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PREFACE

This thesis is a study of geometric flows and the thermodynamic features of black holes.

Geometric flows are differential equations which arise in a geometric context. Such equations

have been used in the past to understand aspects of general relativity. We start with a general

introduction to black holes and summarize some important results, which are theorems in

differential geometry. We see that, in the physics of black holes, there is a delicate interplay

between thermodynamics and differential geometry. Differential geometric equations and

inequalities from black hole physics show strong thermodynamic analogies. An example

of this is the area theorem which represents the second law of thermodynamics in geometric

form. Similarly, the ADM energy in general relativity is expressed as an integral of geometric

quantities over a sphere at infinity.

Our interest here is in understanding the physics from a geometric point of view. While

the physics acts as a guide for keeping the study firmly in touch with reality, differential

geometry provides a mathematical language for expressing these physically motivated intu-

itive ideas. A good part of this thesis is devoted to applications of the Ricci flow in general

relativity. The Ricci flow is a heat equation for metrics and we apply this flow to Riemannian

metrics on three dimensional manifolds. These metrics are viewed as time symmetric initial

data for Einstein’s general theory of relativity. Specifically we wish to pursue analogies be-

tween the Ricci flow which evolves metrics and the approach of a thermodynamic system to

equilibrium.

In the second chapter we give an introduction to the the Ricci flow. The Ricci flow first

appeared in physics in Friedan’s work on the renormalization of σ models [Friedan 1980

Phys. Rev. Lett. 45, 1057]. In an independent mathematical development it was used

by Hamilton in order to study the topology of three-manifolds by geometric methods [R. S.

Hamilton 1982 Three-manifolds with positive Ricci curvature J. Differential Geom. 17]. The
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problem of classifying three-manifolds has been at the forefront of modern topology since

Riemann gave a classification theorem for two-dimensional manifolds via uniformization

theorem. The work of W.Thurston in the late 1970’s led to the hope of a similar classi-

fication of three-manifolds. The search for homogeneous metrics led Hamilton to use the

Ricci flow as a way of making spaces homogeneous. With important recent contributions by

Grigory Perelman, the problem has been almost completely solved and Thurston’s program

has been implemented to a large extent. Perelman gave a gradient formulation of Ricci flow

[Grisha Perelman 2002 The entropy formula for the Ricci flow and its geometric applications

Preprint math.DG/0211159] and this led to a catalogue of the three dimensional spaces with

the exception of some still elusive hyperbolic spaces. In the process Pereleman also solved

the century old Poincare conjecture. This thesis can be described as an attempt to apply these

mathematical techniques to general relativity.

In the third chapter we describe the thermodynamic motivation for our work and give

some simple models from physics where geometric differential equations lead a system to its

maximum entropy final state. By analogy we try to attack the Riemannian Penrose inequality

from this point of view. The Penrose inequality is a statement about initial data sets in general

relativity (GR). It states that the ADM mass of an initial data set in GR is greater than a

fixed constant (1/4
√
π) times the square root of the area of any apparent horizon it contains.

This inequality in its general form remains unproved. In the special case of time symmetric

initial data, Penrose’s inequality reduces to a statement about Riemannian geometry and

has been proved by mathematicians (Huisken-Ilmanen and Bray) using geometric flows.

Our work tries to develop a new approach to the Riemannian Penrose inequality using the

Ricci flow. Our motivating hope is that this new approach will have a clearer physical and

thermodynamic interpretation and possibly lead to new ways of thinking about the general

Penrose inequality. As we proceed, we see that this hope is not realized in its initial form,

but along the way we derive a few geometric results which can be physically interpreted in

terms of energy and entropy.

In the fourth chapter, we start with the simple situation of spherically symmetric asymp-
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totically flat three manifolds. In this case the equations are quite tractable and the physical

interpretation quite transparent. We write down the Ricci flow adapted to spherical symmetry

and develop our intuition for studying the general case. We introduce the geometric quan-

tities of interest, the area of a closed two surface, its “compactness” and its Hawking mass.

We study the behaviour of area, compactness and Hawking mass under Ricci flow. We note

that if a three manifold contains an apparent horizon (minimal surface), the flow ends in a

singularity at a finite time. We also note that there is a maximum principle for compactness.

If the maximum value of the compactness is less than 16π, it always decreases under a Ricci

flow. This leads to the result that the flow exists for all time. We thus have a clear under-

standing of the existence of the Ricci flow in the spherically symmetric asymptotically flat

case. Chapter five treats the same physical situation but using numerical methods to evolve

the Ricci flow. We are able to evolve the flow numerically and recover our analytical results

from an independent method.

In Chapter six, we try to generalize some of our results to a general (not spherically

symmetric) asymptotically flat three manifold. In this we are partially successful. We derive

an inequality relating the evolution of area of a surface and its Hawking mass. We study the

evolution of compactness of a surface and its Hawking mass. These quantities have a clear

physical significance in terms of entropy and energy. While these results are interesting, they

do not lead to a new proof of the Riemannian Penrose inequality.

The problem seems to be that while the entropy introduced by Perelman in his gradient

formulation of the Ricci flow has some features in common with black hole entropy, it is not

quite the same. In Chapter seven, we first show that it is not possible to identify Perelman

entropy with black hole entropy. The proof involves showing that the Schwarzschild metric

(which maximizes black hole entropy for a fixed energy) is not a fixed point of the Perelman

flow. We then propose a new flow, which is very similar to the Perelman flow, differing only

in that the diffusion constant is space dependent. The new flow does have the virtue of having

the Schwarzschild space as a fixed point. Chapter eight is a concluding discussion.

Appendix A describes earlier approaches to the positive mass theorem and the Rieman-
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nian Penrose inequality using the inverse mean curvature flow. This can be reinterpreted as

a geometric flow on the space of metrics: changing the metric by a diffeomorphism is equiv-

alent to flowing a surface in a fixed manifold. Appendices B, C and D are mathematical

appendices which contain some of the calculations.
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