We go through

them briefly again. Let S be a closed surface in Σ, γi j the pull back or induced metric on S , R

the scalar curvature of (S , γ) and k the trace of its extrinsic curvature. We will be interested

in the evolution of some geometric properties of S under the Ricci flow. Our interest in these

quantities stems from their physical significance. These are :

the area of S ,

A(S ) =
∫

S
dA =

∫

S
d2x
√
γ (6.1)

the “compactness” of S ,

C(S ) =
∫

S
dA(2R − k2) (6.2)

and its Hawking mass

MH(S ) =
√

A(S )
64π3/2 C(S ). (6.3)

Using the Gauss Bonnet theorem, if S is of spherical topology

2
∫

S
RdA = 2

∫

2kdA = 16π. (6.4)

So the compactness is

C =
[

16π −
∫

S
k2dA

]

. (6.5)

We will be interested in the evolution of A(S ), C(S ), and MH(S ) as the metric changes

according to
dhab

dτ
= −2Rab + Daξb + Dbξa. (6.6)

The first term −2Rab in equation (6.6) is the RF and the rest is a diffeomorphism. The effect

of varying S in Σ can be achieved by using a diffeomorphism. In our work, we take the

point of view that S is fixed and only the tensor field hab is changing. We will consider

the evolution under RF and diffeomorphism separately considering one at a time. So the
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equations responsible for the change in the metric in these two cases are

dhab

dτ
= −2Rab (6.7)

and
dhab

dτ
= Daξb + Dbξa (6.8)

respectively.

6.3 THE EVOLUTION OF AREA

The area is

A(S ) =
∫

d2x
√
γ. (6.9)

Let ηa be the normal to S . ηa is defined only up to a nonzero multiple. The unit normal

na =
ηa

(η.η)1/2 (6.10)

depends on the metric. As the metric changes, the unit normal can only change by a multiple

of itself
dna

dτ
= αna. (6.11)

Also,
d
dτ

(habnanb) = −dhab

dτ
nanb + 2habna

dnb

dτ
= 0 (6.12)

(

in our notation, dhab

dτ := hamhbn dhmn
dτ and we note that d

dτ (hab) = d
dτ (hamhbnhmn) = − dhab

dτ

)

,

which implies that

α =
1
2

dhab

dτ
nanb (6.13)

dnb

dτ need not point along nb

d
dτ

nb =
d
dτ

(hbcnc) = −
dhbc

dτ
nc + hbc dnc

dτ
= −dhbc

dτ
nc + αnb. (6.14)

While the second term does point along nb, the first need not. For convenience we pick

ηa = Daη where η is a function on Σ which is constant over S . Then ηa is exact and therefore

closed. This will be useful later.
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Now we compute dA(S )
dτ for a general evolution of the metric hab with τ.

A(S ) =
∫

dA =
∫

d2x
√
γ (6.15)

dA(S )
dτ

=

∫

d2x
d
dτ
√
γ (6.16)

1
√
γ

d
dτ
√
γ =

1
2γ

i j dγ
i j

dτ
=

1
2(hab − nanb) d

dτ
(hab − nanb). (6.17)

Note that
d
dτ

(nanb) = 2αnanb (6.18)

which is projected out by γab = hab − nanb

dA
dτ
=

1
2

∫

(hab − nanb)dhab

dτ
√
γd2x. (6.19)

• Evolution under RF:

We first calculate the evolution of area under RF which is equation (6.7) where the

metric changes as dhab
dτ = −2Rab

dA
dτ
=

1
2

∫ √
γd2x

[

nanbRab − R
]

. (6.20)

We use the following relations (contracted form of the Gauss-Codazzi equation [5])

−2(Rab −
1
2Rhab)nanb = R + (ki jki j − k2) (6.21)

or,

−2Rabnanb = −R + R + (ki jki j − k2) (6.22)

Rabnanb − R = −1
2

[

R + R + (ki jki j − k2)
]

(6.23)
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dA
dτ

= −1
2

∫ √
γd2x

[

R + (ki j − 1
2kγi j)(ki j −

1
2kγi j) + R −

k2

2

]

= −1
2

∫ √
γd2x

[

R + (ki j − 1
2

kγi j)(ki j −
1
2

kγi j)
]

−1
4

∫ √
γd2x(2R − k2). (6.24)

The second integral in (6.24) is identified as the C(S )/4, one fourth the compactness

integral of S and the first integral, which is of definite sign can be dropped to arrive at

the inequality

dA
dτ
≤ −1

4C(S ). (6.25)

This inequality is one of the main results of this chapter. This result can be re expressed

in terms of the Hawking Mass:

dA
dt
≤ −16π3/2

√
A

MH(S ). (6.26)

Thus the rate of decrease of area under Ricci flow is bounded by the Hawking mass.

The inequality (6.25) is saturated in the case of the spheres of Schwarzschild space
(

which is given by ds2 = (1 − 2M(r)/r)−1dr2 + (dθ2 + sin2 θdφ2) with M(r) = M
)

. In

this case R = 0 and the spheres are shear free (ki j =
1
2kγi j), so the first integral in (6.24)

vanishes.

So for the case of the spheres of Schwarzschild space, we have

dA
dτ
= −1

4
C(S ) (6.27)

which was obtained by a direct calculation in spherical symmetry in chapter (4).

As a simple application of this inequality, let us consider flat space. Since the Ricci

tensor vanishes we have that dA/dτ = 0 and so the LHS of 6.26) vanishes. We arrive at

the conclusion that for all surfaces in flat space, the Hawking mass is non positive! This
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fact has also been noticed in [6], where a direct proof is given. In fact, the converse of

this statement is also true: Given positive scalar curvature, flat space is the only one

for which the Hawking mass is non-positive. To see this, note that the supremum of

the Hawking mass is the ADM mass and if this supremum vanishes, it follows from

the positive mass theorem that the space must be flat.

• Evolution under diffeomorphism:

Now we calculate the evolution of area under the flow given in equation (6.8) where

the metric changes due to a diffeomorphism as dhab

dτ = Daξb + Dbξa

so we have

dA
dτ
=

1
2

∫ √
γd2x(hab − nanb)2Daξb =

∫ √
γd2x[Daξ

a − nanbDaξb]. (6.28)

If we suppose that ξa is tangent to S , then

D̃aξb = γ
a′

a γ b′

b Da′ξb′ (6.29)

D̃aξ
a = γabD̃aξb = (hab − nanb)Daξb. (6.30)

So
dA
dτ
=

∫ √
γd2x[D̃aξ

a] = 0. (6.31)

Since this is a divergence over a boundary less surface S . It is therefore enough to

consider the component of ξ normal to S . Let

ξa = una (6.32)

then
dA
dτ
=

∫ √
γd2x(hab − nanb)Da(unb). (6.33)

When we differentiate u, nb comes out and is killed by γab so

dA
dτ
=

∫ √
γd2x uγabDanb =

∫ √
γd2x uk (6.34)
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• Application to apparent horizon:

If S is a minimal surface, we find that since k = 0, the area changes according to

dA
dτ
≤ 1

4C = −16π/4 = −4π. (6.35)

So for apparent horizon we have
dA
dτ
≤ −4π (6.36)

which has already been checked for the special case of spherical symmetry in chapter

(4).

This is the behaviour of the area of an apparent horizon under the Ricci flow. The

presence of a diffeomorphism does not matter for apparent horizon since k = 0. Under

a Ricci flow we expect S to shrink to a point and disappear. We take S to be the

outermost horizon, i.e.,the boundary of the region having trapped surfaces. Under the

Ricci flow, this region will not disappear suddenly, but shrinks. Near S there will be

a new apparent horizon with the same area. If the initial area is A0, within a time

A0/4π the apparent horizon shrinks to a point of zero area. This implies a finite time

singularity.

6.4 THE EVOLUTION OF COMPACTNESS

The compactness C is

C(τ) =
∫

S

√
γd2x(2R − k2). (6.37)

We have
dC
dτ
= −

∫

S
2k

dk
dτ
√
γd2x −

∫

S
k2 d
√
γ

dτ
d2x. (6.38)

• Evolution under RF:

We first calculate the evolution of compactness under RF which is equation (6.7) where

the metric changes as dhab

dτ = −2Rab.

The compactness C is

C(τ) =
∫

S

√
γd2x(2R − k2). (6.39)
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We have
dC
dτ
= −

∫

S
2k

dk
dτ
√
γd2x −

∫

S
k2 d
√
γ

dτ
d2x. (6.40)

We next calculate d
√
γ

dτ . We express the induced metric γab of S ⊂ Σ in terms of the

metric hab of Σ, and the normal n to S as

γab = hab − nanb (6.41)

and note (using the fact that d
dτ (nanb) is projected out by γab = (hab − nanb)) that

d
√
γ

dτ
= (1/2)√γ(hab − nanb)∂hab

∂τ
= −√γ[R − Rabnanb] (6.42)

where we have used the Ricci flow (6.7).

We use the Gauss-Codazzi equation (contracted form) [5]

−2(Rab − (1/2)Rhab)nanb = R + (ki jki j − k2) (6.43)

to have
d
√
γ

dτ
= −(1/2)√γ[R + (ki jki j − k2/2) + R − k2/2]. (6.44)

Next we calculate the rate of change of the trace of the extrinsic curvature k = Dana.

From an earlier discussion given in the section for calculating the rate of change of

area under RF, it is clear that the rate of change of the normal n to the surface S is

given as
dna

dτ
= αna (6.45)

where

α = (1/2)dhab

dτ
nanb (6.46)

also
d
dτ

(hab) = −dhab

dτ
. (6.47)

With these facts we see that

dna

dτ
=

d
dτ

(habnb) = −dhab

dτ
nb + habnb

(

(1/2)dhcd

dτ
ncnd

)

. (6.48)
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So we have
dk
dτ
=

d
dτ

(Dana) =
( d
dτ
Γa

am

)

nm + Da
dna

dτ
. (6.49)

A calculation then shows that

dk
dτ
= 2RabDanb − k(Rcdncnd) − naDa(Rcdncnd). (6.50)

So we have the expression for the rate of change of compactness, C under Ricci flow

dC
dτ
=

∫

dA
[

k2(R + Rabnanb) − 2k[2RabDanb − naDa(Rcdncnd)]
]

. (6.51)

We note that for Schwarzschild space, R = 0 and the metric hab of Σ is given as

ds2 = (1 − 2M/r)−1dr2 + r2(dθ2 + sin2θdφ2). (6.52)

With these, a calculation shows that for Schwarzschild metric

dC
dτ
= 0 (6.53)

which was obtained by a direct calculation in spherical symmetry in chapter (4).

• Evolution under diffeomorphism:

Now we calculate the evolution of compactness under the flow given in equation (6.8)

where the metric changes due to a diffeomorphism as dhab

dτ = Daξb + Dbξa. A general

diffeomorphism ξa can be decomposed as ξ̃a tangent to S and ξa
normal = una normal to

S . The tangential components do not move S because of diffeomorphism invariance

and therefore do not affect geometric quantities. We take ξa = ξa
normal = una where na

is the unit normal to the surface S . Then the rate of change of a quantity will be its Lie

derivative by ξa. We see that
1
√
γ

d
√
γ

dτ
= uk. (6.54)

And using the Gauss-Codazzi equation [5]

−2nanbRab + R = R + (ki jki j − k2) (6.55)
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we have
dk
dτ
= −D̃aD̃au +

u
2

[R − R − ki jki j − k2] (6.56)

where D̃a denotes the intrinsic covariant derivative operator within the surface. So we

have
dC
dτ
=

∫

S
[2kD̃aD̃au + ukki jki j − ukR + ukR]√γd2x. (6.57)

From the results described above we can get an expression for the evolution of Hawking

mass. The Hawking mass is

MH(S ) =
√

A(S )
64π3/2 C(S ). (6.58)

We then have
d
dτ

MH =

(

1
64π3/2

)(

1
2
√

A

dA
dτ

C +
√

A
dC
dτ

)

. (6.59)

Knowing dA
dτ and dC

dτ for both RF and diffeomorphism from equations (6.24, 6.34, 6.40,

and 6.51) we can calculate d
dτMH for both cases.
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