
Chapter 4

AGN �effervescent� heating, convection
and thermal conduction in galaxy groups
and clusters

1This chapter is based on two papers: Roychowdhury, S. et al. , 2004, ApJ, 615, 681 and Roychowdhury, S. et al. , 2005,
submitted to ApJ.

87



Summary and the main results of chapter 4

Recent X-ray observations of clusters of galaxies have shown that the entropy of the intracluster
medium (ICM), even at radii as large as half the virial radius, is higher than that expected from grav-
itational processes alone. This is thought to be the result of non-gravitational processes in�uencing
the physical state of the ICM. In this chapter, we investigate whether heating by buoyant bubbles from
a central AGN can explain the distribution of excess entropy as a function of radius. The AGN is
assumed to inject buoyant bubbles into the ICM, which heat the ambient medium by doing pdV work
as they rise and expand. Several authors have suggested that this �effervescent heating� mechanism
could allow the central regions of clusters to avoid the �cooling catastrophe�. Here we study the
effect of effervescent heating at large radii. In this model, we also include convection to arrive at
entropy pro�les of the intracluster gas which did not have any unphysical negative gradient in the
central regions which would make the gas convectively unstable. This was prompted by the fact that
observations of cluster gas never show such negative entropy gradients. In this chapter, we also in-
vestigate in detail the effects of thermal conduction when the cluster gas is heated by a central AGN
by �effervescent heating� mechanism. Thermal conduction is known to be an important physical pro-
cess for gas in galaxy clusters. In this context, it turns out to be important since AGN heating gives
rise to large negative temperature gradients which can be removed efficiently by thermal conduction.
The main results of these two models are

• The predictions of this model which involve AGN heating and covection is seen to be mainly
sensitive to the total energy injected into the cluster.

• We show that such a heating mechanism is able to solve the entropy problem, provided the
total energy injected by AGN is roughly proportional to the cluster mass.

• Convection is seen to remove unphysical, negative entropy gradients in the central regions
of clusters. An isentropic core is seen to develop in the central regions of the cluster. The
temperature pro�les still are seen to have a negative gradient in the central regions.

• The cluster pro�les of density, temperature and entropy resulting from the evolution of the
ICM with AGN heating, thermal conduction and radiative cooling are seen to be better con-
sistent with observations.

• Unlike previously proposed preheating models, our model with thermal conduction predicts
that isentropic cores are not an inevitable consequence of preheating. The model also repro-
duces the observational trend for the density pro�les to �atten in lower mass systems.

• We deduce the energy required to explain the entropy observations as a function of mass of
groups and clusters for this model with AGN heating and thermal conduction. We show that
the entropy measurements, in conjunction with our model, place constraints on the cluster�
black hole mass relation.
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4.1 Introduction

Recent X-ray observations of both rich and poor clusters of galaxies have shown that there are prob-
lems in understanding the temperature, gas density or, equivalently, the entropy pro�les at large radii
(∼ 0.5rvir, where rvir is the virial radius) (Ponman et al. 2003). The observed entropy at 0.1r200 and
at r500 (where r200 and r500 correspond to radii within which the average overdensity is 200 and 500,
respectively) is higher than that estimated from the purely gravitational interaction of gas with dark
matter (Ponman et al. 2003 and references therein; see also Roychowdhury & Nath 2003). Earlier
X-ray observations by Lloyd-Davies et al. (2000) had shown that entropy at 0.1r200 reached a ��oor�
for poor clusters and groups. However, recent results of Ponman et al. (2003) have shown that the
observed entropy is higher than the gravitational expectations for all clusters with emission-weighted
temperatures 〈T 〉 in the range 1 � 10 keV. The entropy at the much larger radius of r500 is also found
to be higher than expected from purely gravitational processes.

Many theoretical models have been proposed to explain this phenomenon, including models that
involve heat input from supernovae (Valageas & Silk 1999; Wu, Nulsen & Fabian 2000), gas cooling
(Bryan 2000; Voit & Bryan 2001; Muanwong et al. 2002; Wu & Xue 2002; Davé, Katz & Weinberg
2002, Tornatore et al. 2003), accretion shocks (Tozzi & Norman 2001; Babul et al. 2002) and quasar
out�ows (Nath & Roychowdhury 2002). More information on various heating models can be found
in a review by Gardini & Ricker (2004).

Observations have also revealed the presence of X-ray de�cient bubbles in the inner regions of
many cooling �ow clusters, e.g., the Hydra A cluster (McNamara et al. 2000), Abell 2052 (Blanton
et al. 2001, 2003), Abell 2597 (McNamara et al. 2001), Abell 4059 (Heinz et al. 2002), Abell 2199
(Johnstone et al. 2002), and others. These bubbles are characterized by low X-ray emissivity, imply-
ing low density compared to the ambient medium. In most of these cases, the cavities are clearly
coincident with the radio lobes of the AGN in the cluster center. However, some clusters also exhibit
cavities with weak or undetectable radio emission (known as �ghost bubbles� or �ghost cavities�)
located far away from the cluster centers, like Perseus (Fabian et al. 2000), MKW3s (Mazzotta et
al. 2002), and Abell 2597 (McNamara et al. 2001). These bubbles are also believed to be �lled with
relativistic plasma or buoyant gas deposited by jets from the central AGN, and are thought to rise
through the ICM subsonically due to buoyancy. As they rise, radiative and adiabatic losses reduce the
energy of the relativistic plasma inside the bubbles, resulting in a very low radio �ux. The discov-
ery of these bubbles and their detailed observational study have stimulated theoretical studies of the
impact of these bubbles on the intracluster medium.

The evolution of these bubbles has been studied extensively in connection with the cooling �ow
catastrophe in the centers of clusters. It has been found recently that simple cooling �ow model of
clusters, which predict that the temperature of gas in the central regions of clusters should be very
low (much less than 1 keV), are mostly in con�ict with the observed temperature pro�les (Peterson
et al. 2001; Allen et al. 2001 and many others). Several authors have addressed whether the absence
of very cold gas (below ∼ 1 keV) can be explained by AGN energy input via out�ows and bubbles
(see, e.g., Tabor & Binney 1993, Binney & Tabor 1995, Ruszkowski & Begelman 2002, Chura-
zov et al. 2002, Kaiser & Binney 2003, and Brüggen 2003a for semi-analytic models; and Quilis et
al. 2001, Reynolds et al. 2002, Brüggen 2003b, and Ruszkowski, Brüggen & Begelman 2004, Basson
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& Alexander 2003, Omma et al. 2003a, Omma & Binney 2003b for numerical simulations).
In a recent study Croston et al. (2004) presented the luminosity-temperature relation for groups

and separated the sample into �radio loud� or �quiet� objects. They showed that �radio loud� groups
deviated more from the self-similar scaling than the radio quiet ones. 1 This argument adds more
credibility to the idea that AGNs are responsible for the entropy ��oor� and deviations from self-
similar scalings.

In this chapter, we explore the possibility of heating the intracluster gas at large radii via the
�effervescent heating� mechanism (Begelman 2001, Ruszkowski & Begelman 2002). Since the ex-
cess entropy requirements at different radii are different, the questions we set out to answer are the
following:

1. Is it possible to satisfy simultaneously the entropy observations at two �ducial radii (0.1r200 and
at r500) with a single central heating source for all clusters? We explore the parameter space in
time-averaged jet luminosity 〈L〉 and the time for which this activity continues, theat.

2. How does the entropy pro�le of the cluster gas evolve with time when it is being heated and
cooled simultaneously?

Here we explore two models of AGN heating in clusters. In the �rst model, we study the evolution
of the density, temperature and entropy pro�les of the ICM under the effect of �effervescent heating�
from buoyant bubbles in the presence of radiative cooling and convection. In addition, we also explore
another model where the effects of AGN heating in clusters is examined in the presence of thermal
conduction and cooling.

The role of thermal conduction in the intracluster medium has generated a lot of interest in recent
times. Its role, however, has mostly been discussed or studied in detail in reference to cooling �ows
in the central regions of clusters. Many authors have investigated whether thermal conduction alone
can act as a heating source in the centre of clusters to stop the gas from radiatively cooling to very low
temperatures (e.g., Zakamska & Narayan, 2003; Voigt et al. 2002; Loeb 2002). It has also been studied
along with other heating mechanisms like �effervescent heating� again in the context of cooling �ows
in the centers of clusters (Ruszkowski & Begelman, 2002). In this chapter, we study the effect of
thermal conduction along with heating via AGN in changing the entropy and temperature pro�les of
the ICM.

The chapter is organized as follows. In § 2 we describe both our models: �rstly, �effervescent
heating� with convection, including initial conditions, details of the effervescent heating mechanism,
our prescriptions for cooling and convection (models (A1) and (A2)), and the simulation method; next
�effervescent heating� with thermal conduction and all other relevant details of the model. The results
of all three models are presented in § 3. The discussions of the three models (A1), (A2) and (B) are
presented in §§ 4 and 5, respectively. Some caveats of these models are discussed in § 6. Finally, our
conclusions are summarized in § 7.

1The extrapolation of the cluster L-T relation onto Figure 2 of Croston et al. (2004) would fall above all the points.
Slightly smaller deviation in the radio quiet AGN could be due to the fact that they are not active now but were active in the
past (see Donahue (2005))
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4.2 Models of the intracluster medium

In this section, we �rst describe our model of the ICM with AGN heating, cooling and convection
(model (A)). This model of the intracluster medium has two variations: model (A1) where the cluster
has a pure NFW dark matter distribution and where the �effervescent� heating mechanism has been
considered without considering any loss of AGN energy due to bubble creation and model (A2) where
the cluster has a smoothened NFW pro�le with a core in the centre and where the energy loss due to
bubble creation has also been taken into account while heating the ICM.

Our model of the cluster gas assumes that the ICM remains in hydrostatic equilibrium as it is
heated by buoyant radio bubbles, originating from the central AGN, via the �effervescent heating�
mechanism.

4.2.1 Model (A1): Pure NFW dark matter distribution and no energy loss due to
bubble creation

We begin the description of model (A1) with a description of the background dark matter potential of
the cluster.

4.2.1.1 Dark matter density pro�le

We assume that the dark matter density pro�le of the cluster, ρdm(r), is described by a self-similar
form as suggested by many high resolution N-body simulations. The pro�le is expressed in terms of
a characteristic radius, rs, by

ρdm(r) =
ρs

x(1 + x)2
(4.1)

(see, e.g., Komatsu & Seljak 2002), where ρs is a characteristic density and x = r/rs. We de�ne a
dimensionless �concentration parameter� c ≡ rvir/rs, where the virial radius rvir is calculated from the
spherical collapse model (Peebles 1980) assuming overdensity ∆c(z = 0) = 100 (Komatsu & Seljak
2002). The characteristic density ρs is then given by

ρs = c3 Mvir

4πr3
vir

[
ln(1 + c) − c

(1 + c)
]−1
, (4.2)

where Mvir is the cluster virial mass. The concentration parameter c can be approximated by

c = 9
( Mvir

1.5 × 1013h−1M�

)−0.13
, (4.3)

according to numerical simulations by Bullock et al. (2001) (we use h = 0.71).
The above set of equations speci�es the dark matter density pro�le of a particular cluster as a

function of its virial mass. Next, we turn our attention to the density pro�le of the gas in hydrostatic
equilibrium with this dark matter distribution.

To compare our results with observations, we present our results in terms of the radii r200 and r500,
where the overdensities are 200 and 500, respectively. Both radii functions of the cluster mass. The
ratio r500/r200 ≈ 0.65 − 0.67 for the range of masses we have considered.
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4.2.1.2 Initial con�guration of intracluster gas

We use the �universal temperature pro�le� (Loken et al. 2002) as the initial temperature pro�le of gas
in hydrostatic equilibrium to determine the initial density pro�le. This pro�le is different from the
commonly used self-similar pro�le, which assumes that the intracluster gas density distribution scales
as the dark matter density pro�le with a constant of proportionality fb = Ωb/Ωm (i.e., ρgas = fbρdm). We
use the �universal temperature pro�le� instead of the self-similar pro�le because the former is claimed
to be the result of gravitational processes alone. Moreover, it does not have the unrealistic turnover of
the temperature pro�le in the inner regions of the cluster, which one �nds in the self-similar pro�le
(see chapter (2) and Roychowdhury & Nath 2003 for details).

The initial temperature pro�le (normalized by the emission-weighted temperature 〈T 〉), in the
radial range 0.04rvir ≤ r ≤ rvir, is given by

To(r)
〈T 〉 =

b
(1 + r/a)δ (4.4)

where b = 1.33, a = rvir/1.5, and δ = 1.6. To determine the emission-weighted temperature from the
cluster mass, we use a relation that arises from adiabatic evolution of the gas in the cluster. Afshordi
& Cen (2002) have shown that the observations by Finoguenov et al. (2001) of the M500�〈T 〉 relation
in clusters can be understood from gravitational processes alone. We therefore use this empirical
relation (M500�〈T 〉) derived by Finoguenov et al. (2001):

M500 = 2.64 × 1013( kb〈T 〉
1 keV

)1.78
M�, (4.5)

where kb is the Boltzmann constant and M500 has been calculated self-consistently by taking the total
mass within the radius where the overdensity is δ ≥ 500.

The equation of hydrostatic equilibrium for gas in a cluster with temperature T (r) and density
ρgas0(r) is

1
ρgas0(r)

d
dr (Pgas0(r)) = −GM(≤ r)

r2 , (4.6)

where Pgas0 = (ρgas0/µmp)kbT0, M(≤ r) is the total mass inside radius r, and µ and mp denote the mean
molecular weight (µ = 0.59) and the proton mass, respectively. The boundary condition imposed on
the solution is that the gas-fraction, fgas ≡ Mgas/Mdm = 0.13333, within r200 is universal, as recently
found by Ettori (2003) for a sample of low- and high-redshift clusters.

4.2.1.3 Effervescent heating and radiative cooling

In the �effervescent heating� model, the central AGN is assumed to in�ate buoyant bubbles of rela-
tivistic plasma in the ICM (Begelman 2001, Ruszkowski & Begelman 2002). The timescale for the
bubbles to cross the cluster (of order the free-fall time) is shorter than the cooling timescale. Since
the number �ux of bubbles is large, the �ux of bubble energy through the ICM approaches a steady
state. This implies that details of the energy injection process such as the number �ux of bubbles, the
bubble radius or size, �lling factor and rate of rise do not affect the average heating rate.

It is assumed that the relativistic gas does not mix with the ICM very efficiently. Under such
conditions the bubbles can expand and do pdV work on the ambient medium as they rise in the
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cluster pressure gradient. We assume that this work converts internal energy of the bubbles to thermal
energy of the intracluster gas within a pressure scale height of where it is generated. Then, in a steady
state (and assuming spherical symmetry), the energy �ux carried by the bubbles varies as

Fb ∝ Pb(r)(γb−1)/γb

r2 (4.7)

where Pb(r) is the partial pressure of buoyant gas inside the bubbles at radius r and γb is the adiabatic
index of buoyant gas, which we have taken to be 4/3. This formula includes the effects of adiabatic
bubble in�ation. Assuming that the partial pressure inside these bubbles scales as the thermal pressure
of the ICM, the volume heating functionH can be expressed as

H ∼ −r2h(r)∇ · (�rFb)

= −h(r)
(Pgas

P0

)(γb−1)/γb 1
r

d ln Pgas

d ln r , (4.8)

where P0 is some reference pressure and h(r) is the normalization function

h(r) =
〈L〉

4πr2 (1 − exp(−r/r0)) q−1. (4.9)

In equation (4.9), 〈L〉 is the time-averaged energy injection rate and r0 is the inner heating cut-off

radius which is determined by the size of the central heating source. In our calculations r0 is taken
to be 0.01rvir, which is ∼ 15 � 20 kpc depending on the cluster mass Mcl(≡ Mvir). The normalization
factor q is de�ned by

q =

∫ rmax

rmin

( P
P0

)(γb−1)/γb 1
r

d ln P
d ln r (1 − exp(−r/r0)) dr, (4.10)

where rmax = r200.
To calculate the volume cooling rate, we use a �t to the normalized cooling function ΛN(T ) for

a metallicity of Z/Z� = 0.3, as calculated by Sutherland & Dopita (1993). This cooling function
incorporates the effects of free-free emission and line cooling. The �t is borrowed from Nath (2003).
Thus, the volume cooling rate is Γ = n2

e ΛN(T ), where ne = 0.875(ρ/mp) is the electron density.

4.2.1.4 Convection

The convective �ux Fconv is given by the mixing length theory,

Fconv =

{
2−5/2c−1/2

p Tg1/2ρgasl2m(−∇ �s)3/2 if ∇ �s < 0,
0 otherwise,

(4.11)

where g is the gravitational acceleration, lm is the mixing length, �s = (γ − 1)−1kb/(µmp) ln(Pgas/ρ
γ
gas) is

the gas entropy per unit mass, and cp = γkb/[(γ − 1)µmp] is the speci�c heat per unit mass at constant
pressure. We use lm = min[0.3Pgas/(ρgasg), r], where r is the distance from the cluster center.

Next we describe our model of AGN heating and convection in clusters with a smoothened NFW
dark matter distribution. In this model we also include the energy loss due to bubble creation while
we incorporate AGN heating in clusters (model (A2)).
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4.2.2 Model (A2): smoothened NFW pro�le and energy loss due to bubble creation in
�effervescent� mechanism

We brie�y describe the default or the initial state of the intracluster gas for this model. Next, we
describe the changes in the �effervescent� heating mechanism we have incorporated in model (A2)
(as compared to model (A1)) to take into account the loss in energy due to bubble creation.

4.2.2.1 The default state of the ICM

Recent simulations of Loken et al. (2002) show that the ICM assumes a �universal temperature pro-
�le� due to gravitational interactions with the dark matter potential. The temperature pro�le (nor-
malized by the emission-weighted temperature 〈T 〉), in the radial range 0.04rvir ≤ r ≤ rvir, is given
by

To(r)
〈T 〉 =

b
(1 + r/a)δ (4.12)

where b = 1.33, a = rvir/1.5, and δ = 1.6.
Here, we have assumed that the default or initial state of the intracluster gas is given by the

�universal temperature pro�le�.
To determine the emission-weighted temperature from the cluster mass, we use a relation that

arises from adiabatic evolution of the gas in the cluster. Afshordi & Cen (2002) have shown that
the observations by Finoguenov et al. (2001) of the M500�〈T 〉 relation in clusters can be understood
from gravitational processes alone. We therefore use this empirical relation (M500�〈T 〉) derived by
Finoguenov et al. (2000).

M500 = 2.64 × 1013( kb〈T 〉
1 keV

)1.78
M�, (4.13)

where kb is the Boltzmann constant and M500 has been calculated self-consistently by taking the total
mass within the radius where the overdensity is δ ≥ 500.

Next, assuming that the ICM is in hydrostatic equilibrium with the background dark matter po-
tential (which is given by the universal self-similar Navarro, Frenk & White (NFW) pro�le; Komatsu
& Seljak 2002), we evaluate its density pro�le (see chapter (2) for details). The boundary condition
imposed here is fgas ≡ Mgas/Mdm = 0.13333, within r200 (where r200 corresponds to radii within which
the average overdensity is 200) is universal, as recently found by Ettori (2003) for a sample of low-
and high-redshift clusters.

The background dark matter density pro�le is given by the self-similar Navarro, Frenk & White
(NFW) pro�le (Komatsu & Seljak 2001) with a softened core (Zakamska & Narayan, 2003);

ρdm =
ρs

(r + rc)(r + rs)2 (4.14)

Here, rs is the standard characteristic radius of the NFW pro�le, rc is a core radius inside which the
density pro�le is a constant and ρs is the standard characteristic density of the usual NFW pro�le.
We, de�ne a dimensionless parameter, x = r/rs, following Komatsu & Seljak, 2001, and xc = r/rc.
Thus, we can arrive at the mass pro�le which will also be universal,

Mdm(≤ r) = 4πρsr3
s m(x) (4.15)
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where m(x) is a non-dimensional mass pro�le given by

m(x) =

∫ x

0

x2dx
(x + xc/x)(1 + x)2

=
x2

c

(1 − xc)2 ln(1 + x/xc)

+
(1 − 2xc)
(1 − xc)2 ln(1 + x) − 1

1 − xc

x
1 + x (4.16)

It should be noted here that if rc = 0, the usual NFW density and mass distribution can be recovered
as in Komatsu & Seljak, 2001.

The value of rc is quite uncertain but we follow Zakamska & Narayan, 2003 and take it to be
rc = rs/20. This is thought to be reasonable since cluster lensing studies suggest that the core radius
can be ∼ tens of kilo-parsecs (Tyson et al. , 1998; Shapiro & Iliev, 2000).

Here we also keep rc = 0 to recover the standard NFW pro�le to investigate the effect of this
smoothening of the dark matter pro�le on our results.

Next, we describe the non-gravitational heating of the intracluster medium from a central AGN
via the �effervescent heating� mechanism (Begelman, 2000).

4.2.2.2 Effervescent heating and cooling

The effervescent heating mechanism is a gentle heating mechanism from a central AGN in which the
cluster gas at all radii is heated by buoyant bubbles of relativistic plasma produced from a central
source (Begelman 2000, Ruszkowski & Begelman, 2001) (as described in §§§ (4.2.1.3). The average
volume heating rate is only a function of the ICM pressure gradient and averages over details such as
bubble size, �lling factor and so on. It is given by

H = −h(r)
(Pgas

P0

)(γb−1)/γb 1
r

d ln Pgas

d ln r , (4.17)

where Pgas is the ICM pressure, γb is the adiabatic index of buoyant gas in the bubbles, P0 is some
reference pressure and h(r) is the normalization function

h(r) =
〈L〉

4πr2 (1 − exp(−r/r0)) q−1. (4.18)

In equation (4.18), 〈L〉 is the time averaged energy injection rate and r0 is the inner heating cut-off

radius. The normalization factor q is de�ned by

q =

∫ rmax

rmin

( P
P0

)(γb−1)/γb 1
r

d ln P
d ln r (1 − e−r/r0) dr, (4.19)

where rmax = r200.
The inner heating cut-off radius, r0, is the transition region from the bubble formation region to

the buoyant (effervescent) phase. It can be determined self-consistently by taking into account energy
losses due to bubble creation,

∫ r=r0

r=0
4πr2H dr =

[ (γb − 1)
γb

]
× 〈L〉 =

1
4〈L〉 (4.20)
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This comes from the fact that the energy lost within the radius r0 due to bubble creation at constant
pressure is P0V0 where V0 is the volume of the bubble at the creation region or transition region, r0,
and P0 is the pressure at that region. However, the energy lost due to bubble expansion ie. in the
effervescent phase is ∫ 0

P0

PbubbledV (4.21)

To get the maximum energy available in this phase, we have set the upper limit of the integral to
zero pressure. Assuming adiabatic evolution of the gas inside the bubbles (low density, low radiative
losses) and mass conservation in the bubble one has dV = (1/γb)(P0/Pbubble)1/γbV0 dP/P. On integrat-
ing, one gets effervescent energy as 3P0V0 for γb = 4/3. It can be easily seen from above that the
energy loss due to bubble creation is approximately only 25% of the total energy available for heating.
Thus this condition sets the inner cut-off radius, r0, since this 25% of the total energy or, equivalently,
1/4〈L〉 will be lost for bubble creation and injection within this radius. We �nd that r0 roughly comes
out to be around ' 20 � 45 kpc depending on the cluster mass Mcl(≡ Mvir) and also the time-step of
evaluation.

In this model, radiative cooling is also implemented. This has already been described in the
earlier model (A1). In addition to heating and radiative cooling, we also include convection which
has already been described earlier in §§§ (4.2.2.4)

Finally we go on to describe our model of the ICM with heating, cooling and thermal conduction.

4.2.3 Model (B): Effervescent heating, cooling and thermal conduction
4.2.3.1 The default state of the ICM

The details of the initial conditions of model (B) are exactly similar to those adopted earlier in
model (A2).

The effervescent heating mechanism and radiative cooling have been discussed already in
§§§ (4.2.2.2).

4.2.3.2 Thermal Conduction

A potential difficulty in raising the entropy of the intracluster medium at large radii (r > 0.1r200) by
means of a central heating source is that the energy required is fairly large (>∼ 1062 erg) over a period
of the age of the cluster. This sets up a negative entropy gradient in the central regions of clusters (see
right panel of Figure (4.2) and a rising temperature pro�le (see right panel of Figure (4.4) which are
somewhat different from the observed temperature and entropy pro�les. Our previous models (A1)
and (A2), however, did not include the effect of thermal conduction which would have decreased the
temperature gradient in the inner region and made it consistent with observations. We, therefore,
include the effect of thermal conduction here to address these issues.

Thermal conduction has been invoked to be an important process in galaxy clusters for quite some
time (Bertschinger & Meiksin 1986; Malyshkin 2001; Brighenti & Mathews 2002; Voigt et al. 2002;
Fabian, Voigt & Morris 2002). However it is not clear as to how dominant it would be since magnetic
�elds would suppress the conduction co-efficient by a large amount from the classical Spitzer value.
However, recent theoretical works by Narayan & Medvedev (2001), Chandran & Maron (2004), Loeb
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(2002) and several others suggests that the suppression factor could be as high as 10% to 20% of the
Spitzer value in the presence of a tangled and turbulent magnetic �eld. Motivated by these results we
adopt the suppression factor f = 0.1.

The �ux due to thermal conduction Fcond is given by

Fcond = − f κ∇T, (4.22)

where κ is the Spitzer conductivity

κ =
1.84 × 10−5T 5/2

ln λ , (4.23)

with the Coulomb logarithm ln λ = 37, appropriate for ICM temperature and density.

4.2.4 Evolution of the intracluster gas

In this subsection, we describe the evolution of the ICM for all the three models (A1), (A2) and (B).
As noted earlier, the gas is assumed to be in quasi-hydrostatic equilibrium at all times since the

cooling is not precipitous at these radii and the heating is mild. The gas entropy per particle is

S = const +
1

γ − 1kb ln(σ). (4.24)

where σ ≡ Pgas/ρ
γ
gas is the �entropy index� and γ is the adiabatic index. The particle number density

of the gas, n, is given by n = ρgas/µmp.
During each timestep ∆t, the entropy of a given mass shell changes by an amount

∆S =
1

γ − 1kb
∆σ

σ
=

1
nT (H − Γ − ∇ · Fconv)∆t. (4.25)

for models (A1) and (A2).
However, for model (B), equation (4.25) changes to

∆S =
1

γ − 1kb
∆σ

σ
=

1
nT (H − Γ − ∇ · Fcond)∆t. (4.26)

Incorporating the expressions for heating, cooling, and convection (models (A1) and (A2)), the
entropy increment for each mass shell for a timestep ∆t becomes

∆σ(M) =
2
3
σ

Pgas
∆t

[
−h(r)

(Pgas

P0

)(γb−1)/γb

×1
r

d ln Pgas

d ln r − n2
e ΛN(T )

− 1
r2

d
dr (r2Fconv)

]
(4.27)

where ne and Pgas are the current electron number density and pressure of the ICM, respectively.
Thus, the entropy index of each mass shell of gas due to heating and cooling after a time ∆t

becomes
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σnew(M) = σ0(M) + ∆σ(M) (4.28)

whereσ0(M) = Pgas0/ρ
γ

gas0 is the default entropy index. The system relaxes to a new state of hydrostatic
equilibrium with a new density and temperature pro�le. After updating the function σ(M) for each
mass shell, we solve the equations

dPgas

dM =
GM(≤ r)

4πr4
(4.29)

dr
dM =

1
4πr2

(Pgas(M)
σ(M)

)(1/γ)

(4.30)

to determine the new density and temperature pro�les at time t+∆t. The boundary conditions imposed
on these equations are that (1) the pressure at the boundary of the cluster, rout, is constant and is equal
to the initial pressure at r200, i.e., P (rout) = constant = Pgas0(r200), and (2) the gas mass within rout at
all times is the mass contained within r200 for the default pro�le at the initial time, i.e., Mg(rout) =

Mg0(r200) = 0.1333Mdm(r200) (Ettori 2003). It is important to note here that rout increases as the cluster
gas gets heated and spreads out.

The observed gas entropy S(r) at 0.1r200 and at r500 is then calculated using

S(r) ≡ T (r)/n2/3
e (r). (4.31)

The updated values of σ(M) and pressure of the ICM Pgas(r) are used to calculate the heating and
cooling rates and the convective �ux for the next time step. This is continued for a duration of theat.
After that the heating source is switched off, putting H = 0. The cooling rate and convective �ux
continue to be calculated to update the function σ(M) at subsequent timesteps, and the hydrostatic
structure is correspondingly evolved for a duration of tH − theat, where tH is the Hubble time. Noted
that rout decreases during this time since the intracluster gas loses entropy and shrinks.

Similarly, for model (B), ie. with thermal conduction in place of convection, the same steps (from
equation (4.27) to equation (4.31)) are repeated for a Hubble time, tH, with similar values of theat as
used in model (A) to �nd the �nal evolved state of the intracluster gas.

The only free parameters in our calculation are the energy injection rate 〈L〉 and the time theat over
which the �effervescent heating� of the ICM takes place. After evolving the gas for the total available
time, tH ∼ 1.35 × 1010 years, we check whether the entropy at 0.1r200 and r500 matches the observed
values, and adjust parameters accordingly. In this way, we explore the parameter space of 〈L〉 and theat

for different cluster masses so that the entropy (after 1.35×1010 years) at 0.1r200 and r500 matches the
observed values.

For numerical stability of the code, the convection term is integrated using timesteps that satisfy
the appropriate Courant condition. The Courant condition for convection is

∆tconv ≤ 1
225/2 √γ (∆r)5/2

g1/2l2m
. (4.32)

Similarly, the conduction term is integrated using timesteps that satisfy the appropriate Courant
condition. The Courant condition for thermal conduction is
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Figure 4.1: Gas entropy (de�ned here as T/n2/3
e ) as a function of emission-weighted temperature

〈T 〉 , at radii 0.1r200 (left panel) and r500 (right panel). The data points are from Ponman et al. (2003).
The solid line in the center of the shaded region is the best-�t to the data points. The two solid lines
bounding the shaded region are the 1 − σ errors on the best-�t values of entropy. The dashed line is
the predicted entropy due to gravitational interactions alone (from chapter (2)).

∆tcond ≤ 0.5(∆r)2n kb

κ(γ − 1) . (4.33)

The timesteps, ∆t, used in equation (4.25) and equation (4.26) to update the entropy of the gas and
calculate its obey the above Courant condition (Ruszkowski & Begelman 2002; Stone, Pringle &
Begelman 1999).

The calculations presented in this chapter were also performed using the fully time-dependent
ZEUS code (Clarke, Norman & Fiedler 1994) and the results obtained were consistent with the ones
presented here. However, we decided to use our quasi-hydrostatic Lagrangian code as it allowed us
to search the parameter space more efficiently.

4.3 Results

In this section, we discuss our results of cluster evolution for all three models (A1), (A2) and (B).
The gas is heated for a time theat and cooled simultaneously. After this time, the heating source is
switched off. The gas is then allowed to cool radiatively until a total simulation time of tH=1.35×1010

years has elapsed. The �nal entropy values at 0.1r200 and r500 are compared with the observed ones. In
model (A1), ie. pure NFW pro�le and AGN heating with no loss due to bubble creation, convection
and cooling, r0 is �xed to 0.01rvir which is around ' 15-20 kpc.

In Figure (4.1), the observed entropy values and their errors at 0.1r200 and at r500 are plotted as
a function of the emission-weighted temperature, 〈T 〉 , of the cluster (Ponman et al. 2003). We have
done a best-�t analysis on these data points to estimate the entropy requirements for the sample of
clusters of masses ranging from 1014 to 2×1015 M�. The results of our analysis are the shaded regions
in the two panels of Figure (4.1). The solid line through the center of the shaded region is the best-�t
curve with the lines bounding the shaded region being the 1 − σ errors on the best-�t entropy values.
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Figure (4.2) shows the time evolution of scaled entropy pro�les of a cluster of mass Mcl = 6 ×
1014M� with and without convection for 〈L〉= 3×1045 erg s−1 for model (A1). We use the same
method of emissivity weighting as used in chapter (2) to calculate the average quantities. The entropy
pro�les are plotted in time-steps of 5 × 108 years. They are seen to rise with time as the ICM is
heated. Then, after the heating is switched off (after theat = 5× 109 years), the gas loses entropy due to
cooling and the pro�les are seen to fall progressively until the Hubble time is reached. The inclusion
of convection �attens the negative gradient in the scaled entropy pro�les in the central regions of
the cluster (within 0.2r200, as seen in the difference of the entropy pro�les between the left and right
panels in Figure (4.2). The plot that includes convection (left panel in Figure (4.2)) shows that the gas
develops a �at entropy core in its central regions after the heating source has been switched off and
the gas has cooled.

Left panel of Figure (4.3) shows the time evolution of scaled entropy pro�les of a cluster of mass
Mcl = 6 × 1014M� for 〈L〉= 3.0×1045 erg s−1 for model (A2). The entropy pro�les are plotted in
time-steps of 5 × 108 years. They are seen to rise with time as the ICM is heated. Then, after the
heating is switched off (after theat = 5×109 years), the gas loses entropy due to cooling and the pro�les
are seen to fall progressively. These entropy pro�les here do not show a �at isentropic core in the
central regions of the cluster, as compared to Figure (4.2) for model (A1). This is due to the inclusion
of a smoothened core in the dark matter pro�le in this model. However, it is seen that the isentropic
core develops for even higher mass clusters and for higher 〈L〉 though the radius of this core is smaller
than that seen in model (A1)

Right panel of Figure (4.3) shows the time evolution of scaled entropy pro�les of a cluster of
mass Mcl = 6 × 1014M� for 〈L〉= 5.25×1045 erg s−1 for model (B) ie. with thermal conduction
and no convection. Again, we have used the same method of emissivity weighting as in chapter (2)
to calculate the average quantities. The entropy pro�les are plotted in time-steps of 5 × 108 years.
They are seen to rise with time as the ICM is heated. Then, after the heating is switched off (after
theat = 5×109 years), the gas loses entropy due to cooling and the pro�les are seen to fall progressively.
The inclusion of conduction removes the negative gradient in the scaled entropy pro�les in the central
regions of the cluster (within 0.5r200). These entropy pro�les do not show any �at entropy core seen
in model (A) (left panel in Figure (4.2)). Thus, this probably indicates that thermal conduction is a
more plausible process in ICM than convection for such gentle AGN heating.

Figure (4.4) shows the evolution of density and temperature of the ICM for a cluster of mass
6× 1014 M� and for a luminosity of 〈L〉= 3× 1045 erg s−1 for model (A1). The gas density decreases
with time during the heating epoch, and increases due to radiative cooling and convection after the
heating source is switched off. It is interesting to note that the changes in density are minimal beyond
0.2r200, and that convection plays an important role in regulating the density pro�les after the heating
source is switched off for radii r ≤ 0.2r200. We note that for clusters with lower emission-weighted
temperatures, the effects of heating and convection are seen at larger radii.

Figure (4.5) shows the evolution of density and temperature of the ICM for a cluster of mass
6× 1014 M� and for a luminosity of 〈L〉= 3× 1045 erg s−1 for model (A2). The gas density decreases
with time during the heating epoch, and increases due to radiative cooling and convection after the
heating source is switched off. It is interesting to note that the changes in density are minimal beyond
0.2r200, and that convection plays an important role in regulating the density pro�les after the heating
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Figure 4.2: Scaled entropy pro�les as a function of scaled radius for a cluster of mass 6 × 1014 M�
heated by an AGN with 〈L〉= 3 × 1045 erg s−1, with convection (left panel) and without convection
(right panel) for model (A1). The scaled entropy pro�les are plotted at intervals of 5×108 years. They
are seen to rise as the gas is heated and then fall as the gas cools. In both cases theat = 5 × 109 years.
Initial states correspond to the lowest curves.

Figure 4.3: Scaled entropy pro�les as a function of scaled radius for a cluster of mass 6 × 1014 M�
heated by an AGN with 〈L〉= 3.0 × 1045 erg s−1 for model (A2) (left panel) and for model (B) where
〈L〉= 5.25 × 1045 erg s−1 (right panel). The scaled entropy pro�les are plotted at intervals of 5×108

years. The dashed lines correspond to times when heating is on and the dot-dashed lines correspond
to times when heating has been switched off. They are seen to rise as the gas is heated and then fall
as the gas cools. It is seen here that the �nal entropy pro�les (after Hubble time) has neither negative
entropy gradient nor any entropy core in the central regions, as compared to Figure (4.2). Initial and
�nal states correspond to the solid curves.
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Figure 4.4: Gas density (left panel) and temperature (right panel) pro�les as a function of scaled radius
(r/r200), for the cluster model (A1). It is seen here that radiative cooling lowers the temperature, thus
increasing the density after the heating source is switched off. Initial density and temperature pro�les
correspond to the highest and lowest curves, respectively.

Figure 4.5: Gas density (left panel) and temperature (right panel) pro�les as a function of scaled radius
(r/r200), for the cluster model (A2). It is seen here that radiative cooling lowers the temperature, thus
increasing the density after the heating source is switched off. Initial density and temperature pro�les
correspond to the highest and lowest curves, respectively.
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Figure 4.6: Gas density (left panel) and temperature (right panel) pro�les as a function of scaled radius (r/r200),
for the cluster model (B) ie. AGN heating with thermal conduction and cooling. Dashed lines represent density
pro�les when heating is active and the dot-dashed line represents density pro�les after the heating source has
been switched off (i.e. after theat > 5 × 109 years). The pro�les are plotted after every 5 × 108 years till Hubble
time. It is seen here that conduction removes temperature gradients in the central regions (within 0.2r200) and
�attens the temperature pro�le. This is the reason thermal conduction was included in the cluster model as
compared to model (A1) and (A2), wherein left panel of Figure (4.4) shows rising temperatures in the centre.
The density pro�les are seen to rise after the heating source is switched off and thermal conduction and radiative
cooling are the only two processes which are active. Initial density and temperature pro�les correspond to the
solid curves in both plots.
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Figure 4.7: Final density pro�les for objects of mass 4.5 × 1013 M� (solid line), 2.0 × 1014 M�
(short dashed line), 9.0 × 1014 M� (long dashed line) for model (B) ie. AGN heating with thermal
conduction. The assumed heating time theat in this example was 5 × 109 years. Note the �attening in
the density pro�le as the mass of the system is decreased.

source is switched off for radii r ≤ 0.2r200, as noted in model (A1). We note that for clusters with
lower emission-weighted temperatures, the effects of heating and convection are seen at larger radii.
However, there is a slight difference in the temperature pro�les seen here as compared to model (A1).
The negative temperature gradient seen in the central regions in Figure (4.4) is almost non-existent
in the left panel of Figure (4.5). This is probably because of the smoothening introduced in the dark
matter pro�le in this model.

In Figure (4.6), the evolution of the density and temperature pro�les of the ICM are shown for a
cluster of mass 6 × 1014 M� and for a luminosity of 〈L〉= 5.25 × 1045 ergs−1 for the other model (B).
The gas density decreases with time during the heating epoch, and increases due to radiative cooling
and conduction after the heating source is switched off. It is interesting to note that the changes in
density are minimal beyond 0.5r200, as compared to 0.2r200 in the left panel of Figure (4.4), and that
conduction plays a very important role in regulating the density pro�les after the heating source is
switched off. It is seen that conduction actually decreases the density of the gas at larger radii (beyond
0.5r200) by conducting heat out from the central regions. This is seen more clearly if one studies the
evolution of the temperature pro�les. After the heating source is switched off, it is seen that the
temperature of the central regions fall very rapidly since conduction pumps out heat from the central
regions and redistributes it in the outer regions of the cluster. Thus the temperature pro�les do not rise
towards the centre as compared to what is seen in the right panel of Figure (4.4). On the other hand,
their evolution shows a rise in the outer regions (beyond 0.5r200) due to thermal conduction even after
the heat source has been switched off. Thus conduction acts like a heating source for larger radii.
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Model (B) is constrained by entropy-temperature relation. At �xed cluster temperature this cor-
responds to a given density (at both radii for which the entropy data is provided). Now, since at a
given density we have an additional constraint from the L-T relation (that our model �ts reasonably
well; see below), we implicitly satisfy the constraints on the slope of the density pro�le. Thus, as the
model �ts both the entropy data and the observed L-T relation that specify the slopes of the density
pro�les, these slopes must also be consistent with observations that show �attening in low mass sys-
tems. Indeed, this �attening is apparent in Figure (4.7) that shows �nal density pro�les for different
masses.

We now discuss the permitted range in the total energy injected into the cluster, Eagn = 〈L〉 × theat,
required to match the observed entropy as a function of the cluster mass for all three models (A1), (A2)
and (B). Figure (4.8) shows the spread in Eagn as a function of the cluster mass for two different values
of theat for model (A). The region bounded by thin solid lines is the permitted range in energy for theat

= 5 × 108 years. This region includes an area shaded with solid vertical lines, which corresponds to
the values of Eagn that satisfy the entropy requirement at 0.1r200, and another area shaded with solid
oblique lines which satis�es the entropy requirement at r500. Similarly, the region bounded by thin
dotted lines in Figure (4.8) shows the permitted spread in energy for theat = 5 × 109 years. This region
includes an area shaded with dots which corresponds to the values of Eagn that satisfy the entropy
requirement at 0.1r200 and another area shaded with long-dashed horizontal lines, which satis�es the
entropy requirement at r500. For cluster masses above 9×1014M� there is no lower limit on the injected
energy from the entropy measurements at r500. The region corresponding to this situation is marked
by by horizontal dashed lines and oblique lines for cluster masses above 9 × 1014M�.

Top panels of Figure (4.9) show the permitted total injected energy range as a function of the
mass of cluster for heating times between theat = 5 × 108 years and theat = 5 × 109 years for both
models (A1) and (A2). The bottom panel of Figure (4.9) shows the same for model (B). Here the
entropy is required to match observations at both 0.1r200 and r500. In the bottom panel, the solid line
represents a non-linear relation between the total energy injected to the cluster by AGN and the mass
of the cluster (see next section for more details). In the two top panels of Figure (4.9), the solid line
represents a linear relation between the energy injected by the AGN, Eagn and cluster mass, Mcl.

Figure (4.10) shows the X-ray luminosity (LX versus emission-weighted temperature (TX) rela-
tion in clusters for model (B). As we've mentioned before, model (B) is constrained by both entropy
versus temperature relation as well as X-ray luminosity versus temperature relation observed in clus-
ters whereas model (A) only follows the constraint of observed entropy versus temperature. The
data points have been compiled from Arnaud & Evrard (1999) (represented by stars), Markevitch et
al. 1998 (represented by open squares) and Helsdon & Ponman 2000 (with error bars). The X-ray
luminosity has been calculated within the cluster volume of 0.3r200, as done for the data. It is also
seen that the X-ray luminosity does not change much (within 1%) if the volume increased from 0.3r200

to r200. The shaded region in the plot corresponds to the predicted X-ray luminosity when the cluster
is heated by an AGN for 5×108 ≤ theat ≤ 5×109 years with luminosities which correspond to the two
bounding lines of the shaded region in the bottom panel of Figure (4.9). It is seen that the predicted
luminosities of the heating model satisfy the data points in the low mass end as well as the high mass
end. The solid line in the plot shows the predicted luminosity due to the universal temperature pro�le
and the default density pro�le. We note that the X-ray luminosity is over-predicted by the universal
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Figure 4.8: Allowed ranges of total injected energy Eagn = 〈L〉 × theat required to match the observed
entropy at 0.1r200 and/or r500, for two different values of theat, as a function of cluster mass. The width
of each region corresponds to the 1 − σ errors plotted in Figure (4.1). The region bounded by thin
solid lines corresponds to the allowed range in energies for theat = 5 × 108 years. Within this bounded
region, the area shaded with vertical solid lines is the spread in energy that satis�es the entropy
requirement at 0.1r200 and the area shaded with oblique solid lines is the spread in Eagn that satis�es
the entropy requirement at r500. Only the overlap region satis�es the observations at both radii. The
region bounded by thin dotted lines corresponds to the allowed range in energies for theat = 5 × 109

years. In this region, the dotted area is the spread in energy that satis�es the entropy requirement at
0.1r200 and the area shaded with horizontal long-dashed lines is the spread in Eagn that satis�es the
entropy requirement at r500.
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Figure 4.9: These three �gures show the permitted total injected energy range as a function of the
cluster mass for ICM heating times between theat = 5 × 108yr (upper envelope) and theat = 5 × 109yr
(lower envelope) for the three models (A1) (top, left panel), (A2) (top, right panel) and (B) (bottom
panel). The shaded region corresponds to values of Eagn that are able to match the entropy obser-
vations at both 0.1r200 and r500. The solid line in the bottom panel represents a non-linear relation
between the total energy injected into the cluster by AGN and the mass of the cluster with an expo-
nent of 5/3 for model (B). The thick solid line in the two top panels represents a linear relation with
exponent between the total energy, Eagn and the cluster mass, Mcl. The permitted parameter space
comes from the sum of permitted regions that satisfy the entropy constraints at both radii for �xed
theat.
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Figure 4.10: Relation between bolometric X-ray luminosity LX and emission- weighted temperature
(〈T 〉) for model (B) ie. AGN heating with thermal conduction. The data points represented by 'stars'
show measurements of clusters with insigni�cant cooling �ows compiled by Arnaud & Evrard (1999).
Open squares show cooling �ow-corrected measurements by Markevitch et al. (1998). The data points
with error bars show group data from Helsdon & Ponman (2000). The shaded region represents X-ray
luminosity calculated for the region of Eagn shown in Figure (4.9) which satis�es the observed entropy
requirements at both radii for 5 × 108 < theat < 5 × 109 years. The solid line represents the X-ray
luminosity calculated using the default model of the ICM ie. the universal temperature pro�le. The
models assume a ΛCDM cosmology with ΩM = 0.29, ΩΛ = 0.71, and Ωb = 0.047, and a Hubble
parameter of h = 0.71 has been applied to the models and the data.
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temperature pro�le which indicates that the addition of non-gravitational heating is required to lower
the X-ray luminosity to satisfy the data points (see chapter (2) for more details).

4.4 The halo-black hole mass relation

The relation between the mass of the group or cluster halo and the total injected energy (Figure (4.9))
can be translated to the halo-black hole mass relation. As an illustrative example of such a relation,
the solid line in the bottom panel of Figure (4.9) can be interpreted as a non-linear relation between
Eagn and Mcl. This is derived using arguements by Wyithe & Loeb (2003). Since, such non-linear
relations between black hole mass and the galaxy velocity dispersion have been derived theoretically
in literature as well as in observations (Ferrarese & Merritt (2000)), it to be worth-while to compare
if this relation with the relation between cluster mass and black hole, as suggested by our results in
the earlier section. Mass of a virialized halo can be expressed in terms of its circular velocity vc
(Barkana & Loeb 2001)

Mhalo = 4.7 × 1014
(

vc

103 km s−1

)3
M� (4.34)

We can combine the above relation with the self-regulation condition (Wyithe & Loeb 2003)

ηLEddFq =
0.5(Ωb/Ωm)Mhalov2

c
tdyn

, (4.35)

where LEdd is the Eddington luminosity of the central black hole, η is its Eddington fraction, Fq is
the fraction of energy generated by the black hole that is deposited in the gas, Ωb and Ωm are the
mass density in baryons and in mass relative to the critical density, respectively. We assumed that the
dynamical time of the halo gas is tdyn ∼ rvir/vc, where rvir is the virial radius of the collapsed halo
(Barkana & Loeb 2001). Combining equations (4.34) and (4.35) we get

Mbh = 2.2 × 108
(
ηFq
0.05

)−1
M5/3

14 M�, (4.36)

where M14 = Mhalo/1014M�. Note that the above relation between the mass of the cluster and the
central black hole is nonlinear. It is interesting that a similar scaling would be expected in the case
of the galaxy halo mass Mgh and black hole mass relation. In such a case, the mass of the black hole
scales like Mbh ∝ vαc , where 4 <∼ α <∼ 5. As v2

c ∝ Mgh/rgh and rgh ∝ Mgh, we have Mbh ∝ Mα/3
gh .

Assuming that a fraction ε of black hole mass is converted to energy, we can also get the relation
between the injected energy Eagn and the cluster mass

Eagn = 6 × 1061
(
ε

0.15

) ( ηFq
0.05

)−1
M5/3

14 . (4.37)

This relation is the same as the one denoted by solid line in the bottom panel of Figure (4.9).
We also try to �t the same non-linear relation to model (A1) and (A2). However, we notice that

this relation does not provide a good �t to the shaded region in the top, right panel of Figure (4.9). A
linear relation is more appropriate in the case of these two models. We however note that the results of
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the model of AGN heating with thermal conduction are closer to observations. We therefore interpret
the relation between black hole and cluster mass, as suggested by our calculations, to be non-linear.

4.5 Discussions

4.5.1 Models (A1) and (A2)

As is clear from Figure (4.8) and the top two panels of Figure (4.9), it is possible to heat the ICM
with a single central AGN to match the entropy requirements at both 0.1r200 and r500 in model (A).
However, in order to match the entropy at both radii, the total injected energy Eagn, for a given value
of theat � tH, must be tightly constrained. In fact, our calculations have shown that for any value of
theat < tH, i.e., for any heating time (or AGN lifetime), it is always possible to satisfy the entropy
observations at both radii with a single value of the luminosity 〈L〉 . This is different from the cooling
�ow problem, where 〈L〉must be �nely tuned to match the cooling rate (Ruszkowski & Begelman
2002), because cooling effects on large scales are rather mild and, thus, the results depend mostly
on the total injected energy Eagn = 〈L〉 × theat. Thus, if we can �t the observed entropy values for
just one pair 〈L〉 and theat, we can do so for a wide range of such pairs. Another manifestation of this
fact is that the shaded regions in Figure (4.8) are similar in shape but are just offset by a factor of a
few. As the cooling effects are relatively mild, the modest differences arise because shorter heating
times lead to higher temperatures and convective transport cannot �catch up� with the energy supply.
As the entropy excess to be explained is known from observations and is �xed, more heat has to be
injected for shorter heating times. Nevertheless, the results are mostly sensitive to the total energy
input from the black hole, rather than to 〈L〉 and theat separately. As a consequence, satisfactory �ts
can be obtained as long as the total injected energy falls within a relatively narrow range of values,
which depends on the cluster mass (top two panels of Figure (4.9)).

We would like to point out here that the energy required to be supplied by the AGN, Eagn, is
slightly lowered in model (A2) as compared to model (A1) due to the introduction of the smooth core
in the NFW pro�le. This is probably due to the fact that the initial density becomes shallower on
introduction of a core in the dark matter distribution reducing the excess entropy requirement at both
radii for all theat. In addition, we also point out that the effective heating time may be longer than the
integrated AGN lifetimes. Heating of the cluster may occur more gradually as heat gets distributed
on a timescale very roughly proportional to the sound crossing time from the cluster center to a given
radius. Thus, theat should be interpreted as an upper limit on the AGN lifetime.

Note that for longer heating times the luminosity constraints become less stringent and lower
black hole masses can explain the observed trends. Finally, as we consider heating on large scales,
all galaxies in the cluster that go through an active phase will contribute to the overall energy budget
of the cluster gas. For example, substructure in the cluster could contain galaxies with sizable bulge
components, each of which may contain a supermassive black hole. Therefore, the constraint on
the black hole mass obtained above should be interpreted as a sum of all black hole masses that
contribute to heating rather than the mass of an individual black hole. This could also lower the
required efficiency of individual black holes that contribute to cluster heating.

Finally, we note that cooling and convection play important roles in controlling the heating mech-
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anism so that the entropy pro�les broadly match the observed entropy pro�les in clusters (Ponman
et al. 2003). Notably, in the later stages of evolution of the gas, after the heating source is switched
off, convection �attens the entropy pro�les in the central regions of the cluster. Moreover, an entropy
core seems to develop in the �nal stages of the evolution of the ICM, notably so for model (A1).
This is consistent with the observed entropy pro�les, which show cores at r ≤ 0.1r200 (Ponman et
al. 2003). Our entropy pro�les do not show steep positive gradients as observed in the entropy pro�les
of two groups of galaxies (Mushotzky et al. 2003). However, these groups have masses smaller than
the ones considered here. In model (A2), the introduction of a smoothened core radius in the dark
matter pro�le almost removes the isentropic core for low mass clusters (TX < 4 keV). However, since
the temperature pro�les show a temperature gradient even though the entropy is �attened (clearly in
model (A1)), thermal conduction might be able to conduct heat out from the central regions of the
cluster and reduce temperatures there. This will happen at roughly constant pressure and, therefore,
central densities will slightly increase. Thus conduction (if not fully suppressed) may help to remove
the core in the center (as is seen in Figure (4.3) for model (B)).

4.5.2 Model (B)

In this chapter, we have also examined the effects of effervescent heating by AGN in clusters with
thermal conduction and cooling in the context of the excess entropy requirements at large radii. We
have also examined the consequences of this heating, cooling and conduction on SZ temperature
decrement.

As is clear from bottom panel of Figure (4.9), it is possible to heat the ICM with a single central
AGN to match the entropy requirements at both 0.1r200 and r500 in this model also. However, in order
to match the entropy at both radii, the total injected energy Eagn, for a given value of theat � tH, must
be tightly constrained. In fact, our calculations have shown that for any value of theat < tH, i.e., for
any heating time (or AGN lifetime), it is always possible to satisfy the entropy observations at both
radii with a single value of the luminosity 〈L〉 . The results depend mostly on the total injected energy
Eagn = 〈L〉 × theat, as is seen in the earlier two models (A1) and (A2). Thus, as mentioned earlier, if
we can �t the observed entropy values for just one pair 〈L〉 and theat, we can do so for a wide range of
such pairs.

We note here that the inclusion of thermal conduction brings down the energy which has to be
provided by the AGN over its life-time to satisfy the entropy observations at both radii for all heating
times as compared to our model (A1) and (A2) ie. AGN heating with convection. In addition, for
shorter heating times, the Eagn is less or comparable to the energy pumped in for longer heating times.
This is in contradiction to our �ndings in model (A1) and (A2). This happens here because thermal
conduction acts as a heating source after the AGN is switched off (for tH − theat) and raises the entropy
at large radii (at r = r500). The results are mostly sensitive to the total energy input from the black
hole, rather than to 〈L〉 and theat separately. As a consequence, satisfactory �ts can be obtained as long
as the total injected energy falls within a relatively narrow range of values, which depends on the
cluster mass (bottom panel of Figure (4.9)).

Finally, we note that cooling and thermal conduction play important roles in controlling the heat-
ing mechanism so that the entropy pro�les broadly match the observed entropy pro�les in clusters
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(Ponman et al. 2003). Notably, in the later stages of evolution of the gas, after the heating source
is switched off, conduction removes negative entropy gradients in the central regions of the cluster.
Moreover, there is no entropy core seen in the �nal stages of the evolution of the ICM. Instead we
see positive entropy gradients as observed in the entropy pro�les of galaxy groups (Mushotzky et
al. 2003, Ponman et al. 2003). Unlike previously proposed models, our model predicts that isentropic
cores are not an inevitable consequence of preheating. However, the clusters that show isentropic core
have also been observed (Ponman et al. 2003). We note that our entropy pro�les show a core while
the source of heating is active. It is conceivable that the clusters which show entropy cores are being
observed during the active phase of the AGN duty cycle.

4.6 Caveats of the models

We note here that our treatment is simpli�ed as we neglect cosmological terms. We now brie�y
discuss how our results might change if we consider evolution in the cosmological perspective. First,
the mass-temperature relation would change and clusters with the same mass at high redshift would
be hotter (T ∝ (H(z)/H0)2/3M2/3, the redshift dependence in the ΛCDM universe is approximately
T ∝ (1 + z)0.45). Second, the shape of dark matter potential will also change (c ∝ 1/(1 + z)). However,
clusters observed today (z = 0) were most likely formed at z ≤ 0.5 (Kitayama & Suto 1996, their
Fig. 1). This also depends on the de�nition of �formation�, and the cluster formation will take place
at a lower redshift if one de�nes a cluster to have `formed' when 75% of its total mass is in place
(and not when 50% is in place, assumed by Kitayama & Suto 1996; see e.g, Balogh et al. 1999).
More importantly, the higher is the redshift at which AGN injection takes place (AGN could switch
on even before the cluster formation redshift as de�ned above), the lower is the excess entropy to be
accounted for. Thus, lower energy injection could be required to explain observations at z ∼ 0.

We also note that the hydrodynamics equations have been integrated up to r200. It is likely that
the buoyant energy transport would be inhibited by the cluster accretion shock at such large radii.
However, excess entropy used to constrain our model is measured at smaller radii and we do not
expect this to affect our results signi�cantly.

Our simulations assume that heating is instantaneous. This is an approximation as there should be
a delay between the onset of AGN activity and heating at a given radius. We have chosen the shortest
heating duration to be at least the sound crossing time (or the dynamical time of rising bubbles)
at the outer radius where we compare the computed and observed entropies (r500). Thus, for the
shortest heating time, our assumption at 0.1r200 should be quite reasonable but at r500 it would be less
accurate but still physically conceivable. For longer heating times our results at both radii should not
be affected by this approximation.

Related is the issue of the constraints on the source luminosity. For shorter heating times, higher
luminosities are required to assure the same energy injection. This issue is very important in the �rst
two models (A1) and (A2) where there is no thermal conduction. The required luminosities are seen to
be more feasible for longer heating times in models (A1) and (A2). However, this problem is reduced
on inclusion of thermal conduction in model (B). This happens because thermal conduction acts as a
heating source for large radii (r > 0.5rvir). Thus the energy required from the central AGN to reconcile
with the observed excess entropy, specially at r500, goes down. In this context, we also note that if the
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heating is supplied by more than one AGN, then the luminosity requirements on an individual source
would be lower. We also reiterate the point made earlier that if the effects of cosmological evolution
had been fully taken into account and AGN had supplied heating at earlier epochs, then the energy
requirements presented here would have been further reduced. Thus, the source luminosities would
also be lower for a given heating time. This is due to the fact that the required excess entropy at higher
redshift would be reduced.

Finally, in these models, we do not include the effects of magnetic �elds explicitly. However,
magnetic �elds are likely to be below the equipartition value and thereby dynamically unimportant
(Fabian et al. 2002). Polarization measurements suggest that the magnetic �elds in the vicinity of
bubbles have subequipartition values (Blanton et al. 2003). Nevertheless, they may still be important
for suppressing instabilities on bubble-ICM interfaces. Such effects may implicitly be included in the
bubble heating model.

4.7 Conclusions

In this chapter, we have studied whether �effervescent heating� of cluster gas by a central AGN
can resolve the entropy problem in clusters of galaxies. We have dealt with three different models
here of AGN heating: one where the cluster has a pure NFW dark matter pro�le and there is AGN
heating, where no energy loss due to bubble creation is considered, radiative cooling and convection
(model (A1)), the second model (A2) where the cluster has a NFW dark matter distribution with a
central core, rc, and there is AGN heating, where energy loss due to bubble creation are taken in
account, radiative cooling and convection and the third one where AGN heating has been combined
with thermal conduction and radiative cooling and all the other features of model (A2) have been
retained (model (B)).

In models (A1) and (A2), the AGN (or a group of AGNs in the central region) injects bubbles
of buoyant gas, which heat the ICM. The mean volume heating rate due the bubbles is a function of
the ambient pressure and a time-averaged energy injection rate to the ICM, but not of the detailed
properties of the bubbles or their evolution. We have also included the effects of radiative cooling and
convection. We assumed that heating continues for theat, the duration of heating, and have studied the
resulting evolution of the gas assuming it to be in quasi-hydrostatic equilibrium for the Hubble time.
The only free parameters of this model are 〈L〉 , the energy injection rate to the ICM, and theat. The
main results of our study are summarized as follows:

1. We �nd that there are allowed values of 〈L〉 for which it is possible to match the entropy ob-
servations of clusters even at large radii (both 0.1r200 and r500) with a single central AGN for a
large range of theat (5 × 108 ≤ theat ≤ tH years) and cluster masses (5×1013 −2×1015M�). The
energy requirement is lowered slightly on introduction of a core in the dark matter pro�le.

2. Convection plays an important role in removing negative entropy gradients produced by heating
in the central regions of the cluster.

3. The results are mostly sensitive to the total energy Eagn injected into the cluster by AGN
(as cooling effects are relatively mild). The model predicts that the total injected energy
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Eagn =〈L〉 ×∆t, required to satisfy observational entropy constraints, should be correlated with
the cluster mass.

In model (B), the primary aim was to study the implications AGN heating and thermal conduction
on the global properties of groups and clusters of galaxies. We also set out to examine what differences
would the introduction of thermal conduction make in the results as compared to our models (A1)
and (A2) where there was convection along with �effervescent heating�.

The main results of this model (B) are summarized below:

1. We have demonstrated that the available entropy data, in conjunction with our feedback model,
put constraints on the relation between the total energy injected by the AGN and the mass of
the cluster. The inferred black hole-halo mass scaling (Mbh ∝ Mα

cluster, α ∼ 1.5) is an analog
and extension of the similar relation between the black hole mass and the mass of the galaxy
halo that holds on smaller scales.

2. Unlike in the case of previously proposed models, we �nd that isentropic cores are not an
inevitable consequence of preheating. This is consistent with observations of groups that do
not show large isentropic cores (Ponman et al. 2003, Mushotzky 2003). Clusters that show
isentropic core have also been observed (e.g., Ponman et al. 2003). We note that our entropy
pro�les show a core while the source of heating is active which may explain such cases as well.
It is conceivable that the clusters which show entropy cores are being observed during the active
phase of the AGN duty cycle.

4. We �nd that the inclusion of thermal conduction removes the negative gradient in the tempera-
ture pro�les in the central regions of clusters and make them more physical.

3. We have also demonstrated that the model reproduces the observed trend for the density pro�les
to �atten in low mass systems.
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