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Summary and the main results of chapter 2

Galaxy clusters are believed to be tracers of the structure formation in the universe. They have been
thought to be self-similar and have intracluster density which follow the underlying dark matter den-
sity pro�le. However, in this chapter, we study the X-ray cluster gas density distribution in hydrostatic
equilibrium using the Universal Temperature pro�le obtained from recent simulations involving only
gravitational processes. If this temperature pro�le is an indicator of the in�uence of gravitational
processes alone on the intracluster medium, then the comparison of various X-ray parameters ex-
pected from this pro�le and the observed data would point towards any additional physics that may
be required. We compare the entropy at 0.1R200 and R500, the scaled entropy pro�le, the gas fraction
at 0.3R200 and the gas fraction pro�le with recent observations and discuss the implications of this
temperature pro�le in light of these data.

The main results obtained from this study are:

• We �nd that the entropy imparted to the gas from gravitational processes alone is larger
than previously thought. The entropy at R500 for rich clusters is consistent with data, whereas
the entropy at 0.1R200 is still less than the observed values.

• We also �nd that the gas fraction in the inner region of clusters, expected from gravitational
processes alone, is smaller than previously thought but larger than the observed data. It does
show a trend with the emission-weighted temperature (〈T 〉) as shown by data.

• To sum it up, we �nd that the role of any additional non-gravitational process in�uencing
the physical state of the ICM would have to be revised in light of these �ndings.
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2.1 Introduction

The formation of structures in the Universe is believed to be hierarchical, as primordial density �uctu-
ations, ampli�ed by gravity, collapse and merge to form progressively larger systems. This hierarchi-
cal development leads to the prediction of self-similar scalings between systems of different masses
and at different epochs.

X-ray observations of the intra-cluster medium (ICM) provide an ideal probe to test these self-
similar scalings. Observations however present a picture that is at variance with predictions from
these self-similar scalings. The X-ray luminosity of low temperature (poor) clusters fall below the
self-similar expectations, and the surface brightness pro�les of these clusters are seen to be shallower
than those of richer clusters. It is also instructive to view this in terms of the entropy of the intra-cluster
gas, which in self-similar scaling should increase in a very simple scaling with the mean temperature
of virialized systems, whereas observations show that gas in low temperature clusters have larger
entropy than expected. Another probe of non-gravitational processes is the gas fraction by mass in
these clusters. Observations show that the inner regions of poor clusters have less gas (compared to
the total mass within those radii) than those of rich clusters.

These differences between theoretical expectations and observations have led to the emergence of
a number of theoretical ideas to increase the entropy of the ICM by some non-gravitational process,
especially in low temperature clusters, involving heat input from supernovae (Valageas & Silk 1999;
Kravtsov & Yepes 2000; Wu et al. 2000), quasar out�ows (Bower 1997; Loewenstein 2000; Voit
& Bryan 2001; Nath & Roychowdhury 2002), gas cooling (Knight & Ponman 1997; Bryan 2000;
Voit & Bryan 2001; Pearce et al. 2000; Muanwong et al. 2001; Wu & Xue 2002a; Davé et al. 2002)
and accretion shocks (Tozzi & Norman 2001; Dos Santos & Doré 2002; Babul et al. 2002), though
it appears that there are problems with many of them (Ponman et al. 2003 and references therein;
hereafter PSF03).

A recent result from a very high resolution numerical simulation (Loken et al. 2002) offers a
fresh look at the scaling laws expected from gravitational interactions. Loken et al. (2002) found a
universal temperature pro�le for the ICM, when scaled to the emission weighted temperature, from
the assumptions of pure gravitational evolution of the cluster gas, with no input from any additional
non-gravitational processes of heating or cooling. Interestingly, this temperature pro�le is a good
match to the observed universal temperature pro�le for rich clusters, leaving aside the very central
regions (r ≤ 0.1Rvir) (De Grandi & Molendi 2002).

The interesting aspect of this temperature pro�le obtained from this simulation is that it has a core
within which the pro�le is �atter than in the outer region. It has been earlier noted by Eke et al. (1998)
that interactions between dark matter and baryons imparts some entropy to the gas providing it with
a core (and making it deviate in the central regions from the self-similar expectations in which gas
density is proportional to the dark matter density). The entropy imparted to the gas was, however,
thought to be important only in the very central regions (r � 0.1Rvir),and observations of entropy at
∼ 0.1Rvir was thought to re�ect other, non-gravitational in�uences, if there were any.

It is then important to determine the gas density pro�le corresponding to this temperature pro�le,
assuming hydrostatic equilibrium, and determine the level of entropy obtained only from gravita-
tional interactions, without the aid of non-gravitational processes. In this chapter, we study various
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implications of this temperature pro�le, especially in light of the entropy problem mentioned earlier.
As we describe below, we �nd that the entropy imparted to the gas by gravitational interactions

alone is larger than previously thought for poor clusters, even at radii exceeding 0.1R200, and this is
the main result of the present chapter. We begin with the description of the background dark matter
density pro�le that is assumed (§2). We then determine the gas density pro�le assuming hydrostatic
equilibrium in §3 and discuss various aspects of our result, including comparison with relevant data
in §4. We end with a brief discussion of our results in §5.

We assume ΩΛ = 0.71, Ω0 = 0.29, Ωb = 0.047 and h = 0.71 in this chapter which are the best
�t parameter from WMAP (Spergel et al. 2003).

2.2 Universal dark matter density pro�le

The dark matter density pro�le, ρdm(r) suggested by many high resolution N - body simulations is
well described by a self-similar form. We assume that the gas mass is negligible compared to the total
dark matter mass and adopt this universal density pro�le for dark matter in clusters. The pro�le is
expressed in terms of a characteristic radius rs (e.g., in Komatsu & Seljak 2002):

ρdm = ρsydm(r/rs) (2.1)

where ρs is a normalization factor which represents a characteristic density at a characteristic radius,
r = rs. This characteristic radius describes a typical scale at which the pro�le slope changes from
the outer value to the inner value. The functional form of ydm (x) is given by

ydm(x) =
1

xα(1 + x)3−α (2.2)

Here the parameter α characterizes the shape of the pro�le. Since the dark matter density pro�le
is self-similar, the dark matter mass pro�le is also self-similar. So, the dark matter mass enclosed
within a radius r is

M(≤ r) = 4πρsr3
s m(r/rs) (2.3)

where, m(x) is a non-dimensional mass pro�le given by

m(x) =

∫ x

0
du u2ydm(u) = ln(1 + x) − x

(1 + x) ; (2.4)

Here, the last equality is valid for α = 1 which is the much used NFW pro�le (Navarro et al. 1996,
1997), the integral being evaluated by Suto et al. (1998).

The de�nition of the virial radius, Rvir, is the radius within which the total dark matter mass is
con�ned, i.e., Mvir ≡ M(≤ c), where

c ≡ Rvir
rs

(2.5)

is a dimensionless parameter called the 'concentration parameter'. Evaluating equation (2.3) at the
virial radius, the normalization factor, ρs, is �xed at;

ρs = c3 Mvir
4πR3

virm(c)
(2.6)
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The virial radius, Rvir (Mvir , z) is calculated with the spherical collapse model (Peebles 1980),

Rvir =

[
Mvir

(4π/3)∆c(z)ρc(z)

]1/3
=

[
Mvir c3

4πρsm(c)

]1/3
(2.7)

where the second equality comes from evaluating Rvir from equation (4.2). Here ∆c(z) is the spherical
overdensity of the virialized halo within Rvir at z, in units of the critical density of the universe at z,
ρc(z). Following Komatsu & Seljak (2002), we assume a value ∆c(z = 0) = 100 for a cosmological
model with Ωm = 0.29 and ΩΛ = 0.71.

We follow Bullock et al. (2001) in adopting the approximation for c as a function of the virial
mass of the cluster. They give the median values of `c' and also the 1σ deviations:

c = K
(

Mvir
1.5 × 1013h−1M�

)−0.13
(2.8)

with K = 9 reproducing the best-�t and K = 13.5 and K = 5.8 reproducing the +1σ and the −1σ
values in the concentration parameter. These values of the concentration parameter are also consistent
with the �ndings of Seljak & Huffenberger (2003).

The above set of equations specify the dark matter density pro�le of a particular mass cluster.
Next, we turn our attention to the density pro�le of the gas in hydrostatic equilibrium with this dark
matter distribution.

To compare our results with observations, which usually uses the radius R200 where the overden-
sity is 200, we compute this radius in each case and present our results in the terms of R200.

2.3 Hydrostatic equilibrium of gas and dark matter

Our aim in this section is to determine the density pro�le of the intra-cluster gas using the universal
temperature pro�le (discussed later) and assuming that the gas is in hydrostatic equilibrium with the
background dark matter potential.

The typically smooth morphology of the X-ray emission from the hot intra-cluster medium leads
naturally to the hypothesis that the gas is near equilibrium, strati�ed along isopotential surfaces in a
mildly evolving distribution of dark matter, gas and galaxies. This suggests that the assumption of
hydrostatic equilibrium for such relaxed clusters is mostly justi�ed.

2.3.1 Universal Temperature Pro�le of Gas

The �universal temperature pro�le� used for our calculation (Loken et al. 2002) is (normalized by the
emission-weighted temperature):

T
〈T 〉 =

T0

(1 + r/ax)δ
(2.9)

where 〈T 〉 is the emission-weighted temperature of the cluster, T0 = 1.33, ax = Rvir/1.5, and δ = 1.6.
This �t is good in the radial range (0.04-1.0) Rvir. To determine the emission-weighted temperature
from the cluster mass, we use a relation that arises from adiabatic evolution of the gas in cluster.
Afshordi & Cen (2002) have shown that the observations of Finoguenov et al. (2001) of M500�〈T 〉
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relation in clusters can be understood from gravitational processes alone. We therefore use this em-
pirical relation (M500�〈T 〉) derived by Finoguenov et al. 2001:

M500 = (2.64+0.39
−0.34)1013 M�

(
kb〈T 〉
1 keV

)1.78+0.10
−0.09

(2.10)

where kb is the Boltzmann constant and M500 has been calculated self-consistently by taking the total
mass within the radius where the overdensity is δ ≥ 500.

The main motivation of using this universal temperature pro�le is to see if this pro�le which arises
just out of gravitational interactions alone in clusters predicts anything different from the previously
used default temperature pro�les from gravitational interactions alone. This temperature pro�le is
a result of a high resolution simulation, without any input from non-gravitational processes, carried
out by Loken et al. (2002) which makes use of a Eulerian-based, adaptive mesh-re�nement code that
captures the shocks that are essential for correctly modelling cluster temperatures (for details of the
simulation, refer to Loken et al. (2002)). The temperature pro�les of the simulated ΛCDM and SCDM
clusters are remarkably similar and are well �t by this universal temperature pro�le.

Finoguenov et al. 2001 also point out that the M500�〈T 〉 relation becomes �atter (M500 ∝ T 1.58)
when low mass clusters (M500 ≤ 5 × 1013M�) are excluded i.e. the M500�T relation becomes closer
to self-similar relation of M500 ∝ T 1.5. We have tried out with a �atter M500�T relation and seen
that the results do not change appreciably. The code used by Loken et al. (2002) was tested as a part
of the Santa Barbara cluster comparison project (Frenk et al. 1999) in which 12 groups simulated a
Coma-like cluster using a variety of codes and resolutions. They have shown that their results are
among the highest-resolution results presented in the paper (central resolution of 7.8h−1kpc). They
have also pointed out that their results for the Santa Barbara cluster are in excellent agreement with
the results obtained from those of a new, completely independent code (Kravtsov, Klypin & Hoffman
2002).

This pro�le is in good agreement with the observational results of Markevitch et al. 1998 but
diverges, primarily in the innermost regions, from their �t which assumes a polytropic equation of
state. This pro�le is also in very good agreement with a recent sample of 21 clusters observed by
BeppoSAX (De Grandi & Molendi 2002) with and without cooling �ows. Although the simulation
result is consistent with the data at outer radii, there is some difference in the inner region of clusters,
indicating that there could be some additional physics at small radii (r < 0.1Rvir) (Nath 2003).

We emphasize that this temperature pro�le does not include the effects of cooling and galaxy
feedback or for that matter any additional physics. This temperature pro�le can be used, therefore, to
probe the in�uence of gravitational interactions on the ICM, at radii ≥ 0.1Rvir.

It is instructive to compare the above mentioned temperature pro�le with the temperature pro�le
calculated by assuming that ρgas(r) = fgasρdm(r), ∀r where fgas = 0.105 (e.g in Bryan 2000, Wu &
Xue 2002b) for a range of cluster masses. This is the self-similar model that has been used as a
calibrator for the in�uence of gravitational processes. Although one does not expect in reality for the
above proportionality to hold for arbitrarily small radii, it has been expected that the in�uences of
shocks resulting from gravitational interactions alone does not extend beyond ∼ 0.1Rvir (e.g., Bryan
2000). This model therefore has been widely used to calculate the expected entropy of the gas at
radii ≥ 0.1Rvir from gravitational interactions alone, and compare this expectations with the observed
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Figure 2.1: The variation of gas temperature (scaled by T200) with scaled radius for 2 clusters of
different masses. The region shaded with vertical lines is the spread in gas temperature pro�les of
Loken et al. (2002) due to 1σ spread in the concentration parameter `c' for a cluster of 〈T 〉 ' 8.5 keV
with the solid line in the middle being the pro�le for the best �t value of `c'. The region shaded with
solid slanted lines is the universal temperature pro�le with the same spread in `c' for a poor cluster
of 〈T 〉 ' 0.85 keV with the long-dashed line in the middle being for the best �t value of `c'. The
region shaded dark with closely spaced horizontal lines is the result of the self-similar calculations
for a cluster 〈T 〉 ' 8.5 keV representing the spread in gas temperature for a 1σ spread in `c' with
the solid line in the middle being the result for the best �t `c'. Finally the region shaded with broken
dashed lines is the gas temperature for the self-similar model of a cluster of 〈T 〉 ' 0.85 keV with the
spread being due to a spread in `c'.

values.
We compare the temperature pro�les assumed for the present model, and the pro�les obtained

using the self-similar model (ρgas(r) ∝ ρdm(r)) in Figure (2.1), normalizing the temperature pro�les
by T200, where

T200 =
GM200µmp

2R200
(2.11)

where, M200 =
∫ R200

0 4πρdmr2dr.
It is seen that the universal temperature pro�les (see Figure (2.1)) �atten towards the inner regions

of the cluster (within 0.2R200), whereas the temperature pro�les calculated using ρgas(r) ∝ ρdm(r)
(hereafter, referred to as self-similar pro�les) dip at the central region of the cluster.

2.3.2 Density Pro�le of Gas

We next numerically evaluate the density pro�le of the intra-cluster gas with the above de�ned tem-
perature pro�le given in equation (4.12) assuming hydrostatic equilibrium.
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Let us consider a spherical gas cloud with temperature T (r); then its density distribution ρg(r) in
hydrostatic equilibrium satis�es

1
ρgas(r)

d
dr (Pgas(r)) = −GM(≤ r)

r2 (2.12)

where,

Pgas =
(ρgas(r)
µmp

)
kbT (r) (2.13)

where M(≤ r) is the total mass inside radius r (equation 2.3) and µ and mp denote the mean molec-
ular weight (we use µ = 0.59) and the proton mass. The boundary condition which is imposed in
evaluating this integral is that the gas-fraction, fgas, within the virial radius is universal and is equal to
0.105, as recently found by Ettori (2003) for a sample of low and high redshift clusters. Since the total
gas mass is negligible compared to the dark matter, Mtotal ≈ Mdm, mass in dark matter, and therefore
fgas ≈ Mgas

Mdm
. The question whether or not fgas is independent of cluster mass has been a topic of debate

in the literature (White & Fabian, 1995; Ettori & Fabian, 1999; Markevitch et al. 1999; Wu & Xue,
2000). Although recent observations by Sanderson et al. (2003) show an apparent trend of fgas being
smaller for lower temperature systems, they also found that a universal value of fgas can �t their data.
According to them, the unweighted mean of their data set of gas-fraction within the virial radius is a
constant close to fgas = 0.13 ± 0.01 to 0.1 ± 0.01, the variation being due to the variation in the slope
of the M�〈T 〉 relation.

We note that this normalization provides a conservative estimate of the entropy of the gas from
gravitational collapse alone since a lower value would only increase the entropy at all radii.

Figure (2.2) shows the gas-density pro�les of 2 clusters of different masses. It compares the den-
sity pro�les of the present model (lower set of curves) to the density pro�les from self-similar assump-
tions (higher set of curves) with a constant proportionality factor of fgas = 0.105 i.e., ρgas = fgasρdm. As
expected, it is seen that the gas density is much shallower in the inner parts of the cluster as a result of
the universal temperature pro�le being �at at the inner regions. Interestingly enough, the density pro-
�les obtained from the universal temperature pro�le deviates from self-similar expectations at radii
much larger than 0.1R200. For a poor cluster with emission weighted temperature of 0.85 keV the
deviations become signi�cant even at r ∼ 0.4R200.

We note that the emergence of a core in the gas density distribution has been noticed by previous
authors of numerical simulations, even in the absence of non-gravitational heating and cooling pro-
cesses (Frenk et al. 1999). This appears to result from the transfer of energy between baryonic and
dark matter during merger events (Eke et al. 1998).

We have also done all the calculations described here for a coma-like cluster (Mvir = 1.1×1015M�)
for a S-CDM universe using the same parameters as in the Santa Barbara Cluster Comparison Project
(Frenk et al. 1999) to check for the consistency of our method and results. We �nd that all the prop-
erties like gas-density pro�le, X-ray luminosity calculated using the prescription described in this
chapter match the simulated results of Frenk et al. (1999).
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Figure 2.2: Gas density pro�les for 2 different clusters with scaled radius. The region shaded with
horizontal lines is the spread in gas density as a result of the 1σ spread in the concentration parameter
for a rich cluster of 〈T 〉 = 8.5 keV. The region shaded with slanted lines corresponds to a low mass
cluster (0.85 keV). The higher set of curves correspond to the self-similar model (ρgas = fgasρdm). The
dot-dot-dashed line represents the cooler cluster (0.85 keV) and the dashed line the hotter of the two
(8.5 keV).
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Figure 2.3: Scaled entropy pro�les (scaled by 1/T200) for 2 clusters. The region shaded with horizontal
lines represents the spread in the scaled entropy pro�les due to the 1sigma spread in the concentration
parameter `c' for a cluster with 〈T 〉 of 8.5 keV and the region shaded with slanted lines represents
the spread in the scaled entropy pro�les for a cluster with 〈T 〉 of 2.44 keV. The region shaded with
vertical lines is for a low mass cluster of 〈T 〉 0.85 keV. The bottom line (solid) shows the slope of 1.1
expected from shock heating. Its normalization is arbitrary.

2.4 Implications of the universal temperature pro�le and the derived
gas density pro�le

In this section, we focus on the implications of the above temperature and gas-density pro�les on the
other physical properties of this intra-cluster gas like entropy, gas-mass, variation of Mgas with cluster
mass or emission-weighted temperature, T and gas-fraction, fgas in light of recent observations.

2.4.1 Entropy Pro�les and Scaling Properties

For convenience, 'entropy' for the intra-cluster gas is de�ned as

S ≡ T
n2/3

e

(keV cm2) (2.14)

where, T is the temperature of the gas and ne the particle density. This quantity is directly related
to observations. This has been referred to by a number of authors as 'adiabat', since (apart from
a constant relating to mean particle mass) it is the coefficient relating pressure and density in the
adiabatic relationship P = Kργ. Hence S is conserved in any adiabatic process. Note that the true
thermodynamic entropy is related to this de�nition via a logarithm and additive constant.

In this section, we discuss the scaled entropy pro�les (scaled with the emission-weighted tem-
perature, 〈T 〉) obtained from our density and temperature pro�les for 5 different mass clusters. We
calculate the emission-weighted temperature corresponding to the pro�les discussed above within a
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�ducial radius of 0.3R200 (in the band 0.5− 10 keV), using the Raymond Smith code, for a metallicity
of Z/Z� = 0.3:

〈T 〉 =

∫ 0.3R200
0 4πr2ni(r)ne(r)ε0.5−10T (r)dr
∫ 0.3R200

0 4πr2ni(r)ne(r)ε0.5−10dr
(2.15)

where ni and ne represent the ion and electron density and ε0.5−10 denotes the emissivity relevant for the
0.5 − 10 keV band. We �nd that the emission weighted temperature obtained in this manner matches
well (within 0.5%) with the value assumed to calculate the temperature pro�le itself (from equation
4.12). This shows that the system of equations used for our calculations is self-consistent.

Under the assumption that all these systems form at the same redshift, their mean mass densities
should be identical. Hence in the simple self-similar case, where all have similar pro�les and identical
gas-fractions, S will simply scale with emission-weighted temperature 〈T 〉. We apply this scaling and
scale the radial coordinate to R200 for each system, derived as mentioned above.

We show these scaled entropy pro�les in Figure (2.3). It can be seen that the entropy pro�les
of the cooler systems, scaled in the above mentioned way tend to be signi�cantly and systematically
higher than that of rich clusters. In these derived entropy pro�les, we notice that they generally �atten
in the very interior parts of the clusters (inside 0.05R200) resulting from the �attening of density dis-
tribution at these radii. It is also seen that there is a noticeable tendency for the scaled entropy to be
higher, at a given scaled radius, in cooler systems. Simulations and analytical models of cluster for-
mation involving heating from accretion shocks, produce entropy pro�les with logarithmic slopes of
approximately 1.1 (Tozzi & Norman 2001), which agrees rather well with the slope of the calculated
pro�les outside R ≈ 0.2R200, for rich clusters but it does not show good agreement with the entropy
pro�les for poor clusters.

The general trend of our calculated scaled entropy pro�les are in good agreement with the recent
results of PSF03. However, it is seen that the values in general are systematically lower than that of
PSF03 at around 0.01R200 and also at the outer reaches of the cluster.

In Figure (2.4), we plot the variation of entropy S at 0.1R200 with emission-weighted temperature,
〈T 〉. The data points with the error bars are from PSF03. The region shaded with oblique lines repre-
sents the entropy calculated from the above described model with the 1σ spread in the concentration
parameter `c' and the region shaded with crossed lines corresponds to the self-similar density pro�les.

The discovery of an entropy �oor in galaxy groups and clusters (Ponman et al. 1999) was based
on the measurement of gas entropy at 0.1R200, in systems spanning a wide temperature range. This
radius was chosen to lie close to the centre, where accretion shock-generated entropy should be min-
imum, hence maximising the sensitivity to any additional entropy, whilst lying outside the region
where the cooling time is less than the age of the universe, and hence the entropy may be reduced.
This initial study was improved by Lloyd-Davies et al. (2000) who derived an entropy �oor value of
139h−1/3

50 keVcm2 from a sample of 20 systems. However, the recent results of PSF03 show that there
is no such entropy �oor. They point out that an unweighted orthogonal �t to the data points, which
have been grouped into temperature bins, gives a logarithmic slope of 0.57 ± 0.04, as opposed to
S ∝ T in self-similar relation.

As is seen in the �gure, the entropy calculated from our model is higher than the previously
calculated entropy from self-similar models (Wu & Xue, 2002b) for the poor clusters and similar or
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Figure 2.4: Gas entropy at 0.1R200 as a function of emission-weighted temperature. The region shaded
with slanted lines shows the spread in entropy due to the 1σ spread in the concentration parameter
with the solid line in the centre being the results of the best-�t `c' for the above described model, the
data points are from PSF03 and the region shaded with crossed lines shows the spread in entropy due
to the spread in `c' for the self-similar model (ρgas ∝ ρdm) with the dashed line in the centre being the
results of the best-�t `c'.

slightly lower for rich clusters. However it is lower than the data points from PSF03, the difference
being more pronounced for poor clusters. This is because of the fact that the density pro�le deviates
from the self-similar models even at 0.1Rvir.

We have noted earlier that the gas density pro�les corresponding to the universal temperature
pro�le is substantially �atter than the self-similar models even at radii larger than 0.1R200 (see Fig-
ure (2.2)). It is therefore instructive to compare the entropy at larger radii with that from self-similar
models and data. Recently Finoguenov et al. (2002) compared the entropy at R500 (which is ∼ 2

3 R200 for
the range of cluster masses) with those expected from self-similar models and concluded that there is
excess entropy even at this large radius, indicating the large scale in�uence of preheating processes.

In Figure (2.5), we show a plot of `entropy' S (R500) with emission-weighted temperature, 〈T 〉. The
region shaded with slanted lines represents the present model with the 1σ spread in the concentration
parameter and the region shaded with crossed lines shows the entropy calculated from the self-similar
model (ρgas(r) ∝ ρdm(r)). The solid line through the middle of the region shaded with slanted lines
represents the results for the best-�t `c'. Data from PSF03 are also plotted for comparison. We �nd
that the level of entropy at R500 is reasonably consistent with the observed values for rich clusters but
they are lower than the observed values for intermediate and low mass clusters, with the de�ciency
becoming appreciable for poor clusters. We note that previous authors had re-normalized the expec-
tations for self-similar models by matching them with the entropy of the richest clusters and thus
concluded the presence of excess entropy at R500. We do not normalize our calculated entropies in this
manner in this chapter. However, it still shows that there is a need for non-gravitational heating even
at large radii especially for low mas clusters to ful�ll the requirement of this excess entropy.

The Figures (2.3 and (2.4) clearly show that the entropy of the ICM in the central regions
(≤ 0.1R200) from gravitational processes alone, is larger than the previous expectations from self-
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Figure 2.5: Entropy at R500 as a function of emission-weighted temperature. The solid line is the
result of the above described model with the best-�t value of `c' and the region shaded with slanted
lines being the spread in the entropy due to the 1σ spread in `c'. The data points are from PSF03. The
dashed line is the entropy calculated from the self-similar model(ρgas ∝ ρdm) with the best-�t value of
`c' and the region shaded with crossed lines showing the spread in entropy due to the spread in `c'.

similar models. It is then reasonable to conclude that the entropy imparted by interactions between
dark matter and baryons (Eke et al. 1998) has been underestimated. Therefore, we �nd that gravi-
tational interactions impart more entropy to the gas in the central regions than estimated earlier but
the problem of excess entropy for low mass clusters still remains. It is interesting to �nd that the
entropy at R500 in the present model is consistent with the observed values for rich clusters but are
low for poorer clusters which probably con�rms the requirement of some process which would help
preferentially increase their entropy. It is not surprising to �nd consistency in the case of rich clusters
though, as we have already noted that the temperature pro�le of Loken et al. (2002) is consistent with
the observed pro�les at outer radii.

2.4.2 Gas Distribution

In this section, we discuss the effects of this temperature pro�le and the resulting density pro�le on
the relation between Mgas with mean emission-weighted temperature and the gas-fraction, fgas pro�les
and the variation of fgas, in the inner regions, with emission-weighted temperatures.

2.4.2.1 Mgas (R500) - 〈T 〉

In Figure (2.6), we present the Mgas − 〈T 〉 relation as predicted by the present model (solid line), the
relation derived from the self-similar model (dotted line), and the data points from Mohr et al. (1999)
within R500. It is seen that the gas mass within R500 calculated from the present model is slightly
higher than the data points, but lower than the expectations from self-similar models for clusters with
〈T 〉 ≤ 3 keV and slightly higher for clusters with 〈T 〉 ≥ 3 keV, which was previously thought to be
the result of gravitational processes alone. The logarithmic slope of our curve (∼ 2.08) is steeper than
the self-similar slope of 1.5, and close to the observed slope.
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Figure 2.6: Comparison of Mgas (R500) − T relations. The data points with error bars represent gas
mass determinations of Mohr et al. (1999) within R500. The solid line is the result of the present model
using the best-�t value of `c' with the region shaded with slanted lines representing the spread in `c',
the region shaded with crossed lines being the prediction of the self-similar model with the dashed
line in the centre being the results of the best-�t value of `c'.

Figure 2.7: Gas fraction within 0.3R200 as a function of emission- weighted temperature,〈T 〉. The
region shaded with slanted lines represent the above discussed model with spread in `c' with the solid
line in the centre being the results of the best-�t value of `c' and the dashed line represents the model
with ρgas ∝ ρdm. The data points are from Sanderson et al. 2003.
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2.4.2.2 Gas fraction fgas and its spatial variation

The variation in the gas fraction ( fgas), evaluated within a characteristic radius of 0.3R200 is shown is
Figure (2.7). The solid line is the calculated gas fraction from the present model and the dotted line
shows the results of self-similar model. The data have been taken from PSF03. It is noted here that
the gas fraction obtained from the present model is slightly higher than the data points. However,
it is also seen here that there is a clear trend for cooler systems to have a smaller mass fraction of
X-ray emitting gas in the central regions, as a result of gravitational processes alone. The gas fraction
obtained from the self- similar model is a constant as it should be by de�nition.

To understand the behaviour of gas fraction with radius better, we have plotted fgas(r) with the
scaled radius, r/R200 in Figure (2.8) for 5 clusters of different masses. The general trend seen here is
for gas-fraction to rise monotonically with radius (especially for clusters with 〈T 〉 ≤ 3 keV) all the
way till R200. There is, however, a �attening of the pro�les for the rich clusters (〈T 〉 ≥ 3 keV) beyond
0.5R200 with a slight bump around 0.3R200. It should be noted that the �t provided by Loken et al. 2002
is accurate to about 10 % for r ≤ 0.5Rvir and underestimates their simulated temperature pro�le in
this region. This may increase the gas density pro�le at smaller radii and account for the bump in
Figure (2.8). It can be seen clearly that the pro�les lie in order of temperature such that, at a �xed
radius, gas fraction decreases as temperature decreases, mirroring the trend in Figure (2.7).

If cluster evolution (with gravitational processes alone) were an entirely self-similar process, then
fgas should be a constant at a given over- density in all objects. Figure (2.9) clearly shows that this is
not the case, even for evolution in the presence of gravity alone. Poor clusters seem to have a much
lower gas mass fraction compared to rich clusters at the same overdensity which was also seen by
David et al. 1995. Again, a bump is seen for the richest cluster as seen in Figure (2.9). We have
already discussed the probable reasons for this feature earlier.

2.4.3 X-ray Luminosity-Temperature Relation

In this section, we compute the bolometric X-ray luminosity, corresponding to the pro�les discussed
above (in the band 0.5-10 keV), using the Raymond-Smith code, for a metallicity of Z/Z� = 0.3. We
compute the luminosities within the virial radius 0.3R200. The X-ray luminosity is computed as,

LX =

∫ 0.3R200

0
4πr2ni(r)ne(r)ε0.5−10 (2.16)

where ni, ne represent the ion and electron density and ε0.5−10 denotes the emissivity relevant for
0.5-10 keV band. We present the results in Figure (2.10).

It is seen, from Figure (2.10), that the luminosity calculated from the present model (with the
above quoted values of the cosmological parameters) is close to the observed data (scaled with h =

0.71 as used for the models) for clusters with emission-weighted temperature 〈T 〉 above 1.0 keV. The
data points are from Arnaud & Evrard 1999 and Markevitch 1998 for clusters above 5.0 keV and
from Heldson & Ponman 2000 for low 〈T 〉 regime i.e. for low mass clusters and groups are also
shown. Interestingly, compared to the dotted line which represents the self-similar model (ρgas ∝ ρdm),
the present model shows that the luminosity for low mass clusters (below 5 keV) is closer to data
points. However, the luminosity is still somewhat over-estimated in this model when compared to
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Figure 2.8: Spatial variation of gas fraction within a given radius (normalized to R200) for three dif-
ferent clusters with different emission-weighted temperature T . The solid line with the region shaded
with horizontal lines represents the coolest system (0.85 keV), increasing in temperature through
long-dashed with a region shaded with slanted lines (2.22 keV) and �nally short-dashed (8.5 keV)
line with the region shaded with vertical lines. These shaded regions represent the spread in gas
fraction due to the 1σ spread in `c'.
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Figure 2.9: Gas mass fraction as a function of the overdensity δ, for three different clusters with
different emission-weighted temperature T . The solid line with the region shaded with horizontal
lines represents the coolest system (0.85 keV), increasing in temperature through short-dashed with
a region shaded with slanted lines (2.22 keV) and �nally long-dashed (8.5 keV) line with the region
shaded with vertical lines. These shaded regions represent the spread in gas fraction due to the 1σ
spread in `c'.
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Figure 2.10: Relation between bolometric X-ray luminosity LX and emission- weighted tempera-
ture (〈T 〉). The data points represented by 'stars' show measurements of clusters with insigni�cant
cooling �ows compiled by Arnaud & Evrard (1999). Open squares show cooling �ow-corrected mea-
surements by Markevitch et al. (1998). The data points with error bars show group data from Helsdon
& Ponman (2000). The shaded region represents X-ray luminosity calculated using the above model
with the 1σ spread in `c' with the solid line representing the median value and the region shaded with
crossed lines is the result of the self-similar model with the same spread in `c'. The models assume a
ΛCDM cosmology with ΩM = 0.29, ΩΛ = 0.71, and Ωb = 0.047, and a Hubble parameter of h = 0.71
has been applied to the models and the data.

data. This again indicates that there is requirement for some non-gravitational heating (preferentially
in low mass clusters) to reduce the gas density further and thus the X-ray luminosity. We note here
that the X-ray luminosity depends strongly on the assumed metallicity, especially for low temperature
systems, and the uncertainty over abundance of gas in poor clusters is yet to be resolved (Buote 2000,
Davis 1999).

In Figure (2.11), we have plotted the X-ray luminosity integrated within a radius R1000 where the
overdensity δ ≥ 1000. The results of our calculations are compared with the best-�t results of Ettori
et al. 2002. It is interesting to �nd that the X-ray luminosities calculated from the above model lie
within the 1σ spread of the results of Ettori et al. 2002.

2.5 Discussion

To recapitulate, our attempt here has been to study in detail the implications of the universal temper-
ature pro�le obtained from recent high resolution simulations (Loken et al. 2002), with no input from
non-gravitational processes, such as heating or cooling. We have compared the predictions of entropy
and gas fraction from this temperature pro�le with the self-similar model (ρgas ∝ ρdm), which has been
used in the literature as a reference model for calibrating the in�uence of gravitational processes, at
radii r ≥ 0.1Rvir. The only assumption that we have made in this chapter is that of hydrostatic equilib-
rium, apart from the assumption of the background dark matter density pro�le. We have found that
the result of gravitational processes alone is much different from what has been used in the literature
so far.
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Figure 2.11: Relation between bolometric X-ray luminosity LX and emission- weighted temperature
(〈T 〉). The shaded region enclosed in between the two solid lines represents the 1σ spread which
are the results of the best-�t analysis of the data of Ettori et al. 2002 with the solid line through the
middle being the results of using the best �t parameters. The region shaded with slanted lines is the
1σ spread calculated using the 1σ deviations in the concentration parameter stated above with the
dashed line being the results of the median value of `c' and the region shaded with crossed lines in
the result of similar calculations using the self-similar model.

Firstly, the widely used assumption that entropy imparted to the gas from the interaction between
dark matter and baryons is limited to the very central region, r � 0.1Rvir appears to be simplistic. The
corresponding assumption that the gas density pro�le expected from gravitational processes alone
is proportional to the dark matter density pro�le at r ≥ 0.1Rvir seems to be violated. Curves in
Figure (2.2) show that the gas density pro�le deviates from the simple proportionality at a much
larger radii, r ≥ 0.5R200, and this deviation is larger for lower temperature systems.

If the temperature pro�le obtained by Loken et al. (2002) is con�rmed to be the one that is ex-
pected from gravitational processes alone, then the implications discussed here are inevitable. Instead
of using the self-similar models, one must use the present model to benchmark the expectations from
gravitational processes, and then compare it with the data to infer the need for any additional physics.

However, to conclude de�nitively about the presence of any non-gravitational heat in the ICM,
one needs to know better about the dark matter pro�le in clusters and to resolve the uncertainties in
the concentration parameter in dark matter halos of clusters. This idea was also explored by Lloyd-
Davies et al. (2002) who concluded that the scatter in the concentration parameter plays a role in
the determination of the contribution of non-gravitational heating in the intra-cluster medium. Also,
in this context, it is worthwhile to point out that the dependence of `c' on redshift would have an
effect on the results. This is because the assumption that the clusters were all formed at a redshift
zf = 0 is a simpli�cation of the actual picture. Different clusters would form at different redshifts
according to the theory of structure formation (Press & Schechter, 1974) and that would mean that
the concentration parameters would be different. The values of `c' would be lower as c ∝ 1

(1+z) (as
found by Bullock et al. 2001). This will make the results slightly different, e.g., entropy at 0.1R200

would be higher than the values plotted now and thus closer to the data and the X-ray luminosity
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would also be lower and thus closer to the data points. However, the entropy at R500 will increase as
a result of this and the gas fraction at 0.3R200 will decrease, thus being closer to the respective data
points.

We �nd that for entropy at 0.1R200 the present model produces lower entropy than the data for
all clusters. The difference is larger for poorer clusters. The problem would then be to increase the
entropy, especially for poor clusters, as has been required from theoretical models earlier. The re-
quirement of non-gravitational heating as estimated from earlier theoretical models would be reduced
because as it is seen here that the entropy at inner regions were under-estimated in earlier models. We
also �nd that the entropy expected at R500 is consistent with the data for rich clusters but it is lower
than the data points for low mass clusters emphasizing the need for some process to heat the gas even
at large radii. It is however interesting that the scaled entropy pro�les are similar to that observed
(PSF03, Mushotzky et al. 2003).

It is possible that the discrepancy between the present model and the data for entropy at 0.1R200

and X-ray luminosity for rich clusters can be alleviated by gaseous processes such as thermal con-
duction. As Loken et al. (2002) commented, the observed temperature pro�le is more �attened than
their simulated pro�le, with somewhat larger temperature at ∼ 0.1R200. This could be due to thermal
conduction (e.g., Nath 2003). This would then decrease the density in the inner regions and would
(1) increase the entropy & (2) decrease X-ray luminosity to be consistent with data for rich clusters.
We note that thermal conduction is however less important in poor clusters.

We have noted that normalizing the gas content of clusters with a constant gas fraction for all
clusters provides a conservative estimate of entropy from gravitational collapse alone. Also, we have
found that changing the exponent of the M500�T relation to 1.5 does not change the results much.

The total gas mass at a �ducial radius of R500 expected from the present model are again closer to
the data than the previous self-similar model. The gas fraction at 0.3R200 calculated from this model
is higher than the data but it agrees better in comparison to the previously calculated ones from the
self-similar model. It also rises with the temperature of the cluster as observed.

There is, therefore, some difference between the expectations from the present model and the
data. If the present model is a realistic indicator of gravitational processes alone, then the results from
this model should be compared with the data, to determine the requirements of additional physics, if
any, to explain the data.

2.6 Conclusion

The primary aim of this work was to study the implications of the 'universal temperature pro�le'
arising out of pure gravitational interactions in galaxy clusters. We have determined the gas density
pro�le corresponding to this temperature pro�le, and studied various implications of this pro�le. The
only assumptions made in this chapter is that of hydrostatic equilibrium and the temperature pro�le
of Loken et al. 2002.

We have also shown the dependence of the above results on the uncertainty in the knowledge of
the concentration parameter `c'.

Given the uncertainty in the concentration parameter, the main results are summarized below:
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(a) Gas density pro�les expected from gravitational processes alone is �atter than previously
thought, even at radii much larger than 0.1Rvir.

(b) Entropy expected from gravitational processes alone at 0.1R200 are larger than previously
thought, especially for low mass clusters, but still lower than the observed values, with the discrep-
ancy increasing for low mass clusters. The entropy expected at R500 is consistent with observed values
for rich clusters but it is lower than the data points for low mass clusters. Thus it emphasizes the need
for non- gravitational heating preferentially for low mass clusters even at large radii.

(c) Gas fraction in the inner region (0.3R200) expected from gravitational process alone is much
smaller than previously thought, and but slightly higher than the observed values.

We therefore conclude that if the temperature pro�le of Loken et al. (2002) is indeed the result
of evolution of the intracluster gas involving gravitational processes alone, then the contribution of
non-gravitational processes to the physics of ICM has to be revised. Infact, we would like to point
out here that this chapter provides the benchmark entropy level from gravitational processes alone,
which we are going to use to assess the requirement of non-gravitational processes in the following
chapters.
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