
4 Heat transport through disordered

harmonic chain

Since the seminal paper of Anderson [11], the physics of localization in disordered systems has

now been studied for over half a century [12, 15, 19, 160]. Recently, there has been a renewed

interest in this field with a lot of work on some open questions such as, the effect of interactions

on localization [161–163], and the metal-insulator transition in two dimensions [164]. A number

of recent experiments have also reported detailed studies on localization in varied systems such

as heat conduction in an isotopically disordered nanotube [165] , electrons in a disordered carbon

nanotube [166], photons in a waveguide [167] and sound localization in elastic networks [168].

The field is thus still filled with interesting questions and puzzles. In this chapter, we report our

recent results on heat energy transport in disordered harmonic lattices. We consider quenched

disorder. We study random mass harmonic lattices with scalar displacements in one dimension.

The subject of heat conduction in disordered chains is now quite old; still the dependence of the

heat current on boundary conditions and the bath spectral properties has been quite puzzling and

has not been clearly understood. Here we have critically examined this problem both analytically

and through numerics and believe that we now have a clear understanding of the issue [169]. Our

general method of study is again through LEGF.

It is well known that all the eigenstates of an electron in a one-dimensional (uncorrelated)

disordered potential are localized [12]. The electrical current, thus, decays exponentially with

wire length, making it an insulator. In contrast, in phononic systems, for example, a disordered

harmonic chain, the long wavelength modes are extended and can conduct a significant amount

of heat. How good a heat conductor then is the disordered harmonic chain? The obvious

question to ask is the system size (N) dependence of the disorder averaged steady state heat

current, which we will denote by 〈J〉. It is expected that this has the form 〈J〉 ∼ 1/N1−α

so that the conductivity scales as κ ∼ Nα. The present chapter is organised as follows. In

Sec. (4.1), we briefly review earlier work on heat conduction in a one dimensional isotopically

disordered harmonic chain (IDHC)[14]. Then, in Sec. (4.2), we introduce the model of interest

and give numerical results. Next, we do a qualitative analysis to understand better our numerical

results in Sec. (4.3). In Sec. (4.4), we provide heuristic arguments and numerical evidence to

show that 〈Jn〉 ∼ 1/Nn−1/2 for a finite (n) number of pinning centers with 2 ≤ n ≪ N . In
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92 Heat transport through disordered harmonic chain

Sec. (4.5), we comment on the nature of size dependence in case of quantum mechanical heat

conduction in IDHC at low temperatures. We complete the chapter with a short discussion in

Sec .(4.6) enlightening on experimental verification of our results and physical understanding of

the phenomena.

4.1 Previous results

In an important work on the localization of normal modes in the IDHC, Matsuda and Ishii [15]

(MI) showed that normal modes with frequencies ω
<∼ ωd were extended. For a harmonic chain

of length N , given the average mass m = 〈ml〉, the variance σ2 = 〈(ml −m)2〉 and interparticle

spring constant k, it was shown that

ωd ∼
(
km

Nσ2

)1/2

(4.1)

They also evaluated expressions for thermal conductivity of a finite disordered chain connected to

(a) white noise baths and (b) baths modeled by semi-infinite ordered harmonic chains (Rubin’s

model of bath). In the following we will also consider these two models of baths and refer to

them as model(a) and model(b). For model(a) MI used fixed boundary conditions (BC) and

the limit of weak coupling to baths, while for case (b) they considered free BC and this was

treated using the Kubo formalism. They found α = 1/2 in both cases, a conclusion which we

will show is incorrect. The other two important theoretical papers on heat conduction in the

disordered chain are those by Rubin and Greer [16] (RG)who considered model(b) and of Casher

and Lebowitz [17] (CL) who used model(a) for baths. RG obtained a lower bound 〈J〉 ≥ 1/N1/2

and gave numerical evidence for an exponent α = 1/2 and this was later proved rigorously by

Verheggen [170]. On the other hand, for model(a), CL found a rigorous bound 〈J〉 ≥ 1/N3/2 and

simulations by Visscher with the same baths supported the corresponding exponent α = −1/2.

In a more recent work [18], Dhar gave a unified treatment of the problem of heat conduction in

disordered harmonic chains connected to baths modeled by generalized Langevin equations and

showed that models(a,b) were two special cases. An efficient numerical scheme was proposed

and used to obtain the exponent α and it was established that α = −1/2 for model(a) (with

fixed BC) and α = 1/2 for model(b) (with free BC). It was also pointed out that in general, α

depended on the spectral properties of the baths.

Here we apply the same formulation as developed in [18] to understand in detail the role of

BCs’ (and more generally the presence of pinning potentials) on heat transport in the IDHC

connected to either white noise [model(a)] or Rubin baths [model(b)]. We show that with the

same kind of pinning, the exponent α is the same for the two different bath models. The pinning

potentials strongly scatter low frequency waves and hence can be expected to lower the heat
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current. Surprisingly, we find that even the exponent α changes with the number of pinning

centers. We also provide expressions for the asymptotic value of 〈J〉 for various cases.

4.2 Model and results for zero, one and two pins

The Hamiltonian of the IDHC considered here is

H =
N∑

l=1

1

2
mlẋ

2
l +

N−1∑

l=1

1

2
k(xl+1 − xl)

2 +
1

2
k′(x2

1 + x2
N) , (4.2)

where {xl} denotes the displacement of the particle at lattice site l. The random masses {ml}
are chosen from a uniform distribution between (m − ∆) to (m + ∆). The strength of onsite

potentials at the boundaries is k′. The particles at two ends are connected to heat baths at

temperature TL and TR. The heat reservoirs are modelled by generalised Langevin equations

[18, 33, 46]. The steady state classical heat current through the chain is given by:

J =
kB(TL − TR)

4π

∫ ∞

−∞

dωTN(ω), where (4.3)

TN(ω) = 4Γ(ω)2|G1N(ω)|2, Ĝ(ω) = Ẑ−1/k

and Ẑ(ω) = [−ω2M̂ + Φ̂ − Σ̂(ω) ]/k,

with Φlm = (k + k′)δl,m − kδl,m−1 for l = 1,

= −kδl,m+1 + 2kδl,m − kδl,m−1 for 1 < l < N,

= (k + k′)δl,m − kδl,m+1 for l = N,

Σlm(ω) = δl,m[Σ11(ω)δl,1 + ΣNN(ω)δl,N ],

Mlm = mlδl,m,

where M̂ and Φ̂ are respectively the mass and force matrix for the harmonic chain and Ĝ

is the Green’s function of the chain connected to baths. The self-energy correction in the

Green’s function Σ̂, coming from the baths, is a N × N matrix whose only non-zero ele-

ments are Σ11 = ΣNN = Σ(ω) and Γ(ω) = Im[Σ]. For white noise baths Σ(ω) = −iγω
where γ is the coupling strength with the baths, while in case of Rubin’s baths Σ(ω) =

k{1 − mω2/2k − iω(m/k)1/2[1 −mω2/(4k)]
1/2}. We have assumed that the RG bath has

spring constant k and equal masses m. We note that TN(ω) is the transmission coefficient of

phonons through the disordered chain. To extract the asymptotic N dependence of 〈J〉 we need

to determine the Green’s function element G1N(ω). It is convenient to write the matrix elements

Z11 = −m1ω
2/k + 1 + k′/k − Σ/k = −m1ω

2/k + 2 − Σ′ where Σ′ = Σ/k − k′/k + 1 and

similarly ZNN = −mNω
2/k + 2 − Σ′. Following the techniques used in [17, 18] we have

|G1N(ω)|2 = k−2|∆N(ω)|−2 with (4.4)

∆N(ω) = D1,N − Σ′(D2,N +D1,N−1) + Σ′2D2,N−1
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where ∆N(ω) is the determinant of Ẑ and the matrix elements Dl,m are given by the following

product of (2 × 2) random matrices T̂l:

D̂ =

(

D1,N −D1,N−1

D2,N −D2,N−1

)

= T̂1T̂2....T̂N where T̂l =

(

2 −mlω
2/k −1

1 0

)

(4.5)

We note that the information about bath properties and boundary conditions are now contained

entirely in Σ′(ω) while D̂ contains the system properties. It is known that |Dl,m| ∼ ecNω2
for

|l − m| ∼ N [15], where c is a constant, and so we need to look only at the low frequency

(ω
<∼ 1/N1/2) form of Σ′ . We now proceed to examine various cases. For model(a) free BC

correspond to k′ = 0 and so Σ′ = 1 − iγω/k while for model(b) free boundaries correspond to

k′ = k and this gives, at low frequencies, Σ′ = 1− i(m/k)1/2ω. Other values of k′ correspond to

pinned boundary sites with an onsite potential kox
2/2 where ko = k′ for model(a) and ko = k′−k

for model(b). The main difference, from the unpinned case, is that now Re[Σ′] 6= 1. The

arguments of [18] then immediately give α = 1/2 for free BC and α = −1/2 for fixed BC for

both bath models. In fact for the choice of parameters γ = (mk)1/2 we expect, for large system

sizes, the actual values of the current to be the same for both bath models. This can be seen

in Fig. (4.1) where we show the system size dependence of the current for the various cases.

The current was evaluated numerically using Eq. (4.3) and averaging over many realizations

(∼ 4 − 100). We also show the exact asymptotic forms for the current which we will discuss

later. Note that for free BC, the exponent α = 1/2 settles to its asymptotic value at relatively

small values (N ∼ 103) while, with pinning, we need to examine much longer chains (N ∼ 105).

We also find that the presence of a single pinning centre in the IDHC is sufficient to change

the value of α from 1/2 to −1/2 [see Fig. (4.2)]. These results clearly show that, for both

models(a,b), the exponent α is the same and is controlled by the presence or absence of pinning

in the IDHC.

4.3 Qualitative analysis and asymptotic expressions

As mentioned before only modes ω
<∼ ωd are involved in conduction. It was noted in [18] that

in this low frequency regime we can approximate 〈TN(ω)〉 by the transmission coefficient of the

ordered chain T O
N (ω). We can understand it analysing the transfermatrix Tl of disordered chain.

We write (1, 1) term of the transfer matrix as, [Tl]11 = 2 − 〈m〉ω2 − δmlω
2. In ω → 0, we can

now approximate 〈T̂ 〉 = T̂O where T̂O is the transfer matrix of the ordered chain of mass 〈m〉.
We then obtain

〈J〉 ∼ (TL − TR)

∫ ωd

0

T O
N (ω)dω . (4.6)
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Figure 4.1: Plot of 〈J〉 versus N for free BC (n = 0) and fixed BC (n = 2). Results are given
for both models(a,b) of baths. The two straight lines correspond to the asymptotic expressions given
in Eqs. (4.10,4.11). We used parameters m = 1, ∆ = 0.5, k = 1, γ = 1, TL = 2, TR = 1 and ko = 1.
The error in the measurements is much smaller than the size of the symbols.

For model(a), T O
N in the limit N → ∞ is effectively given by [42]:

T O(ω) =
γω2

√
4mk −m2ω2

k′2 + (γ2 +m(k − k′))ω2
. (4.7)

We then find, for free BC (k′ = 0) T O(ω) ∼ 1 while for fixed BC (k′ 6= 0), T O(ω) ∼ ω2. Using

Eq. (4.6) then immediately gives the asymptotic N dependence for the two BCs’. Our results

are valid even in the weak coupling limit γ << 1 and this means that the result given by MI

for model(a) in the weak coupling limit is incorrect. Our numerics supports this conclusion. The

transmission coefficient of the ordered chain in the presence of a single pinning site can also be

computed using the same method of [42]. For a single pin at any of the boundary, it is given as

T O
∞ (ω) =

2γω2
√

4mk −m2ω2

√

4ω4Λ2 + k′Ω(k′Ω + 4ω2Λ)
, (4.8)

with Λ = γ2 + km, Ω = k′ −mω2.

We again find T O ∼ ω2 for k′ 6= 0 at one site. For model(b), the transmission coefficient of

the ordered chain, pinned at the two boundary sites with ko = k′ − k is given effectively by (as

N → ∞):

T O(ω) =
2k2 sin2 q

2k2 sin2 q + k2
o

, (4.9)
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where ω = 2(k/m)1/2 sin(q/2). As expected, for ko = 0 we have T O = 1 while for ko 6= 0,

T O ∼ ω2. The above qualitative analysis thus shows that the effect of introducing pinning

potentials is to pinch the band of conducting modes (between 0 − ωd) from the zero frequency

side and thus lower 〈J〉.
Our asymptotic analysis also allows us to make predictions, on the dependence of 〈J〉, on

various system parameters such as mass variance, spring constant etc. From Eq. (4.6) and the

forms of T O(ω) in various cases we get:

〈J〉Fr = A c
kB(TL − TR)

π

( km

Nσ2

)1/2

(4.10)

〈J〉Fi = A′ c′
kB(TL − TR)

π

( km

Nσ2

)3/2

, (4.11)

where c = 2γ(mk)1/2/(γ2 + mk), 1 for model(a), model(b) respectively. For fixed bound-

aries we have c′ = γ(mk)1/2/ko
2, mk/ko

2 for model(a), model(b) respectively. A,A′ are

constant numbers. We find that for model(b) our numerical results agrees with an exact

expression for 〈J〉Fr due to Papanicolau (apart from a factor of 2π) and this gives A =

π3/2
∫∞

0
dt [t sinh(πt)]/[(t2 + 1/4)1/2 cosh2(πt)] ≈ 1.08417 (see [[170]]). We note that this dif-

fers from the expression given in [15]. For fixed boundaries we find numerically that A′ ≈ 17.28

and the fit is shown in Fig. (4.1).

4.4 More than two pins

Till now, using numerical results and heurestic arguments, we have arrived at the result that for a

IDHC, in the absence of any pinning potential α = 1/2 while the presence of a one or two pinned

sites changes the exponent to α = −1/2. This is true both for white noise and Rubin’s bath. It

is natural to now ask as to what happens in the presence of more number of pinning centers. It

is expected that more pinning centers will lead to enhanced scattering of low frequency phonons

and decrease the heat current but it is not obvious as to whether the exponent α changes. For a

finite fraction of sites on the lattice having pinning potentials, it is known that 〈J〉 ∼ e−cN [163].

Here we investigate the case with a finite number, say n, of pinning sites. Numerically it becomes

difficult to determine α for n > 4 as, with more pins, the heat current becomes very small at large

system sizes and numerical errors become significant. In Fig. (4.2) we show numerical results

for n = 3, 4, where the extra pinning potentials with ko = 1 are placed in the bulk of the chain

with equal separations. We find α ≈ −1.03,−1.38 respectively for n = 3, 4, which are clearly

different from the n = 1, 2 value α = −0.5. Let us now see what our earlier heuristic arguments

give, for n = 3. We again find that the low frequency behaviour of ∆N(ω) are similar for the

disordered and ordered lattices. Let us therefore find the form of ∆N for the ordered case. Let

N = 2M + 1 with the 1st, (M + 1)th and N th sites being pinned. Except for T̂M+1 = T̂ ′ all the
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Figure 4.2: Plot of 〈J〉 versus N for n = 1, 3, 4 pinning centers for model(b). Parameters are same
as in Fig. (4.1) and for these parameters model(a) results are almost indistinguishable for N > 103.
The straight lines have slopes −1.47, −2.03 and −2.38. The error-bars shown are for disorder average
and are of the same order as numerical errors.

other T̂ls’ are identical and given by T̂ , say. The (1, 1) entry of T̂ ′ is 2 + k0/k −m(M+1)ω
2/k

with k0 being the strength of pinning at (M + 1)th site and all other entries of T̂ ′ are same as

T̂ . If we denote D̂N = T̂N and D̂′
N = T̂M T̂ ′T̂M = D̂M T̂

′D̂M , then using the fact that for

the ordered lattice D1N = sin q(N + 1)/ sin(q), where cos(q) = 1 − mω2/(2k), and carrying

out the matrix multiplications above we find that at low frequencies D′
1N is larger than D1N by

a factor ∼ 1/ sin(q) ∼ 1/ω. This means that TN for the 3-pin case will have an extra factor

of ω2 compared to the 2-pin case. Correspondingly one expects, using Eq. (4.6), an exponent

α = −3/2. The argument can be extended to the case of n ≥ 2 pins (two of which are in the

boundaries) in which case we get

α = 3/2 − n . (4.12)

Our numerical results for n = 3, 4 [see Fig. (4.2)] are consistent with this prediction though we

are not able to verify the precise value of the exponent.

Here we generalise an arguement orginally applied by Casher and Lebowitz [17] for IDHC with

two pinning centers (fixed boundaries) connected with white noise baths. First we notice from

Eqs.(4.3,A.7) that in the low ω regime where the IDHC conducts significantly, the dominant term

in the denominator of the current expressions is |D1,N |2. We again consider the three pinning

centers in the chain of length N = 2M + 1. To find an crude lower bound to the disorder



98 Heat transport through disordered harmonic chain

averaged current we need to average over independent variables ml. Next we take direct product

of Eq.(4.5) and find that (1, 1) entry of the left side is |D1,N |2. Defining Ql = Tl ⊗ Tl and

〈Ql〉 = Q, we find

〈D̂ ⊗ D̂〉 = 〈Q1Q2..Q
′
(M+1)..QN〉

= U U−1QU
︸ ︷︷ ︸

U−1Q...U U−1Q′U
︸ ︷︷ ︸

U−1...U U−1QU
︸ ︷︷ ︸

U−1

= Uλ̂M U−1Q′U
︸ ︷︷ ︸

λ̂MU−1 , (4.13)

where U is a (4 × 4) matrix construted from the eigenvectors of Q and λ̂ is a (4 × 4) diagonal

matrix formed by the eigenvalues of Q. Eigenvalues of Q have the form

λ1 = λ, λ2 = λ−1/2eiθ, λ3 = λ−1/2e−iθ, λ4 = 1,

with λ > 1. In large N and ω2 → 0 limit the dominant contribution of 〈|D1N |2〉 comes from λ1.

We find 〈|D1N |2〉 ≃ ω−2ecNω2
where c is a numerical constant. We then use it in the current

expressions (4.3),

〈J〉 ≃ (TL − TR)

∫ ∞

0

〈 1

|D1,N |2
〉

ω2dω

≥ (TL − TR)

∫ ∞

0

ω2

〈|D1,N |2〉
dω

≥ (TL − TR)

∫ ∞

0

ω4e−cNω2

≥ (TL − TR) O[N− 5
2 ] . (4.14)

The above analysis can be carried on for more than three pinning centers and we find a general

formula for the lower bound of disorder averaged thermal current in IDHC with finite n pinning

centers.

〈J〉 ≥ (TL − TR) O[N−n+ 1
2 ] for 2 ≤ n << N. (4.15)

4.5 Quantum regime

For a Hamiltonian of the form of Eq.(5.1) where now {xl, pl} are Heisenberg operators, the

steady state quantum heat current through the IDHC in the linear response regime is given by:

Jq =
kB(TL − TR)

4π

∫ ∞

−∞

dωTN(ω)
( ~ω

2kBT

)2
cosech2

( ~ω

2kBT

)
,

where TN(ω) is same as Eq.(4.3) and T = (TL +TR)/2. Following our derivation for the classical

system we see that the asymptotic N dependence of 〈Jq〉 is determined by TN(ω) which is here
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exactly the same as the classical case. For any fixed temperature, however small, at suficiently

large system sizes we will have ~ωd << kBT , and hence within this cut-off frequency the factor

(~ω/kBT )2cosech(~ω/kBT )2 → 1. Hence for large system sizes we always get the classical

result. The approach to the asymptotic behaviour though will be different.

4.6 Discussion

In real experiments heat baths usually have a finite bandwidth making the noise correlated,

as in Rubin’s model. Here we have shown that for heat conduction in the IDHC these noise

correlations do not affect the exponent α (note that a bath for which Σ(ω) depends nonlinearly

on ω at small frequencies can affect α). We have elucidated the role of boundary conditions

and shown that the actual value of α depends on the number of pinned sites. Our results are

also valid for bond disorder. We have provided explicit expressions for the currents which, apart

from giving the system size-dependence, also give the dependence on various other parameters

such as mass variance, coupling to baths etc. We also emphasize that heat conduction through

IDHC is non-diffusive. Our physical understanding is as follows. In the presence of mass or

bond disorder phonons are scattered coherently giving rise to localization and low transmission.

Long wavelength phonons with ω
<∼ ωd [see Eq.(1)] are relatively unaffected and dominate heat

conduction in such disordered materials. Now the introduction of pinning centers causes strong

scattering of even the low frequency modes and, as we have shown, significantly reduces the

current. We obtain the surprising and nontrivial result that the exponent α giving the system

size dependence of current changes linearly with the number of pinning centers. There are now

experimental measurements of heat conduction in one-dimensional systems such as nanotubes and

nanowires [165, 171] and molecular wires [172]. At low temperatures one can neglect anharmonic

effects and it will be interesting to see if our prediction of the strong reduction of heat current, by

substrate potentials at localized points on a disordered wire, can be observed. While our results

are for a simple classical model we expect the effect of pinning to be quite generic and should

be true for systems with more complicated phonon dispersions. One relevant question is that

how do quadratic pinning potentials at the boundaries affect the size dependence of the disorder

averaged steady state current in higher dimensions? It is also important to check the fluctuations

in the thermal conductance with different realizations of disorder. We find that for zero, single

and double pinnings in the IDHC, the relative fluctuations in thermal conductance decay with

system sizes. But relative thermal fluctuations become relevant even for longer length for heat

conduction in the IDHC with more than two pinning centers.
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