
2 Heat transport in harmonic lattices

If one is interested in a microscopic description of transport through a system, then it is important

to model not only the system but also the reservoirs and the system-reservoir couplings. This is

known as an open-system description of transport, which is the main theme of Landauer approach.

It is quite different from the other popular approaches of transport like the Boltzmann-Peierls

transport approach or the Green-Kubo linear response theory, where one studies the properties of

the system of only. An idealised reservoir should act as a perfect black body with zero reflectivity.

But real experiments do not always depict idealise situation. So it is necessary to achieve a detailed

understanding of the role of reservoirs and system-reservoir couplings in transport. Ref. [31] gives

a derivation of the basic Landauer results using the Langevin equation approach, both for electrons

and phonons. In Sec.(2.1), we introduce and discuss the method of generalised Langevin equations

and Green’s function (LEGF), and derive exact expressions for the heat current in harmonic

lattices. These expressions are of identical form as those obtained from the nonequilibrium

Green’s function (NEGF) formalism. We work out the non-equilibrium steady state properties

of a harmonic lattice which is connected to heat reservoirs at different temperatures [33]. The

heat reservoirs themselves are modeled as harmonic systems. Our approach is to write quantum

Langevin equations for the system and solve these to obtain steady state properties such as

currents and other second moments involving the position and the momentum operators.

In latter Secs.(2.2,2.3) we discuss two applications of the LEGF approach to transport. We

consider heat conduction in a harmonic chain connected to self-consistent Ohmic heat reservoirs

[33]. The temperatures of the two heat baths at the boundaries are specified from before, whereas

the temperatures of the interior heat reservoirs are determined self-consistently by demanding that

in the steady state, on an average, there is no heat current between any such (self-consistent)

reservoir and the harmonic chain. We obtain a temperature-dependent thermal conductivity

which, in the high-temperature classical limit, reproduces the exact result on this model obtained

recently by Bonetto, Lebowitz and Lukkarinen [40]. We also demonstrate the crossover from

ballistic to diffusive thermal transport in the finite harmonic chain by changing the strength of

coupling of the interior Ohmic heat reservoirs to the chain sites [41]. The main feature of our

study is that the effective mean free path separating the ballistic regime of transport from the

diffusive one emerges naturally. The other application [Sec.(2.3)] is on heat transport in ordered

harmonic lattices with tunable boundary conditions [42]. In the classical case, we derive an exact

25
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formula for the heat current in the limit of system size N → ∞. In some special cases this

reproduces earlier results obtained by Rieder, Lebowitz and Lieb (RLL) [43] and by Nakazawa

[44, 45] using different methods. We also obtain results for the quantum mechanical case where

we study the temperature dependence of the heat current. Finally we briefly state results in

higher dimensions.

2.1 Langevin equations and Green’s function formalism

(LEGF) for thermal transport

The harmonic crystal is one of the the simplest model that one learns in solid state physics and it is

known to reproduce correctly, for example, some of the experimental features of the specific heat

of an insulating solid. The harmonic approximation basically involves expanding the full atomic

potential of the solid about its minimum (which one assumes is a crystal) and keeping terms

up to second order. If one transforms to normal mode coordinates, then the harmonic crystal

can be viewed as a collection of noninteracting phonons. While many equilibrium properties

can be understood satisfactorily within the harmonic approximation, transport properties (heat

conduction) of the harmonic lattice are anomalous because of the absence of interactions between

the phonons.

In this section we discuss a formalism for transport in harmonic lattices based on the Langevin

equation approach [33]. This approach was first used to study heat conduction in a one-

dimensional ordered harmonic lattice [43]. Subsequently, this approach was used to study heat

conduction in disordered harmonic lattices in one [16, 18, 46] and two dimensions [47]. Later,

in Chapter (4) we will use this approach for further studies in disordered phononic systems. The

quantum mechanical case has also been studied by several authors [31, 48–53] using an open

system description either through quantum Langevin equations or through density matrices. The

open system description for harmonic systems closely resembles the Landauer formalism used

for electron transport. Another rigorous approach to studying electron transport in mesoscopic

systems is the NEGF [54], and Ref. [32] shows how this can be derived, for non-interacting elec-

trons modeled by tight-binding Hamiltonians, using a quantum Langevin equation approach. We

note that the Landauer formalism has also been discussed in the context of wave propagation in

disordered media [55, 56]. The problems of heat conduction in disordered harmonic lattices and

wave propagation in disordered media are closely related. It is expected that some of the work in

the latter area, for example, on localization, will be useful in the context of heat conduction.

In our paper [33], we show how the LEGF method for harmonic lattices leads to NEGF-like

expressions for phonon transport. For simplicity, we restrict ourselves to harmonic Hamiltonians
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with scalar displacement variables at each lattice site. It is straightforward to extend the cal-

culations to the case of vector displacements. The basic steps in the calculation are: (i) one

thinks of the full system as consisting of the sample we are interested in (henceforth called wire)

as well as the reservoirs at different temperatures which are connected to the wire, (ii) the wire

and the reservoir Hamiltonians are taken to be harmonic, (iii) we eliminate the reservoir degrees

of freedom and this leads to Langevin equations of motion for the wire variables, (iv) the lin-

ear Langevin equations are solved and steady state properties such as expectation values of the

current are found. Finally (v) the solution is written in a form where one can identify the usual

phonon Green’s functions, commonly used in solid state physics. This leads to the identification

with results from the NEGF formalism. We note that Landauer-like results for phonons have

been proposed earlier [57, 58] and some recent papers [59, 60] derive NEGF results for phonon

transport using the Keldysh approach.

2.1.1 Quantum Langevin equations

We consider a harmonic system which consists of a wire (denoted by W ) coupled to reservoirs

which are also described by harmonic interactions. In most of our discussions we consider the case

of two reservoirs, labeled as L (for left) and R (right) , which are at two different temperatures.

It is easy to generalize the case where there are more than two reservoirs. The Hamiltonian of

the entire system of wire and reservoirs is taken to be

H =
1

2
ẊTMẊ +

1

2
XT ΦX (2.1)

= HW + HL + HR + VL + VR

where HW =
1

2
ẊT

WMW ẊW +
1

2
XT

W ΦWXW ,

HL =
1

2
ẊT

LMLẊL +
1

2
XT

L ΦLXL ,

HR =
1

2
ẊT

RMRẊR +
1

2
XT

RΦRXR ,

VL = XT
WVLXL, VR = XT

WVRXR ,

where M, MW , ML, MR are real diagonal matrices representing masses of the particles in the

entire system, wire, left, and right reservoirs respectively. The quadratic potential energies are

given by the real symmetric matrices Φ, ΦW , ΦL, ΦR while VL and VR denote the interaction

between the wire and the two reservoirs. The column vectors X, XW , XL, XR are Heisenberg

operators which correspond to particle displacements, assumed to be scalars, about some equilib-

rium configuration. Thus X = {X1, X2, ...XNs
}T where Xr denotes the position operator of the

rth particle and Ns denotes the number of points in the entire system. Also Ẋ = M−1 P where

Pr denotes the momentum operator, with {Xr, Pr} satisfying the usual commutation relations

[Xr, Ps] = i~δrs.
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The Heisenberg equations of motion for the system are:

MW ẌW = −ΦWXW − VLXL − VRXR , (2.2)

and the equations of motion for the two reservoirs are

MLẌL = −ΦLXL − V T
L XW , (2.3)

MRẌR = −ΦRXR − V T
R XW . (2.4)

We solve these equations by considering them as linear inhomogeneous equations. Thus for the

left reservoir the general solution to Eq. (2.3) is (for t > t0):

XL(t) = f+
L (t− t0)MLXL(t0) + g+

L (t− t0)MLẊL(t0)

−
∫ t

t0

dt′ g+
L (t− t′)V T

L XW (t′) , (2.5)

with f+
L (t) = UL cos (ΩLt)U

T
L θ(t), g+

L (t) = UL
sin (ΩLt)

ΩL

UT
L θ(t) ,

where θ(t) is the Heaviside function and UL, ΩL are the normal mode eigenvector and eigenvalue

matrices respectively and which satisfy the equations:

UT
L ΦLUL = Ω2

L , UT
LMLUL = I .

Similarly, for the right reservoir we obtain

XR(t) = f+
R (t− t0)MRXR(t0) + g+

R(t− t0)MRẊR(t0)

−
∫ t

t0

dt′ g+
R(t− t′)V T

R XW (t′) . (2.6)

We plug these solutions back into the equation of motion for the system to get

MW ẌW = −ΦWXW + ηL +

∫ t

t0

dt′ VL g
+
L (t− t′) V T

L XW (t′)

+ ηR +

∫ t

t0

dt′ VR g+
R(t− t′) V T

R XW (t′) , (2.7)

where

ηL = −VL [f+
L (t− t0)MLXL(t0) + g+

L (t− t0)MLẊL(t0)]

ηR = −VR [f+
R (t− t0)MRXR(t0) + g+

R(t− t0)MRẊR(t0)] . (2.8)

This equation has the form of a quantum Langevin equation. The properties of the noise terms ηL

and ηR are determined using the condition that, at time t0, the two isolated reservoirs are described
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by equilibrium phonon distribution functions. At time t0 the left reservoir is in equilibrium at

temperature TL and the population of the normal modes (of the isolated left reservoir) is given

by the distribution function fb(ω, TL) = 1/[e~ω/kBTL − 1]. The equilibrium correlations are then

given by:

〈XL(t0)X
T
L (t0)〉 = UL

~

2ΩL

coth (
~ΩL

2kBTL

)UT
L ,

〈ẊL(t0)Ẋ
T
L (t0)〉 = UL

~ΩL

2
coth (

~ΩL

2kBTL

)UT
L

〈XL(t0)Ẋ
T
L (t0)〉 = UL(

i~

2
)UT

L

〈ẊT
L (t0)XL(t0)〉 = UL(

−i~
2

)UT
L .

Using these we can determine the correlations of the noise terms in Eq. (2.8). Thus we get for

the left reservoir noise correlations:

〈ηL(t)ηT
L(t′)〉 = VLUL

[

cos ΩL(t− t′)
~

2ΩL

coth (
~ΩL

2kBTL

)

−i sin ΩL(t− t′)
~

2ΩL

]

UT
L V

T
L , (2.9)

and a similar expression for the right reservoir.

2.1.2 Stationary solution of the equations of motion

Now let us take the limits of infinite reservoir sizes and let t0 → −∞. We can then solve Eq. (2.7)

by taking Fourier transforms. Thus defining the Fourier transforms

X̃W (ω) =
1

2π

∫ ∞

−∞

dt XW (t)eiωt ,

η̃L,R(ω) =
1

2π

∫ ∞

−∞

dt ηL,R(t)eiωt ,

g+
L,R(ω) =

∫ ∞

−∞

dt g+
L,R(t)eiωt , (2.10)

we get from Eq. (2.7)

(−ω2 MW + ΦW )X̃W (ω) = [ Σ+
L(ω) + Σ+

R(ω) ] X̃W (ω) + η̃L(ω) + η̃R(ω)

where Σ+
L(ω) = VLg

+
L (ω)V T

L , Σ+
R(ω) = VRg

+
R(ω)V T

R . (2.11)

The noise correlations can be obtained from Eq. (2.9) and we get (for the left reservoir):

〈η̃L(ω)η̃T
L(ω′)〉 = δ(ω + ω′) VL Im[g+

L (ω)] V T
L

~

π
[1 + fb(ω, TL)]

= δ(ω + ω′) ΓL(ω)
~

π
[1 + fb(ω, TL)] (2.12)

where ΓL(ω) = Im[Σ+
L(ω)] (2.13)
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which is a fluctuation-dissipation relation. This also leads to the more commonly used correlation:

1

2
〈 η̃L(ω)η̃T

L(ω′) + η̃L(ω′)η̃T
L(ω) 〉 = δ(ω + ω′) ΓL(ω)

~

2π
coth(

~ω

2kBTL

). (2.14)

Similar relations hold for the noise from the right reservoir. We then get the following stationary

solution to the equations of motion:

XW (t) =

∫ ∞

−∞

dωX̃W (ω)e−iωt ,

with X̃W (ω) = G+
W (ω) [η̃L(ω) + η̃R(ω)] , (2.15)

where G+
W =

1

[−ω2MW + ΦW − Σ+
L(ω) − Σ+

R(ω)]
. (2.16)

The identification of G+
W (ω) as a phonon Green function, with Σ+

L,R(ω) as effective self energy

terms, is the main step that enables a comparison of results derived by the quantum Langevin

approach with those obtained from the NEGF method. In Appendix A.1, we show explicitly how

this identification is made.

For the reservoirs we get, from Eqs. (2.5-2.6),

−VLX̃L(ω) = η̃L(ω) + Σ+
LX̃W (ω) ,

−VRX̃R(ω) = η̃R(ω) + Σ+
RX̃W (ω) . (2.17)

2.1.3 Steady state properties

Current: The simplest way to evaluate the steady state current is to evaluate the following

expectation value for left-to-right current:

J = −〈 ẊT
WVLXL 〉 =

∫ ∞

−∞

dω

∫ ∞

−∞

dω′ e−i(ω+ω′)tiω 〈X̃T
W (ω)VLX̃L(ω′)〉 ,

which is just the rate at which the left reservoir does work on the wire. Using the solution in

Eq. (2.15-2.17) we get

J = −
∫ ∞

−∞

dω

∫ ∞

−∞

dω′ e−i(ω+ω′)tiω 〈 ( η̃T
L(ω) + η̃T

R(ω) ) G+
W

T
(ω)

× [ η̃L(ω′) + Σ+
L(ω′) G+

W (ω′) ( η̃L(ω′) + η̃R(ω′) ) ] 〉 . (2.18)

Now consider that part of J , say JR, which depends only on TR. Clearly this is:

JR = −
∫ ∞

−∞

dω

∫ ∞

−∞

dω′ e−i(ω+ω′)t i ω

×Tr [ G+
W

T
(ω) Σ+

L(ω′) G+
W (ω′) 〈 η̃R(ω′)η̃T

R(ω) 〉 ]

= − i

∫ ∞

−∞

dω Tr[ G+
W

T
(ω) Σ+

L(−ω)G+
W (−ω)ΓR(ω)]

~ω

π
[1 + fb(ω, TR)] .
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Using the identities G+
W

T
= G+

W , G+
W (−ω) = G−

W (ω) and taking the real part of above equation

we obtain, after some simplifications,

JR = −
∫ ∞

−∞

dω Tr[ G+
W (ω) ΓL(ω) G−

W (ω) ΓR(ω) ]
~ω

π
[1 + fb(ω, TR)] .

Including the contribution from the terms involving TL, and noting that the current has to vanish

for TL = TR, it is clear that the net current will be given by

J =

∫ ∞

−∞

dω Tr[ G+
W (ω) ΓL(ω)G−

W (ω) ΓR(ω)]
~ω

π
[f(ω, TL) − f(ω, TR)] . (2.19)

This expression for current can be seen to be of identical form as the NEGF expression for electron

current (see for example [54, 61, 62]).

Two point correlation functions: We can also easily compute expectation values of

various correlations. Thus the velocity-velocity correlations are given by

K = 〈ẊW Ẋ
T
W 〉

=

∫ ∞

−∞

dω
ω

π
[ G+

W (ω)ΓL(ω)G−
W (ω)~ω(1 + fb(ω, TL))

+G+
W (ω)ΓR(ω)G−

W (ω)~ω(1 + fb(ω, TR)) ]

=

∫ ∞

−∞

dω
ω

π
[ G+

W (ω)ΓL(ω)G−
W (ω)

~ω

2
coth(

~ω

2kBTL

)

+G+
W (ω)ΓR(ω)G−

W (ω)
~ω

2
coth(

~ω

2kBTR

) ] , (2.20)

where the last line is easily obtained after writing K = (K +K∗)/2. We see that for TL = TR

this reduces to the equilibrium result of Eq. (A.10) provided that there are no bound states.

Similarly the position-position and position-velocity correlations are given by:

P = 〈XWX
T
W 〉

=

∫ ∞

−∞

dω
~

2π
[ G+

W (ω)ΓL(ω)G−
W (ω) coth(

~ω

2kBTL

)

+G+
W (ω)ΓR(ω)G−

W (ω) coth(
~ω

2kBTR

) ] ,

C = 〈XW Ẋ
T
W 〉

=

∫ ∞

−∞

dω
i

π
[ G+

W (ω)ΓL(ω)G−
W (ω)

~ω

2
coth(

~ω

2kBTL

)

+G+
W (ω)ΓR(ω)G−

W (ω)
~ω

2
coth(

~ω

2kBTR

) ] . (2.21)

The correlation functions K and P can be used to define the local energy density which can in

turn be used to define the temperature profile in the non-equilibrium steady state of the wire.
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Also we note that the correlations C give the local heat current density. In the next section we

will find that it is sometimes more convenient to evaluate the total steady state current from this

expression rather than the one in Eq. (2.19).

Classical limits: The classical limit is obtained by taking the high temperature limit so that

~ω/kBT → 0. Then we obtain the following expressions for the various steady state properties

computed in the last section. The current is given by

J =
kB (TL − TR)

π

∫ ∞

−∞

dω Tr[ G+
W (ω) ΓL(ω)G−

W (ω) ΓR(ω)] , (2.22)

while other correlation functions are given by:

K =
kBTL

π

∫ ∞

−∞

dω ω G+
W (ω)ΓL(ω)G−

W (ω)

+
kBTR

π

∫ ∞

−∞

dω ω G+
W (ω)ΓR(ω)G−

W (ω) ,

P =
kBTL

π

∫ ∞

−∞

dω
1

ω
G+

W (ω)ΓL(ω)G−
W (ω)

+
kBTR

π

∫ ∞

−∞

dω
1

ω
G+

W (ω)ΓR(ω)G−
W (ω) ,

C =
ikBTL

π

∫ ∞

−∞

dω G+
W (ω)ΓL(ω)G−

W (ω)

+
ikBTR

π

∫ ∞

−∞

dω G+
W (ω)ΓR(ω)G−

W (ω) . (2.23)

For one dimensional wires these lead to [31] expressions for current and temperature used in

earlier studies of heat conduction in disordered harmonic chains [16, 18, 46].

2.1.4 Discussion

In this section, using the quantum LEGF approach, we have derived NEGF-like expressions for

the heat current in a harmonic lattice connected to external reservoirs at different temperatures

[33]. We note that unlike other approaches such as the Green-Kubo formalism and Boltzmann

equation approach, the LEGF approach explicitly includes the reservoirs. The Langevin equation

is also physically appealing since it gives a nice picture of the reservoirs as sources of noise

and dissipation. Also, just as the Landauer formalism and NEGF have been extremely useful

in understanding electron transport in mesoscopic systems it is likely that a similar description

will be useful for the case of heat transport in insulating nanotubes, nanowires, etc. We note

here that the single-channel Landauer results follow from NEGF if one considers one-dimensional

reservoirs [31] and have been useful in interpreting experimental results [63].

We think that the similarity between heat conduction studies in harmonic systems and electron

transport in noninteracting wires is an interesting and useful point to note. The two areas
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have developed quite independently using different theoretical tools. In the former case most

of the earlier studies were done on classical systems using either a Langevin or a Fokker Planck

description. More recent studies on quantum systems have used either a quantum Langevin

or a density matrix approach. On the other hand, for the electron case, which is inherently

quantum-mechanical, the most popular and useful approach has been the Landauer and the

NEGF formalism. As we have demonstrated, in this paper for the phonon case, and in Ref [32]

for the electron case, the NEGF results can be easily derived using the Langevin approach, at

least in the noninteracting case.

The LEGF approach has some advantages. For example, in the classical heat conduction case,

it is easy to write Langevin equations for nonlinear systems and study them numerically. Also they

might be useful in studying time dependent phenomena. Examples of this are the treatment of

quantum pumping in [64] and the treatment of the question of approach to the non-equilibrium

steady state in [32]. We feel that it is worthwhile to explore the possibility of using the quantum

LEGF approach to the harder and more interesting problems involving interactions and time-

dependent potentials in both the electron and the phonon case.

2.2 One-dimensional harmonic crystal with self-consistent

heat baths

As an application of the LEGF formalism, we consider the problem of heat transport in a harmonic

chain with each site connected to self-consistent heat reservoirs [33, 41]. The classical version

of this model was first studied by [20, 21] where the authors introduced the self-consistent

reservoirs as a simple scattering mechanism which might ensure local equilibration and the validity

of Fourier’s law. We recall that Fourier’s law states that for a solid with a spatially varying

temperature field T (x) inside it, the local heat current density J at a point x is given by:

J(x) = −κ∇T (x) (2.24)

where κ defines the thermal conductivity of the solid and is expected to be an intrinsic property

of the material. Fourier’s law is a phenomenological law which is expected to be true in the

hydrodynamic linear response regime. However, till now, there does not exist any purely mechan-

ical model (without external potentials) in which a first principle demonstration of the validity of

Fourier’s law, either numerically or analytically, has been achieved.

Infact it is now pretty much clear that in one-dimensional momentum conserving systems,

Fourier’s law is not valid and one cannot define a system-size independent thermal conductivity

for these systems [66–74] ( Note that the momentum referred to here is the total real momentum,

and not the crystal momentum. This is conserved if there are no external potentials). Apart
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from a large number of numerical studies, various theoretical approaches have been used for

different classes of systems to arrive at this conclusion regarding non-validity of Fourier’s law

in one dimension. In the case of interacting systems (nonlinear), the anomalous behaviour of

thermal conductivity has been understood within the Green-Kubo formalism and has been related

to long-time tails in the current-current auto-correlation functions [73, 74]. For non-interacting

(harmonic) disordered systems, heat transport occurs through independent phonon modes and

the main contribution comes from low frequency extended modes [18].

This self-consistent reservoir model was recently solved exactly by Bonetto et al. [40] who

proved local equilibration and validity of Fourier’s law and obtained an expression for the thermal

conductivity of the wire. They also showed that the temperature profile in the wire was linear.

The quantum version of the problem was also studied by Visscher and Rich [22] who analyzed the

limiting case of weak coupling to the self-consistent reservoirs. We will show here how the present

formalism can be used to obtain results in the quantum-mechanical case. The classical results of

Bonetto et al. are obtained as the high temperature limit, while the quantum mechanical results

of Vischer and Rich are obtained in the weak coupling limit.

In this model one considers a one-dimensional harmonic wire described by the Hamiltonian

HW =
N∑

l=1

m

2
[ẋ2

l + ω2
0x

2
l ] +

N+1∑

l=1

mω2
c

2
(xl − xl−1)

2 ,

=
1

2
ẊT

WMW ẊW +
1

2
XT

W ΦWXW (2.25)

where the wire particles are denoted as XT = {x1, x2, ...xN} and we have chosen the boundary

conditions x0 = xN+1 = 0. All the particles are connected to heat reservoirs which are taken

to be Ohmic. The coupling strength to the reservoirs is controlled by the dissipation constant

γ. The temperatures of the first and last reservoirs are fixed and taken to be T1 = TL and

TN = TR. For other particles, i.e l = 2, 3...(N − 1), the temperature of the attached reservoir

Tl is fixed self-consistently in such a way that the net current flowing into any of the reservoirs

l = 2, 3...(N − 1) vanishes. The Langevin equations of motion for the particles on the wire are:

mẍl = −mω2
c (2xl − xl−1 − xl+1) −mω2

0xl − γẋl + ηl l = 1, 2...N , (2.26)

where the noise-noise correlation is easier to express in frequency domain and given by

1

2
〈 ηl(ω)ηm(ω′) + ηl(ω

′)ηm(ω) 〉 =
γ~ω

2π
coth(

~ω

2kBTl

) δ(ω + ω′) δlm . (2.27)

From the equations of motion it is clear that the lth particle is connected to a bath with a self

energy matrix Σ+
l (ω) whose only non vanishing element is [Σ+

l ]ll = iγω. Generalizing Eq. (2.19)

to the case of multiple baths we find that the heat current from the lth reservoir into the wire is
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given by:

Jl =
N∑

m=1

∫ ∞

−∞

dω Tr[ G+
W (ω) Γl(ω)G−

W (ω) Γm(ω)]
~ω

π
[f(ω, Tl) − f(ω, Tm)] , (2.28)

where G+
W = [ − ω2 MW + ΦW −

∑

l

Σ+
l (ω) ]−1 , Γl = Im[Σ+

l ] .

Using the form of Γl we then get:

Jl =
N∑

m=1

γ2

∫ ∞

−∞

dω ω2 | [G+
W (ω)]lm |2 ~ω

π
[f(ω, Tl) − f(ω, Tm)] .

To find the temperature profile we need to solve the N − 2 nonlinear equations Jl = 0 for

l = 2, 3...N − 1 with T1 = TL and TN = TR. To proceed we consider the linear response regime

with the applied temperature difference ∆T = TL − TR << T where T = (TL + TR)/2. In that

case we expand the phonon distribution functions f(ω, Tl) about the mean temperature T and

get the following simpler expressions for the currents

Jl = γ2

∫ ∞

−∞

dω
~ω3

π

∂f(ω, T )

∂T

N∑

m=1

| [G+
W (ω)]lm |2 (Tl − Tm) . (2.29)

We write G+ = Z−1/(mω2
c ) where Z is a tridiagonal matrix with offdiagonal elements equal

to −1 and diagonal elements are all equal to z = 2 + ω2
0/ω

2
c − ω2/ω2

c − iγω/(mω2
c ). It is

then easy to find its inverse using the formula Z−1
lm = D1,l−1 Dm+1,N/D1,N , where Dij is the

determinant of the sub-matrix of Z beginning with the ith row and column and ending with the

jth row and column. The determinant is given by Dij = sinh [(j − i+ 2) α]/ sinh(α), where

eα = z/2±[(z/2)2−1]1/2 (any of the two roots can be taken). For points far from the boundaries

of the wire (l = yN where y = O(1), 1 − y = O(1)) we then find that

G+
lm =

e−α|l−m|

2mω2
c sinhα

, (2.30)

where we choose the root α such that αR = Re[α] > 0.

2.2.1 Infinite chain:

In Ref. [40], where the classical version of the present model was studied, it was shown that in

the limit N → ∞ the temperature profile obtained by solving the self-consistent equations has

the linear form

Tl = TL +
l − 1

N − 1
(TR − TL) . (2.31)
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From the form of G+
lm in Eq. (2.30) we see at once that, for any point l in the bulk of the wire,

the zero-current condition Jl = 0 is satisfied since
∑∞

m=−∞(l −m)|e−α|l−m||2 = 0. For points

which are within distance O(1) from the boundaries the temperature profile deviates from the

linear form.

To find the net left-right current in the wire we could use the formula for J1 = −JN given in

Eq. (2.40). However we notice that use of this formula requires us to know the accurate form

of Tm for points m close to the boundaries since these terms contribute significantly to the sum

in Eq. (2.40). We instead use a different expression for the current. We evaluate the left-right

current Jl,l+1 on the bond connecting sites l and (l + 1). Using Eq. (2.21) and in the linear

response limit, making expansions about T , we get

Jl, l+1 = mω2
c 〈xlẋl+1〉 = −mω

2
cγ

π

∫ ∞

−∞

dω ω

(
~ω

2kBT

)2

cosech2(
~ω

2kBT
)

×
N∑

m=1

kBTm Im{[G+
W (ω)]lm[G+

W (ω)]∗l+1 m} . (2.32)

The current value is independent of l and we choose to evaluate it at a value of l in the bulk of the

wire. In that case terms in the sum above which contain Tm with m close to the boundaries are

exponentially small (∼ e−αN) and so do not contribute. Hence we can use the linear temperature

profile for Tm and the form of G+
W in Eq. (2.30) to evaluate the heat current. We get:

J = − γ

8mω2
cπi

∫ ∞

−∞

dω
ω

| sinhα|2
(

~ω

2kBT

)2

cosech2(
~ω

2kBT
)

×
∞∑

m=−∞

kBTm [e−α|l−m|e−α∗|l+1−m| − e−α∗|l−m|e−α|l+1−m|] ,

where the additional terms in the summation over m are exponentially small contributions.

Also as before we choose the root α(ω) such that Re[α] > 0. Using the notation αR(ω) =

Re[α], αI(ω) = Im[α] we get, after some algebra, the following expression for the thermal

conductivity κ = JN/∆T (obtained in the large N limit):

κ =
γkB

16mω2
cπi

∫ ∞

−∞

dω
ω

sinh2 αR

(
~ω

2kBT

)2

cosech2(
~ω

2kBT
)

(
1

sinhα
− 1

sinhα∗

)

. (2.33)

In the high temperature limit we get (~ω/2kBT )2cosech2(~ω/2kBT ) → 1. This gives the

classical result for the thermal conductivity. In this limit a change of variables from ω to αI leads

to the following result for the thermal conductivity:

κcl =
2kBmω

2
c (2 + ν2)

γπ

∫ π/2

0

dαI
sin2 (αI)

(2 + ν2)2 − 4 cos2 (αI)

=
kBmω

2
c

γ (2 + ν2 + [ν2(4 + ν2)]1/2)
, (2.34)



2.2 One-dimensional harmonic crystal with self-consistent heat baths 37

where ν = ω0/ωc. This agrees with the result obtained in Ref. [40].

An interesting limiting case is the case of weak coupling to the reservoirs (γ → 0). In this case

Eq. (2.33) gives:

κwc =

(
~ω2

c

kBT

)2
mkB

4γπ

∫ π

0

dαI sin2 αI cosech2(
~ωα

2kBT
) , (2.35)

where ω2
α = ω2

0 + 2ω2
c [1 − cos(αI)] .

This agrees with the result obtained in [22]. The temperature profile obtained by them differs

from the linear form obtained by us and also by [40] and is incorrect. They nevertheless obtain

the correct thermal conductivity, presumably because their derivation only uses the temperature

profile close to the centre of the chain where it is again linear. In the low temperature limit,

Eq. (2.35) gives κwc ∼ e−~ω0/kBT/T 1/2 for ω0 6= 0 and κwc ∼ T for ω0 = 0. As noted in

[22] the expression for thermal conductivity (in the weak scattering limit) is consistent with a

simple relaxation-time form for the thermal conductivity. The temperature dependence of κwc

then simply follows the temperature dependence of the specific heat of the 1-dimensional chain.

Finally we examine the general case where the coupling constant has a finite value. In

Figs. (2.1,2.2) we plot the thermal conductivity as a function of temperature for two sets of

parameter: (i) γ/(mωc) = 0.2, ν = 0.5 and (ii) γ/(mωc) = 0.2, ν = 0.0. The insets in the

two figures show the low-temperature behaviour. As before, the low-temperature behaviour de-

pends on whether or not there is an onsite potential. However we see that the form of the

low-temperature behaviour is very different from the case of weak coupling. For small T it is easy

to pull out the temperature dependence of the integral in Eq. (2.33) and we find that κ ∼ T 3 for

ν 6= 0 and κ ∼ T 1/2 for ν = 0, in agreement with the numerical result shown in Figs. (2.1,2.2).

As an application of the LEGF results we have studied the problem of heat conduction in a one

dimensional harmonic chain connected to self-consistent reservoirs [33]. The classical version of

this problem was solved exactly by Bonetto et al. [40], using different methods. The quantum

mechanical case was studied earlier by Vischer and Rich [22], and they obtained the thermal

conductivity in the limit of weak coupling. The advantage of the present approach is that its

implementation is simple and straightforward. We obtain a general expression for the thermal

conductivity, which, in limiting cases, gives both the classical result in [40] and the weak-coupling

result in [22]. We also find that, at low temperatures, the temperature dependence of thermal

conductivity in the case of finite coupling is completely different from the weak coupling case. In

the classical case, it was shown in [40] that the thermal conductivity of the harmonic chain with

self-consistent reservoirs can also be obtained from the Kubo formula. An interesting problem

would be to demonstrate this in the quantum-mechanical case. It is interesting to note that the

self-consistent reservoirs are very similar to the Buttiker probes [24, 25] which have been used to

model inelastic scatterering in electron transport. In the electron case, they lead to Ohm’s law
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Figure 2.1: Plot of the scaled thermal conductivity as a function of temperature (in units of
~ωc/kB) for ν = 0.5. Inset shows the low temperature behaviour.

0 0.5 1 1.5 2
T

0

0.2

0.4

0.6

0.8

1

κ/
κ cl

0 0.005 0.01 0.015 0.02
0

0.02

0.04

0.06

0.08

Figure 2.2: Plot of the scaled thermal conductivity as a function of temperature (in units of
~ωc/kB) for ν = 0.0. Inset shows the low temperature behaviour.
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being satisfied, just as in the harmonic chain the introduction of self-consistent reservoirs leads

to Fourier’s law being satisfied. In fact, we have recently shown how one can obtain Ohm’s law

using self-consistent reservoirs modeled microscopically by noninteracting electron baths [65].

2.2.2 Finite chain: Crossover from ballistic to diffusive thermal

transport

The transition from ballistic to diffusive dynamics in thermal and electrical transport has recently

received a lot of attention. In a recent letter, Wang [75] has reported to have obtained quantum

thermal transport from classical molecular dynamics using a generalised Langevin equation of

motion. Based on a “quasiclassical approximation”, the author claims to reconcile the quantum

ballistic nature of thermal transport with diffusive one in a one-dimensional quartic on-site po-

tential model. In Ref. [76], the authors have studied the transition from diffusive to ballistic

dynamics for a class of finite quantum models by an application of the time-convolutionless pro-

jection operator technique. Here, through an exact analysis using quantum Langevin dynamics,

we demonstrate the crossover from ballistic to diffusive thermal transport in a finite size harmonic

chain connected to self-consistent reservoirs.

We consider again same self-consistent reservoir model as before. But now the coupling γl

of the tth chain site to the Ohmic heat baths is given as, γl = γ for l = 1, N and γl = γ′

for l = 2, 3..N − 1. This allows us to tune the coupling (γ′) between self-consistent reservoirs

and the chain sites without affecting the couplings at the end reservoirs. Also we assume here

m = ωc = ~ = kB = 1 and ω0 = 0. With this little modification, we determine the temperature

profile {Tl} of the interior heat baths from the self-consistent condition. In FIG.2.3 we plot {Tl}
for different lengths of the chain for some fixed small value of γ′. In the limit γ′ << 1 we find

that the temperature profile scales as

T1 = TL , TN = TR and

Tl = TL + δ +
2δ

ℓ
(l − 2) for l = 2, 3...N − 1,

with δ =
∆T

2(1 +N/ℓ)
, (2.36)

where ℓ = 3/γ′ and ∆T = TR − TL. Here δ is the jump in the temperature at the boundaries.

The above scaling relation can be derived from a persistent random walk model of phonons in

analogy with the one for electrons [65]; here ℓ is interpreted as the mean free path of the phonons.

We also plot {Tl} profile in FIG.2.4 for fixed length N = 256 with different values of γ′. When

γ′ tends to zero (then ℓ goes to infinity), the heat transport in the chain is ballistic (becomes

completely ballistic at γ′ = 0), and the temperature profile is flat as shown in FIG.2.4. With

increasing γ′, the system transits through a mixed transport regime towards a diffusive one for
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Figure 2.3: Plot of the temperature profile {Tl} as a function of scaled length l/N for different N
with γ = 1.0 and γ′ = 0.1. The inset shows temperature dependence of scaled current for different N
with above values of γ, γ′. Here mean free path ℓ = 30.

sufficiently large value of γ′ where ℓ is much smaller than the system size; then {Tl} profile is

linear. For larger value of γ′, the temperature profile becomes linear for smaller system sizes.

The current through (l, l + 1) spring of the chain is given by Eq.(2.32)

Jl,l+1 = 〈xlẋl+1〉

= −
N∑

m=1

γmTm

π

∫ ∞

−∞

dω
ω3

4T 2
cosech2(

ω

2T
)Im[GlmG

∗
l+1m]

(2.37)

Now, using the numerical solution for {Tl}, we first evalute the heat current with varying

temperature for different N and γ′, and plot it in the inset of FIG.2.3 and FIG.2.4 respectively.

Jl,l+1 (call it J) is independent of l and we calculate it in the bulk for accuracy. Using the scaling

form of {Tl}, we find that

J =
κ(T ) ∆T

(N + ℓ)
, (2.38)

where κ(T ) is the temperature dependent thermal conductivity of the infinite chain. Above

current expression is exact for larger size of the chain, but for smaller size, there will be correction
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Figure 2.4: Plot of the temperature profile {Tl} as a function of scaled length l/N for different γ′

with γ = 1.0 and N = 256. The inset shows temperature dependence of scaled current for different γ′

with above values of γ, N . Here mean free path ℓ = 3/γ′.

from the boundaries. It clearly shows that, for N >> ℓ, transport is diffusive, satisfying Fourier’s

law and in the opposite limit, the current is independent of N (ballistic). We clarify that the

cross-over from ballistic to diffusive behaviour in transport depends on the effective length scale

of the problem and can be controlled here by tuning ℓ, i.e., γ′. This model has similarity to

the one-dimensional quartic on site potential model [75] if one identifies γ′ with the strength of

the quartic on site potential. But in the quartic on site potential model, the temperature and

the strength of quartic potential are conjugate to each other, i.e., for a fixed strength of the

quartic potential, increasing the temperature one can cross-over from ballistic to diffusive regime

of transport; similarly for a constant temperature, changing the strength of quartic potential one

can tune from ballistic to diffusive transport. But, in the case of the self-consistent reservoir

model, the temperature and the strength of the coupling to the reservoirs (γ′) are independent

parameters, not affecting each other.

In conclusion, we have demonstrated both ballistic and diffusive regime of thermal transport

within a single analysis of quantum Langevin dynamics. This is contrary to the remark made by

author in Ref.[75]. As discussed nicely in [20, 77], it is a big challenge to derive Fourier’s law for

a system from microscopic Hamiltonian bulk dynamics. One can think of the problem as either

(a) the system in microcanonical ensemble evolving towards equilibrium from an initial arbitrary
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distribution and study the relaxation mechanism from different correlations like energy-energy, or,

(b) the system is kept in a non-equlibrium steady state by connecting it at the boundaries with

stochastic or mechanical reservoirs and then determine the size dependence of the steady state

current . From a large number of numerical and a few analytical studies [14, 77], it is believed

that the chaotic behaviour resulting from nonintegrability is an essential criterion for realizing

Fourier’s law in classical systems. Analogously from the numerical study of quantum systems

with the coupling to external heat baths [78, 79] or without the baths [80], it is argued that the

emergence of diffusive behaviour is related to onset of quantum chaos. Now, we try to analyse the

underlying mechanism of getting diffusive behaviour in this self-consistent reservoir model. Origi-

nally, Bolsterli, Rich and Visscher [20] proposed the self-consistent reservoir model to incorporate

phenomenologically the interactions of phonons with other degrees of freedom such as electron’s

charge and spin present in the physical system. Due to stochastic interactions with the internal

reservoirs, the inherently non-ergodic harmonic chain becomes ergodic. Here, the self-consistent

reservoirs provide the mechaism of scattering for phonons which is very much essential to get

diffusive behaviour. It can also be posed in a different way that the self-consistent reservoirs act

as the environment in a persistent random walk of phonon in a lane and break down the coherent

nature of transport. In this context, this model is similar to the models of particle transport

studied in [65], again with self-consistent particle reservoirs, and in [81] with heat baths mod-

elling the dissipative environment. Now, we point out certain inconsistencies in the application of

“quasiclassical approximation” in Ref.[75] which treats system classically neglecting all quantum

fluctuations and random noises from the baths as quantum mechanically correlated. At high

temperatures, where thermal fluctuations predominate over quantum fluctuations, the system is

inherently classical. In the opposite limit, the strength of the anharmonicity in the quartic on site

model is weaker if the temperature is lower. Here the anharmonicity can be treated perturbatively

in an effectively harmonic system. So, in these two limits, the so called “quasiclassical approx-

imation” is valid. But for intermediate temperatures, where the anharmonicity has significant

strength, quantum fluctuations due to non-commutativity of the operators play an important role

in lower dimensions. Then the “quasiclassical approximation” does not hold. Thus, though use

of the “quasiclassical approximation” looks attractive, it has probably little application to real

problems of quantum transport where phonon-phonon interaction is crucial. Finally, one main

feature of our analysis is that the effective transport mean free path distinguishing ballistic regime

from diffusive one emerges naturally in the study.

2.3 Heat transport in ordered harmonic lattices

We study here heat conduction across an ordered oscillator chain with harmonic interparticle inter-

actions and also onsite harmonic potentials using LEGF method. RLL [43] considered the problem
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of heat conduction across a one-dimensional ordered harmonic chain connected to stochastic heat

baths at the two ends. The main results of this paper were: (i) the temperature in the bulk of

the system was a constant equal to the mean of the two bath temperatures, (ii) the heat current

approaches a constant value for large system sizes and an exact expression for this was obtained.

RLL considered the case where only interparticle potentials were present. Nakazawa [44, 45] (N)

extended these results to the case with a constant on site harmonic potential at all sites and also

to higher dimensions.

The approach followed in both the RLL and N papers was to obtain the exact nonequilibrium

stationary state measure which, for this quadratic problem, is a Gaussian distribution. A complete

solution for the correlation matrix was obtained and from this one could obtain both the steady

state temperature profile and the heat current. In our paper [42] we use LEGF to calculate the

heat current in ordered harmonic lattices connected to Ohmic reservoirs (for a classical system,

this is white noise Langevin dynamics). An advantage of the approach used here is that it can be

easily generalized to the quantum mechanical regime [31, 33, 51–53]. Here we show how exact

expressions for the asymptotic current (N → ∞) can be obtained from this approach. We also

briefly discuss the model in the quantum regime and extensions to higher dimensions.

The model we consider here is slightly different from the Nakazawa model. We consider the

pinning potentials at the boundary sites to be different from the bulk sites. This allows us to

obtain both the RLL and N results as limiting cases. Also it seems that this model more closely

mimics the experimental situation. In experiments, the boundary sites would be interacting with

fixed reservoirs which can be modeled by an effective spring constant that is expected to be

different from the interparticle spring constant in the bulk. We also note here that the constant

on site potential present along the wire relates to experimental situations such as that of heat

transport in a molecular wire attached to a substrate, or, in the two-dimensional case, a monolayer

on a substrate. Another example would be the heat current contribution from the optical modes

of a polar crystal.

2.3.1 Model and Results in the Classical Case
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Figure 2.5: A schematic description of the model.
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We consider N particles of equal masses m connected to each other by harmonic springs

of equal spring constants k. The particles are also pinned by onsite quadratic potentials with

strengths ko at all sites except the boundary sites where the pinning strengths are ko + k′ [see

Fig. (2.5)]. The Hamiltonian of the harmonic chain is thus:

H =
N∑

l=1

[
1

2
mẋ2

l +
1

2
kox

2
l ] +

N−1∑

l=1

1

2
k(xl+1 − xl)

2 +
1

2
k′(x2

1 + x2
N) , (2.39)

where xl denotes the displacement of the particle at site l from its equilibrium position. The

particles 1 and N at the two ends are immersed in heat baths at temperature TL and TR

respectively. The heat baths are assumed to be modeled by Langevin equations corresponding

to Ohmic baths. In the classical case the steady state heat current from left to right reservoir is

given by [17, 67] :

JC =
kB(TL − TR)

4π

∫ ∞

−∞

dω TN(ω), (2.40)

where TN(ω) = 4γ2ω2|G1N |2 ,
G = [−mω2I + Φ − Σ]−1 ,

Φlm = (k + k′ + ko) δl,m − k δl,m−1 for l = 1 ,

= −k δl,m+1 + (2k + ko) δl,m − k δl,m−1 for 2 ≤ l ≤ N − 1 ,

= (k + k′ + ko) δl,m − k δl,m+1 for l = N ,

Σlm = iγωδlm[δl1 + δlN ] ,

and I is a unit matrix. We now write G = Z−1/k, where Z is a tri-diagonal matrix with Z11 =

ZNN = (k+ko +k′−mω2− iγω)/k, all other diagonal elements equal to 2+ko/k−mω2/k and

all off-diagonal elements equal to −1. Then it can be shown easily that |G1N(ω)| = 1/(k |∆N |)
where ∆N is the determinant of the matrix Z. This is straightforward to obtain and after some

rearrangements we get:

∆N = [a(q) sinNq + b(q) cosNq]/ sin q , (2.41)

where a(q) = [2 − γ2ω2

k2
+
k′2

k2
− 2k′

k
] cos q +

2k′

k
− 2 − 2iγω

k
[1 + (

k′

k
− 1) cos q] ,

b(q) = [
γ2ω2

k2
− k′2

k2
+

2k′

k
] sin q +

2iγω

k
(
k′

k
− 1) sin q ,

and q is given by the relation 2k cos q = −mω2+ko+2k. This relation implies that for frequencies

outside the phonon band ko ≤ mω2 ≤ ko + 2k the wavevector q becomes imaginary and hence

the transmission coefficient T (ω) decays exponentially with N . Hence for large N we need only

consider the range 0 < q < π and the current is given by:

JC =
2γ2kB(TL − TR)

k2π

∫ π

0

dq|dω
dq

| ω2
q

|∆N |2
, (2.42)
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with mω2
q = ko + 2k[1 − cos (q)]. Now we state the following result:

lim
N→∞

∫ π

0

dq
g1(q)

1 + g2(q) sinNq
=

∫ π

0

dq
g1(q)

[1 − g2
2(q)]

1/2
, (2.43)

where g1(q) and g2(q) are any two well-behaved functions. This result can be proved by making an

expansion of the factor 1/[1+g2(q) sin (Nq)] (valid for |g| < 1 in the integration range), taking the

N → ∞ limit and resumming the resulting series. Noting now that ∆N can be written as |∆N |2 =

(|a|2 + |b|2)[1 + r sin(2Nq+ φ)]/[2 sin2 (q)] where r cosφ = (ab∗ + a∗b)/(|a|2 + |b|2), r sinφ =

(|b|2 − |a|2)/(|a|2 + |b|2), we see that Eq. (2.42) has the same structure as the left hand side of

Eq. (2.43). Hence using Eq. (2.43), in the large N limit we can replace

TN =
4γ2ω2

k2|∆N |2
=

4γ2ω2 sin2 q

[(|a|2 + |b|2)/2][1 + r sin(2Nq + φ)]

by T∞ =
2kγω sin q

2k2 − 2kk′ + k′2 + γ2ω2 + 2k(k′ − k) cos q
. (2.44)

Thus we finally get from Eq. (2.42) :

JC =
γk2kB(TL − TR)

πm

∫ π

0

sin2 q dq

Λ − Ω cos q

=
γk2kB(TL − TR)

mΩ2
(Λ −

√
Λ2 − Ω2) , (2.45)

where Λ = 2k(k − k′) + k′
2
+

(ko + 2k)γ2

m
and Ω = 2k(k − k′) +

2kγ2

m
.

Eq. (2.45) is the central result of this paper. We now show that two different special cases lead

to the RLL and N results. First in the case of fixed ends and without onsite potentials, i.e. k′ = k

and ko = 0, we recover the RLL result [43]:

JRLL
C =

kkB(TL − TR)

2γ

[

1 +
ν

2
− ν

2

√

1 +
4

ν

]

where ν =
mk

γ2
. (2.46)

The case k′ = k, ko 6= 0 can also be obtained using the RLL approach [82] and agrees with the

result in Eq. (2.45). In the other case of free ends, i.e. k′ = 0, we get the N result [44, 45]:

JN
C =

kγkB(TL − TR)

2(mk + γ2)

[

1 +
λ

2
− λ

2

√

1 +
4

λ

]

where λ =
koγ

2

k(mk + γ2)
. (2.47)

2.3.2 Quantum mechanical case

In the quantum case the heat current across a chain described by the Hamiltonian Eq. (5.1) and

connected to Ohmic heat baths is given by [33]:

JQ =
1

4π

∫ ∞

−∞

dω ~ωTN(ω)[f(ω, TL) − f(ω, TR)] , (2.48)
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where f(ω, T ) = 1/[e~ω/(kBT ) − 1] is the phonon distribution function and TN is as given in

Eq. (2.40). Here we consider the linear response regime where the applied temperature difference

∆T = TL − TR << T with T = (TL + TR)/2. Expanding the phonon distribution functions

f(ω, TL,R) about the mean temperature T we get the following expression for the current:

JQ =
kB(TL − TR)

4π

∫ ∞

−∞

dω

(
~ω

2kBT

)2

cosech2
(

~ω

2kBT

)

T (ω) . (2.49)

We then proceed through the same asymptotic analysis as in the previous section and get, in the

limit N → ∞:

JQ =
γk2

~
2(TL − TR)

4πkBmT 2

∫ π

0

dq
sin2 q

Λ − Ω cos q
ω2

q cosech2
(

~ωq

2kBT

)

, (2.50)

where ω2
q = [ko + 2k(1 − cos q)]/m .

We are not able to perform the above integral exactly. Numerically it is easy to obtain the integral

for given parameter values and here we examine the temperature dependence of the current (note

that in the classical case the current depends only on the temperature difference). In Fig.(2.6)

we plot the current as a function of temperature in three different cases (i) k′ = k, ko = 0,

(ii) k′ = 0, ko = 0 and (iii) k′ = 0, ko 6= 0. Particularly interesting is the low temperature

(T << ~(k/m)1/2/kB) behaviour (shown in inset of Fig.(2.6)) which is very different for the

three cases. The low temperature behaviour can be obtained analytically by examining the

integrand at small q [83]. We then find for the three different cases: (i) JQ ∼ T 3, (ii) JQ ∼ T

and (iii) JQ ∼ e−~ωo/(kBT )/T 1/2, where ωo = (ko/m)1/2.

2.3.3 Higher dimensions

Heat conduction in ordered harmonic lattices in more than one dimension was first considered by

Nakazawa [45]. The problem can be reduced to an effectively one-dimensional problem. For the

sake of completeness we reproduce their arguments here and also give the quantum generalization.

Let us consider a d-dimensional hypercubic lattice with lattice sites labelled by the vector

l = {lα}, α = 1, 2...d, where each lα takes values from 1 to Lα. The total number of lattice sites

is thus N = L1L2...Ld. We assume that heat conduction takes place in the α = d direction.

Periodic boundary conditions are imposed in the remaining d − 1 transverse directions. The

Hamiltonian is described by a scalar displacement Xl and as in the 1D case we consider nearest

neighbour harmonic interactions with a spring constant k and harmonic onsite pinning at all sites

with spring constant ko. All boundary particles at ld = 1 and ld = Ld are additionally pinned

by harmonic springs with stiffness k′ and follow Langevin dynamics corresponding to baths at

temperatures TL and TR respectively.
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Figure 2.6: Plot of the scaled heat current with temperature (in units of ~(k/m)1/2/kB) for three
different parameter regimes (see text). Inset shows the low temperature behaviour.

Let us write l = (lt, ld) where lt = (l1, l2...ld−1). Also let q = (q1, q2...qd−1) with qα = 2πn/Lα

where n goes from 1 to Lα. Then defining variables

Xld(q) =
1

L
1/2
1 L

1/2
2 ...L

1/2
d−1

∑

lt

Xlt,lde
iq.lt , (2.51)

one finds that, for each fixed q, Xld(q) (ld = 1, 2...Ld) satisfy Langevin equations corresponding

to the 1D Hamiltonian in Eq. (5.1) with the onsite spring constant ko replaced by

λ(q) = ko + 2k[d− 1 −
∑

α=1,d−1

cos (qα)] . (2.52)

For Ld → ∞, the heat current J(q) for each mode with given q is then simply given by Eq.(2.45)

with ko replaced by λq. In the quantum mechanical case we use Eq. (4.16). The heat current

per bond is then given by:

J =
1

L1L2....Ld−1

∑

q

J(q) . (2.53)

Note that the result holds for finite lengths in the transverse direction. For infinite transverse

lengths we get J =
∫
...
∫ 2π

0
dqJ(q)/(2π)d−1 .
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2.3.4 Summary

In this section we have presented the results from our paper [42] where we have derived the exact

formula for the heat current through an ordered harmonic chain in the limit of infinite system

size. Our derivation is different from the methods used by RLL [43] and N [44, 45] and is for a

slightly different version of the models studied by them. We have given the quantum mechanical

generalization of the results. In that case one gets, in the linear response regime, a temperature

dependent current with interesting low-temperature behaviour. We have also stated the results

for the general d-dimensional case.




