
Chapter 5

NUMERICAL STUDIES

5.1 INTRODUCTION

We are interested in applying the Ricci flow (RF) in general relativity (GR) to better under-

stand the quantities of physical interest like mass (energy) and area of the apparent horizon

(entropy) in GR as these quantities can be treated as purely geometric ones in the domain of

the RF techniques and one can study the evolution of these quantities under the RF to study

the thermodynamics of GR.

While analytic techniques are general and powerful, we would also like to get a physical

feel for the evolution of the metric under RF. While it may be possible with present day com-

puters to evolve a general metric under the RF, in this thesis we make a modest beginning by

studying spherically symmetric flows numerically. Our motivation is to have a few examples

of evolution under RF and to get a feel for the phenomena that we encounter. This serves

as a check on the analytic techniques of the last chapter. As we will see, even in this simple

situation there are several practical problems to be overcome, having to do with the use of

coordinates.

5.2 THE RICCI FLOW IN SPHERICAL SYMMETRY

In this section we set up the formalism for evolving the metric according to the Perelman’s

RF in spherical symmetry. Perelman’s RF is
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dhab

dτ
= −2Rab + 2DaDb f (5.1)

where f is a scalar function generating a diffeomorphism. Since we work in spherical sym-

metry we choose the gauge so that the metric is

ds2 = a(r)dr2 + r2(dθ2 + sin2θdφ2). (5.2)

We will need another diffeomorphism to maintain the gauge in (5.2) and as this diffeo-

morphism is purely radial and hence can be written as a gradient, we can combine this with

f without any further loss of generality.

The independent equations of the (5.1) can be written as

hab dhab

dτ
= −2R + 2D2 f (5.3)

dhθθ
dτ
= −2Rθθ + 2DθDθ f . (5.4)

We will use (5.4) to solve for f and will plug this into (5.3) to get an autonomous equation

for a(r)

∂a
∂τ
=
−2a
r2 +

2
r2 −

a′

ra
+

a′

r
− 3a′2

2a2 +
a′′

a
. (5.5)

We will rewrite a(r) in the form

a(r) =
(

1 − 2M(r)
r

)−1
, (5.6)

which can be done in the absence of an apparent horizon. M(r) physically means the to-

tal mass contained within a shell of radius r. This form is useful because we can easily

implement the constraint that the local energy density is positive.

The scalar curvature is given by

R =
4M′

r2 (5.7)
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where the mass density ρ is

ρ =
R

16π
. (5.8)

We therefore can start with an initial positive mass density profile ρ(r) and can derive the

mass profile M(r) from (5.7) accordingly.

We choose ρ(r) to be positive from r = 0 to a finite radius and is zero after wards. This

will mean that

M(r) = 1
2

∫ r

0
r2ρ(r)dr (5.9)

will increase from M(0) = 0 to M(r) = M∞.

After we have got M from an assumed mass density ρ maintaining the energy condition

(R > 0) we form the initial data set by working out a(r) from M(r)

a(r) =
(

1 − 2M(r)
r

)−1
. (5.10)

Next we look for a numerical solution of the evolution equation (5.5) of a(r). (5.5) is a

forward type nonlinear heat equation which can be evolved numerically using Mathematica.

We need to be careful about two regions : near r = 0 and near r → ∞. Near r = 0

there is an effect due to the coordinate singularity and we need to handle this analytically.

Similarly the asymptotic region, where r is infinite, needs special handling in order to put it

on a computer.

5.3 ANALYTICAL STUDIES AT THE BOUNDARIES

• Analytical study near the origin (r = 0):

Here we present some analytical calculations near the origin (r = 0).

From the boundary conditions for a(r) we have a(0) = 1 and a′(0) = 0. So the Taylor

expansion for a(r) around r = 0 looks like,

a(r) = 1 + αr2 + βr3 + ... (5.11)
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First we note that a = 1 is a fixed point as the RHS of (5.5) is zero (−2/r2 + 2/r2 = 0).

Taking a(r) = 1 + αr2, we have, at r = 0

∂a
∂τ
=
−2
r2 (1 + αr2) + 2

r2 +
2αr

r
− 2αr

r(1 + αr2) −
3(2αr2)

2 + 2α = 0. (5.12)

So a(0) = 1 is maintained.

Next we will assume that a(r) is an even function of r. This follows if a(r) is analytic

about the origin (r = 0) and is spherically symmetric. We write a(r) up to the tenth

order in r

a(r) = 1 + αr2 + βr4 + γr6 + δr8 + µr10 (5.13)

and then calculate the RHS of (5.5) to same order.

Next we collect the coefficients of each order in r from the RHS of (5.5) and get the

new coefficients of each order in r from these old coefficients by solving the evolution

equation (5.5) numerically. We find that after evolving τ by an amount ε

αnew = αold + ε(−6α2 + 10β) (5.14)

βnew = βold + 4ε(3α3 − 8αβ + 7γ) (5.15)

γnew = γold + ε(−18α4 + 68α2β − 32β2 − 60αγ + 54δ) (5.16)

δnew = δold + 4ε[6α5 − 29α3β + 27α2γ − 26βγ + 4α(7β2 − 6δ) + 22µ] (5.17)
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µnew = µold−2ε[15α6−88α4β−28β3+84α3γ+39γ2+3α2(43β2−26δ)+76βδ+α(−164βγ+70µ)].

(5.18)

We keep updating the coefficients in the above iterative way to evolve the RF near the

origin.

• Analytical study near the (r → ∞) limit:

Here we do a very similar kind of analysis as in the earlier section. This time we

assume that a(r → ∞) = 1 and Taylor expand a(r) around a(∞) in powers of 1
r . Unlike

the analysis done in the earlier section, here we do not have analyticity about the point

(r = ∞) and we therefore keep both even and odd powers of 1
r up to order 1

r5 in the

expansion as below (These coefficients, α, β, γ, δ, µ, are not the same as those earlier

in the region around the origin.)

a(r) = 1 + α
r
+
β

r2 +
γ

r3 +
δ

r4 +
µ

r5 (5.19)

and then, as before, we calculate the RHS of (5.5) to same order.

Next we collect the coefficients of each order in 1
r from the RHS of (5.5) and get the

new coefficients of each order in 1
r from these old coefficients by solving the evolution

equation (5.5) numerically. We find that

αnew = αold (5.20)

βnew = βold (5.21)

γnew = γold (5.22)
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δnew = δold + ε(−
9α2

2
+ 4β) (5.23)

µnew = µold + ε(6α3 − 17αβ + 10γ). (5.24)

We keep updating the coefficients in the above iterative way to evolve the RF near

r → ∞ limit.

5.4 DISCUSSION

We first create the initial data set a(r) by starting with an initial positive mass density ρ(r) pro-

file and then obtaining the mass profile (fig. 5.1) by integrating this density over a spherical

shell. Next we numerically evolve a(r) and note that if we put a small lump of mass then the

flow makes this extra lump smoother (fig. 5.2). This smoothing feature of the flow reminds

us of the smoothing property of the heat equation and indeed, when written in geodesic co-

ordinate system RF looks like heat equation. We also verify that an initially increasing M(r)

remains increasing. This verifies the analytical result that the RF preserves positivity of the

scalar curvature. Our treatment is limited by the fact that we use the “a-form” of the metric.

This form is not possible if there are apparent horizons. However, in the absence of apparent

horizons, it appears that an initially non-singular flow remains non-singular. For long times

the program develops cusps at the origin which may be due to the problems of matching the

analytical treatment (at r = 0) with the numerical scheme. Next we notice that the maximum

value of the compactness decreases as the flow parameter τ increases (fig. 5.3). This result

was derived earlier in chapter (4) where we discussed that this property of compactness will

ascertain the existence of Ricci flow and ensures that it will not hit a singularity.
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Figure 5.1: The initial mass profile: M(r) increases from M(0) = 0 to M(r) = M∞
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Figure 5.2: a(r) vs r for different values of the flow parameter τ: Starting from an initial
distribution with a peak it gets smoother as τ increases.
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Figure 5.3: The maximum value of the compactness decreases as τ increases.
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