
Chapter 4

SPHERICALLY SYMMETRIC FLOWS

4.1 INTRODUCTION

The Ricci flow is a tensor evolution equation and therefore commutes with diffeomorphisms.

It follows that isometry groups are preserved under the Ricci flow. In this chapter we will

study the Ricci flow for a spherically symmetric initial data set. The idea behind the study

of the symmetric initial data set is to reduce the complexity of the flow. Imposition of a

large number of symmetries will simplify the situation to a trivial extent of having to solve

ordinary differential equations (ODE) instead of partial ones. Studies of RF of homogeneous

geometry are given in detail in [1] which reduces to solving ODE’s. Too little symmetry, on

the other hand, will leave many important features intractable. We wish to study the situation

with spherically symmetric initial data as this will provide us with an analytical as well as

numerical testing ground and it paves the way for the general treatment. This special case

is useful since one can develop a physical feel for the geometrical quantities of interest and

easily produce physical examples and counterexamples as a guide to intuition.

• The Ricci Flow in brief:

The Ricci flow (RF) has been introduced in detail in chapter(2). Here we again recall

the definition of RF for the present purpose.

Let (Σ, hab) be an asymptotically flat, three dimensional Riemannian manifold. (a, b

run over 1,2,3. We restrict our discussion to three dimensional manifolds.) Given an

initial metric hab, the Ricci flow describes an evolution equation, which evolves the
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metric according to its Ricci tensor. The evolution parameter is τ and the family of

metrics on Σ, hab(τ) satisfies the Ricci flow equation

∂hab

∂τ
= −2Rab. (4.1)

In the neighborhood of a point p ∈ Σ, we can introduce a Riemann normal co-ordinate

system and then the form of (4.1) becomes parabolic (∇2 is the Laplacian in local

co-ordinates)
∂hab

∂τ
= ∇2hab (4.2)

and looks like a heat equation for the metric coefficients. However, in a general coor-

dinate system, the PDE (4.1) is a degenerate parabolic equation, because of its diffeo-

morphism invariance.

• Some useful calculations in spherically symmetric initial data set:

While setting up the spherically symmetric initial set of data, we will work with two

forms of the initial metric, each of them having its usefulness and limitation. We will

call them by “a-form” and “b-form”. They are connected to each other by a coordinate

transformation and described below is the analysis of both.

– The a-form: In this form of the initial data set, the 3-metric is taken as

ds2 = a(r)dr2 + r2(dθ2 + sin2θdφ2). (4.3)

With this metric we calculate the Ricci tensors, the scalar curvature and the

Laplacian operator on any function f (r) given as follows: The components of

the Ricci tensors are (A prime means differentiation with respect to r),

Rrr =
a′

ra
(4.4)

Rθθ =
a′r
2a2 + 1 − 1

a
(4.5)

Rφφ = sin2θ(Rθθ). (4.6)
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The scalar curvature is

R =
2
r2 +

2a′

ra2 −
2

ar2 (4.7)

and the Laplacian of a function f (r) is

D2 f =
1
a

[

f ′′ − a′ f ′

2a

]

+
2 f ′

a
. (4.8)

This form is useful for the study of the evolution of Hawking mass M, defined

below in (4.18), by taking

a(r) =
(

1 − 2M(r)
r

)−1
(4.9)

and solving the RF PDEs. However this form of the metric is not useful if there

exists an apparent horizon because in that case a(r) blows up at the apparent

horizon (r = 2M) and hence this is not useful for the study of evolution of the

area of the apparent horizon under RF. To study the evolution of the area of the

apparent horizon under RF we use the “b-form” of the metric discussed next.

– The b-form: In this form of the initial data set, the 3-metric is taken as

ds2 = dr2 + b(r)(dθ2 + sin2θdφ2). (4.10)

With this metric we again calculate the Ricci tensors, the scalar curvature and the

Laplacian operator on any function f (r) given as follows: The components of the

Ricci tensors are,

Rrr =
b′2 − 2bb′′

2b2 (4.11)

Rθθ = 1 − b′′

2 (4.12)

Rφφ = sin2θ(Rθθ). (4.13)

The scalar curvature is

R =
b′2 − 4b(b′′ − 1)

2b2 (4.14)

and the Laplacian of a function f (r) is

D2 f = f ′′ +
b′ f ′

b
. (4.15)
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• Geometric Quantities of Interest: Let S be a closed surface in Σ, γab the pull back

or induced metric on S , R the scalar curvature of (S , γ) and k the trace of its extrinsic

curvature. We will be interested in the evolution of some geometric properties of

S under the Ricci flow. Our interest in these quantities stems from their physical

significance. These are :

the area of S ,

A(S ) =
∫

S
dA =

∫

S
d2x
√
γ (4.16)

the “compactness” of S ,

C(S ) =
∫

S
dA(2R − k2) (4.17)

and its Hawking mass

MH(S ) =
√

A(S )
64π3/2 C(S ). (4.18)

The area of apparent horizons is related to the entropy of Black Holes and the Hawking

Mass is related to the Energy. The Hawking mass MH of an asymptotic round two

sphere is equal to its ADM energy. More generally, the Hawking Mass of a surface S

is sometimes physically interpreted as the mass contained within the surface S . While

there are some problems with this interpretation (positivity is not always assured), the

Hawking mass is an useful notion [2, 3] of quasilocal mass. It vanishes in the limit

that S shrinks to a point and (as we mentioned before) becomes the ADM energy for

a round sphere at infinity. The “compactness” is a dimensionless quantity, which in

some sense measures how much mass is concentrated within the closed surface S .

(We use the word compact not in the mathematical sense, but in the physical sense of

the introduction as in “A neutron star is a compact object”). The quantity C(S ) has

been used to good effect by Geroch, Jang and Wald [2, 3] in their approach to positive

mass theorem and the Penrose inequality. In fact their work forms the base for recent

progress [4, 5] on the Riemann Penrose inequality. C(S ) tends to zero as S tends to

zero and also as S tends to an asymptotic round sphere.

We also note that by the Gauss Bonnet theorem, if S is of spherical topology
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2
∫

S
RdA = 2

∫

S
2kdA = 16π. (4.19)

So, in this case we can write the Hawking mass as

MH :=
√

A
64π3/2

[

16π −
∫

S
k2dA

]

. (4.20)

• Spherical Symmetry: In order to get a feel for the evolution of these quantities under

the Ricci flow, let us start with a general spherically symmetric situation. We can

choose co-ordinates adapted to the symmetry and write the metric in “a-form” as

ds2 = a(r)dr2 + r2(dθ2 + sin2 θdφ2) (4.21)

where a(r) is a positive function which tends to 1 as r → ∞ to ensure asymptotic

flatness. This form of the metric is convenient for some purposes but, as mentioned

before, is unsuitable for treating apparent horizons (since a(r) diverges). We will ini-

tially assume that there are no horizons and later separately treat horizons using a

different form (the “b-form”) of the metric.

Let us choose the surface S consistent with the symmetry, as r = c. The area of S ,

A(S ) is given by

A(S ) = 4πr2. (4.22)

We wish to ensure that the scalar curvature of the space is positive. In order to do this

conveniently, we introduce [6] a function M(r) by a(r) = (1 − 2M(r)/r)−1 or

M(r) = (1 − a(r)−1)r
2

. (4.23)

The scalar curvature of (4.21) is given by R = 4M′(r)/r2 and so the constraint of

positivity of scalar curvature simply states that M(r) is a non-decreasing function of r.

Assuming that the form (4.21) holds all the way to the origin, and assuming that the

scalar curvature R is finite, we have M(0) = 0, M′(0) = 0, M′′(0) ≥ 0. M(r) increases
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from zero and tends to an asymptotic value M = limr−>∞ M(r) which is the ADM mass

of the metric. A simple calculation gives the compactness as

C(r) = 32πM(r)
r

. (4.24)

Applying the general definition of Hawking mass to spherical symmetry, we find

MH(r) = M(r). (4.25)

This can be shown as follows: We consider the “a-form” (4.21) of the metric where

r = constant describes the surface S of a sphere of area 4πr2. Now consider the

Hawking mass functional

MH(S ) :=
√

A

64π 3
2

(

16π −
∫

S
k2dA

)

. (4.26)

Let na be a unit normal to the surface S . The normalization

habnanb = a−1(r)nrnr = 1 (4.27)

fixes

nr =
√

a (4.28)

and so

na = ( 1
√

a
, 0, 0). (4.29)

The trace of the extrinsic curvature is

k = Dana =
2

r
√

a
. (4.30)

So we have,
∫

k2dA =
16π
a(r) . (4.31)

For flat space a(r) = 1 and we have MH(S ) = 0 for round spheres in flat space as

expected. If we take the example of the Schwarzschild space

a =
(

1 − 2M
r

)−1
(4.32)
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Figure 4.1: MH(r) increases with r to attain its asymptotic ADM value. But C(r) increases
to a maximum value and then decreases to 0 at infinity.

and then for any r

MH(S ) =
√

4πr2

64π 3
2

(

16π − 16π
(

1 − 2M
r

))

= M. (4.33)

For a general a(r) we can always write it as
(

1 − 2M(r)
r

)−1
provided

(

1 − 2M(r)
r

)

, 0 or

r , 2M(r). This is possible only in the absence of apparent horizons. Once this is

done we find that

MH(S ) = M(r). (4.34)

In some sense [6], MH(r) measures the total mass contained within a sphere of radius

r. The functions ρ(r) = (1/16π)R(r), C(r) and MH(r) are plotted in arbitrary units in

figure (4.1) for a particular spherically symmetric distribution of matter.

Note that MH(r) increases with r to attain its asymptotic ADM value. But C(r) in-

creases to a maximum value and then decreases to 0 at infinity. For a star C(r) attains

its maximum near the surface of the star. For a star surrounded by infalling shells of

matter, the behaviour is more complex (Fig. (4.2)). From (4.24) in the Newtonian limit

C(r) is a constant times the dimensionless Newtonian potential, or the mass to radius

ratio. Hence the name compactness is justified.

47



0 20 40 60 80
Radial coordinate (r)

0

0.5

1

1.5

2

M
, C

 a
nd

 ρ

M
C
ρ

Figure 4.2: Two shells of matter.

4.2 AREA OF APPARENT HORIZON UNDER RICCI
FLOW

Let (Σ, h) be a three dimensional manifold and H be a minimal surface in Σ. H is a closed

two manifold embedded in Σ with the property that the trace of the extrinsic curvature van-

ishes. We want to see how the area of H varies under the RF. We start with the spherically

symmetric “b-form” of the metric

ds2 = dr2 + b(r)(dθ2 + sin2θdφ2). (4.35)

Let the location of the apparent horizon be at r = r0. Next we evaluate the condition that

the surface r = r0 be an apparent horizon condition. For this, let ni be the radial, unit normal

to the surface of the horizon. The trace of the extrinsic curvature, k, then is

k := Dana =
b′

b
(4.36)

(a prime indicates a differentiation with respect to r) where Da is the covariant derivative

operator with respect to the metric form (4.35) The condition that the surface r = r0 be an

apparent horizon is

k = 0. (4.37)
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We therefore have, since b , 0, the condition that the surface r = r0 be an apparent

horizon is

b′|r=r0 = 0. (4.38)

During the RF the location of the horizon will change and so r0 = r0(τ) where τ is the

parameter of the RF. Also the geometry of H will change. In principle both these effects

could lead to change of area. The area is given by

A(r) =
∫

S

√
γdθdφ = 4πb(r) (4.39)

where γ = b2sin2θ is the determinant of the induced metric γi j on S . The rate of change of

area, therefore, is
dA
dτ
= 4πdb

dτ
= 4π

[

∂b
∂r

∣

∣

∣

∣

∣

r=r0

dr0

dτ
+
∂b
∂τ

∣

∣

∣

∣

∣

r=r0

]

. (4.40)

The first term vanishes because of the apparent horizon condition (4.38). The second term is

obtained from the RF
∂hθθ
∂τ
= −2Rθθ. (4.41)

Note here that we do not add a diffeomorphism term in the RF as even if we add a diffeo-

morphism, it will only displace the horizon H but will not change its area. We also do not

add a term responsible for an overall scaling of the metric as this will modify the asymptotic

structure of the manifold while we want a fixed metric at spatial infinity. The scalar curvature

is

R =
b′2 − 4b(b′′ − 1)

2b2 . (4.42)

Since b′ = 0 for an apparent horizon the scalar curvature becomes

R =
2(1 − b′′)

b
. (4.43)

Assuming that R > 0 (weak energy condition), since b > 0, we have b′′ < 1. Then

∂b
∂τ
=
∂hθθ
∂τ
= −2Rθθ = −2

[

1 − b′′

2

]

= −1 + (b′′ − 1). (4.44)

We then have, since b′′ < 1,
∂b
∂τ

< −1. (4.45)
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So the area A = 4πb satisfies
∂A
∂τ

< −4π. (4.46)

This implies that the area of the horizon is linearly decreasing with τ. Since the area was

finite to begin with, we find that b evaluated at the horizon goes to zero in a finite τ. Next

we see that as b→ 0 we approach a singularity. To show this we will suppose that R is finite

and will arrive at a contradiction.

On the surface ofH the scalar curvature

R =
2(1 − b′′)

b
(4.47)

is finite only if b′′ = 1. We Taylor expand in powers of r − r0 about r0, the location of the

apparent horizon

b(r) = b(r0) + b′(r0)(r − r0) + 1
2

b′′(r0)(r − r0)2 + .... (4.48)

As b(r0) → 0 and b′′(r0) = 1, since b′(r0) = 0 due to the apparent horizon condition (4.38),

we have

b(r) = 1
2

(r − r0)2. (4.49)

So the metric is

ds2 = dr2 +
1
2(r − r0)2(dθ2 + sin2θdφ2). (4.50)

A shift r coordinate r → (r − r0) gives the form

ds2 = dr2 +
1
2

r2(dθ2 + sin2θdφ2). (4.51)

So the volume of a ball of radius r is
∫

dθdφdr

√
r4sin2θ

4
=

1
4

(4πr3

3

)

. (4.52)

We then find from the expression for the volume of a ball of radius r (as r → 0) centered at

point p that

volume B(p, r) =
(4π

3

)(

r3 − 1
30

R(p)r5
)

(4.53)

and so the scalar curvature, R(p) ∼ r−2, blows up which is a contradiction to the assumption

of finite R that we started with. So an apparent horizon results in a singularity.
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4.3 AREA UNDER RICCI FLOW

We now consider a general round sphere S ⊂ Σ given by r = constant consistent with the

spherically symmetric “b-form” of the metric

ds2 = dr2 + b(r)(dθ2 + sin2θdφ2). (4.54)

The trace of the extrinsic curvature k of S is

k := Dana =
b′

b
(4.55)

where na is the radial, unit normal to the surface S (a prime indicates a differentiation

with respect to r).

The area A of S is given as

A(r) =
∫

S

√
γdθdφ = 4πb(r) (4.56)

where γ = b2sin2θ is the determinant of the induced metric γi j on S .

We consider a pure Ricci flow without a diffeomorphism term, we view S as a fixed

surface of Σ and so the location of the surface S does not change and hence dr
dτ = 0.

We then have
dA
dτ
= 4π∂b

∂τ
= −4π(2 − b′′) (4.57)

which is obtained from the Ricci flow

∂hθθ
∂τ
= −2Rθθ. (4.58)

The scalar curvature R for the “b-form” of the metric considered above is

R =
b′2 − 4b(b′′ − 1)

2b2 . (4.59)

With this we see that
∫

S

√
γdθdφR =

2πb′2

b
− 8π(b′′ − 1) (4.60)
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and also that the compactness,

C = 16π −
∫

S

√
γdθdφk2 = 16π − 4πb′2

b
. (4.61)

From the above calculations we see that, in spherical symmetry,

dA
dτ
= −1

2

∫

S

√
γdθdφR − 1

4C (4.62)

and so we arrive at the inequality (since R ≥ 0)

dA
dτ
≤ −1

4C. (4.63)

In the case of the Schwarzschild space, R = 0 and so the first integral in (4.62) vanishes

and we have

dA
dτ
= −1

4C(S ). (4.64)

Thus our inequality (4.63) is saturated by the Schwarzschild space.

4.4 COMPACTNESS UNDER RICCI FLOW

The compactness C is

C(τ) =
∫

S

√
γd2x(2R − k2). (4.65)

We consider, again, a fixed, closed surface S ⊂ Σ and take the “a-form” of the metric

ds2 = a(r)dr2 + r2(dθ2 + sin2θdφ2). (4.66)

We calculate the trace of the extrinsic curvature k of S

k := Dana =
2

r
√

a
(4.67)

and we have
∫

S

√
γdθdφk2 = 4π8π

a
(4.68)

where na is the radial, unit normal to the surface S (a prime indicates a differentiation with

respect to r) and γi j is the induced metric on S . A calculation shows that under Ricci flow
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dC
dτ
= 16π(−2M′(r)/r2 + 2M′′(r)/r) (4.69)

which for the Schwarzschild exterior space (M = constant and (r > 2M)) gives

dC
dτ
= 0. (4.70)

• A maximum principle for the compactness:

We notice an important fact about the rate of change of the maximum value of com-

pactness. We consider the the metric in the “a-form” as in the equation (4.3) and we

take the RF equation with a diffeomorphism term as

dhab

dτ
= −2Rab + 2DaDb f . (4.71)

Then the evolution of a(r) under this flow is

∂a(r)
∂τ
=

a′′(r)
a(r)

− 3(a′(r))2

2a(r)2 −
2(a(r) − 1) + ra′(r)(1 − a(r))/a(r)

r2 (4.72)

where a prime denotes differentiation with respect to r.

If we take a(r) = ((1 − 2M(r))/r)−1 and assume that there will be no apparent horizon

formation i.e., r > 2M(r) always, then a(r) > 1 and at the maximum value of a(r), we

have a′(r)|max = 0 and a′′(r)|max < 0. So from equation (4.72) we see that the maximum

value of a(r) decreases as the flow parameter τ increases i.e.,

∂a(r)max

∂τ
≤ a′′(r)

a(r)
< 0. (4.73)

Now as M(r) = (r/2)(1−1/a(r)) we have, from equation (4.24), C(r) = 16π(1−1/a(r)).

Clearly the maximum value of a(r) will imply the maximum value of C(r) and as the

maximum value of a(r) decreases as τ increases, the maximum value of C(r) also

decreases and we have the inequality

dC(r)max

dτ
≤ 0. (4.74)
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This ensures the existence of Ricci flow when we do not start with an apparent horizon.

This can be understood by the following argument: We know that if we start with an

apparent horizon then a Ricci flow will make it approach the singularity in a finite

value of τ. Since apparent horizons shrink under Ricci flow, they cannot form if they

were initially absent. Cmax then decreases with the flow and finally approaches zero.

The only space with Cmax = 0 is flat space as can be seen by invoking the positive mass

theorem.

4.5 HAWKING MASS UNDER RICCI FLOW

The Hawking mass is given by

MH =

√
A

64π3/2 C(S ). (4.75)

So we have
d
dτ

MH =

( 1
64π3/2

)( 1
2
√

A

dA
dτ

C +
√

A
dC
dτ

)

. (4.76)

As we have seen already that for the Schwarzschild metric dC
dτ = 0 and dA

dτ = −
1
4C (equa-

tions (4.70) and (4.64) respectively), we have

d
dτ

MH = −
( 1
512
√

Aπ3/2

)

C2 ≤ 0. (4.77)

In general, Hawking mass is not monotonic under Ricci flow. By choosing the mass

distribution, one can get either sign for d
dτMH under Ricci flow.
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