
Chapter 4 

Epilogue 

The lesson we have received time and again during the course of the work leading to this 

thesis is that it is futile to turn to "model" membranes to understand the nature of the 

surface of a living cell. The levels of organisation we have observed on the surface of 

a mammalian cell cannot be assembled piecemeal on a synthetic bilayer, the levels are 

created and maintained on the surface by cues from within the cell, and extracellular 

agents enlist the help of such an organisation to transmit matter and information into the 

cell. Ongoing work in our group and elsewhere will reveal the nature of the cues and show 

how the patterns on the surface respond to the world outside to send a signal within. 

4.1 Short range order on the plasma membrane 

The hundred of kinds of lipids that form the eukaryotic plasma membrane has plagued 

biologists with the question: is this variety only a result of historical contingency? The 

diversity is not in the shape, size and charge of the hydrophilic head group alone but also 

in the length of the fatty acid chains, their shape and rigidity (governed by the number 

and position of unsaturated bonds), and even in their number (lipids with very short head 

groups and a triplet of hydrophobic chains have been found in special locations of the 

membrane). It is known that, in order to function, some proteins in the membrane need 

to be surrounded by a shell of phospholipids with a specific head group; and also that the 

cell adjusts the composition of its lipids with different conformations of fatty acid chains 

so that the membrane is always in a fluid state whose viscosity is within prescribed limits 

(Alberts et al; 1994). Yet the question remains - does the cell really need all the lipids 

comprising its membrane? 

It is pleasing to note that we have put a small piece of the puzzle in place by demon- 

strating that a novel kind of short range order on the surface of the cell is maintained 

by the interaction of a specific pair of components of the membrane - cholesterol and 

sphingolipid. With GPI -anchored proteins of wildly varying ectodomains but a constant 

sphingolipid tether we have shown that they exist in extremely dense and small clusters 

(less than 4 molecules in a diameter no more than 50 P\) and that the level of clustering 
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Figure 4.1: Receptor clusters in the plasma membrane of a prokaryote. A chemore- 
ceptor is clustered at  one pole of E coli, the black arrow aims a t  the "nose" of the 
bacterium. Arrows within the cell represent signals transmitted from the "nose" to the 
flagellar motors when the chemoreceptors bind to the ligand. The signal makes the mo- 
tors rotate anticlockwise so that the bacterium moves in the direction of the open arrow 
(Parkinson and Blair; 1993). 

is tuned by the amount of cholesterol in the membrane. Our observation is consistent 

with that of Friedrichson and Kurzchalia who have detected oligomers of GPI-anchored 

proteins by presenting the surface of a cell with a chemical crosslinker of spacing 11 

(Friedrichson and Kurzchalia; 1998). These results are also consistent with the studies of 

single-molecule epifluorescence conducted on a GPI-anchored protein that reported fast 

brownian motion of most molecules but a small fraction (between 6 % and 20 %) diffusing 

at  a much slower rate (Vrljic et al; 2002). Though these studies were unable to charac- 

terise the size or the origin of the slowly diffusing species we surmise that the sluggishness 

is owing to the oligomerisation of the proteins. Our experiments corroborate the result 

that only a part of the population of GPI-anchored proteins on the surface (about 20 %) 
exist in clusters, the rest being in the form of monomers. 

We do not yet know the precise role of cholesterol in the formation of the clusters - is 

one or more molecules of cholesterol physically a part of the tight cluster or does cholesterol 

create a local environment in the plane of the membrane that favours oligomerisation of 

the protein without itself being incorporated in a cluster? What are the forces binding 

the molecules in an oligomer? Even more pressing is the question: what are the clusters 

there for? 

The remarkably sophisticated chemotactic behaviour of a bacterium, Escherichia coli, 

offers insight into the potential role of protein clustering in the life of a cell. An eukary- 

otic cell can sense chemical gradients by comparing concentrations at  different parts of its 

body, but a bacterium, much smaller and more agile, has to get its bearing in chemical 

gradients by measuring changes in concentration with time as it moves about. An E 

coli swims about 10 to 20 body lengths per second, by comparing current chemoreceptor 

occupancy with that during the previous few seconds, the bacterium is able to take mea- 

surements over distances of many body lengths (Parkinson and Blair; 1993). E coli can 
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respond to extremely low concentrations of chemical attractants, concentrations of less 

than 5 nM in the case of aspartate (corresponding to a separation of 1 pm between the 

ligand molecules in the solution)! It can also sense chemical gradients extending over five 

orders of magnitude in the concentration (up to 1 mM). Maddock and Shapiro visualised 

the aspartate receptors of E coli with gold-labeled antibodies and thin-section electron 

microscopy (Maddock and Shapiro; 1993). They found that over 70% of the receptors 

were in clusters, frequently toward one pole of the cell (Figure 4.1). 

Based on theoretical modelling, Bray, Levin and Morton-Firth have proposed an ex- 

planation of the need to have receptor clusters in E coli (Bray et al; 1998). The theory is 

so simple that the model can easily be generalised to understand the effect of clustering 

in other cells and in contexts other than chemotaxis. The principal assumption of the 

model is that a receptor occupied by a ligand is able to infect a neighbouring receptor 

in a cluster and thus increase the probability of the neighbour triggering a downstream 

signal even if the neighbour is not bound to the ligand. With this model of cooperative 

activity, it is easy to show that increasing the extent of spread of activity through a cluster 

of receptors increases the sensitivity to extracellular ligands but severely diminishes the 

range of concentrations of the ligand over which the cell can detect gradients. However, 

a combination of low threshold of response and wide dynamic range can be attained if 

the cell has both clusters and single receptors on its surface, particularly if the level of 

cooperation can adapt to external conditions. 

Indeed we have evidence to suggest that the clusters can rearrange themselves to adapt 

to external stimuli. Though multiple species of GPI-anchored proteins inhabit the same 

cluster, presenting the cell surface with an antibody specific to a single species leads to the 

segregation of that species into cross-linked patches while the rest of the species reorganise 

the a priori cluster at  the nanometre scale. The forces binding the proteins are likely to 

be weak, over a short range cross-linked proteins can be induced to detach and reorganise 

into distinct structures. The adaptability of the organisation will be enhanced if several 

clusters find themselves close to one another, like the occupants of an island in a sea of 

monomers. 

4.2 Higher level organisat ion 

Any mechanism for the formation of the clusters must be consistent with the following 

features: (A) the capacity of the clusters to exchange their constituents, and (B) a constant 

proportion, over a large range of expression, of the proteins forming clusters, the rest 

being monomers. (A) and (B) are in apparent contradiction because dynamic exchange 

will result in chemical and thermal equilibrium while a constant proportion of monomers 

and clusters indicate that this system is far from equilibrium. This contradiction may 

be resolved if we stipulate the presence of actively generated domains on the membrane 

that pose a barrier to clusters drifting away from the domains, and hence prevent the 
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a priori induced 

Figure 4.2: A priori and induced structures on the cell surface. White and grey dots 
represent two species of GPI-anchored proteins, each pair of rectangles represent the 
exoplasmic (top) and the cytosolic (bottom, partly hidden) leaf of the plasma membrane. 
Circles on the surface are rafts where GPI-anchored proteins are clustered a t  the nano 
scale; outside the circles the proteins exist as monomers. Both grey and white dots 
inhabit the nanocluster. Upon induction of a larger scale clustering of the grey dots by 
an antibody, rafts expel the crosslinked species. Broken arrows represent the potential of 
the crosslinked species to transduce a signal into the cell. Rafts can also coalesce to form 
bigger and more stable structures such as caveolae. 

attainment of equilibrium. This would predict that the ratio of clusters to monomers is set 

by active processes and cholesterol homeostasis regulates this activity. Although the level 

of sphingolipids does not directly affect the relative population of proteins in clusters, the 

enhanced susceptibility of these clusters to disruption following the removal of cholesterol 

in cells depleted of sphingolipids suggests that both sphingolipids and cholesterol are 

involved in this higher level organisation. In sphingolipid-depleted cells other lipids with 

saturated fatty acid chains may substitute, though poorly, for the role of sphingolipids. 

We do not yet know the size of the domains (or rafts) that prevent mixing. These 

structures must be as large as to accomodate a single cluster (-- 50 A) but not too large, 

otherwise they would have been detected by fluorescence microscopy. If the rafts contain 

many clusters they must do so at  low enough density to prevent resonance amongst 

fluorophores belonging to separate clusters. The structure of the rafts, their stability, and 

their response to extracellular stimuli await discovery through further experiments. 

4.3 Consequence of clustering and super-organisat ion 

In chapter 1 we have seen that GPI-anchoring is a necessary motif in targeting proteins 

to a clathrin-independent endocytic route. Upon crosslinking, GPI-anchored proteins 

cease to follow this route, instead they are internalised through clathrin-coated pits. We 

believe that clustering is the signal to trigger the endocytic machinery but in order to 

be noticed the signal has to cross a threshold. Super-organisation into rafts enables the 

clusters to generate an appreciably strong signal for endocytosis. Akin to  the strategy 

of chemotactic response in E coli, the pooling of small and dense clusters from a sea 
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of isolated proteins into malleable and mobile organisations (the rafts), enables the cell 

to combine the opposing demands of extreme sensitivity and a wide dynamic range of 

response into an optimum. Not only ligands (such as folate), but many parasites (viral, 

bacterial and protozoan) use GPI-anchored proteins as their receptors and possibly exploit 

the hierarchical organisation of this protein to enter the host. 

Many proteins that glue neighbouring cells to mould a tissue are GPI-anchored. The 

presence of multiple GPI-anchored proteins in a single cluster has the potential of tuning 

the specificity of adhesion of neighbouring cells (Harris and Siu; 2002). 

Even more significantly, this nanoscale clustering is likely to be utilised in the conver- 

sion of prion proteins to infectious scrapie. After the cellular isoform of the prion protein 

( P r P C)  is synthesised in the endoplasmic reticulum, it transits through the golgi appara- 

tus to the plasma membrane to which it is bound by a GPI-anchor. Efficient formation of 

the scrapie isoform of the prion protein (PrPSC) requires the targeting of prPC by its GPI- 

anchor to caveolae-like domains. Redirecting PrPC to clathrin-coated pits by a modifica- 

tion of the lipid anchor prevents the formation of P rPSc  (Kaneko et al; 1997). Cholesterol 

depletion too inhibits the transformation of PrPC into PrPSc (Taraboulos et al; 1995). 

We propose that the nanoscale clusters of prion proteins could act as high-affinity recep- 

tors for vanishingly small levels of infectious scrapie particles. The rafts could provide 

a rich source of prion in the plane of the membrane required for efficient conversion to 

scrapie, the isolated monomers being a constant substrate. 

4.4 Revision of the fluid mosaic model 

The view of the plasma membrane as a passive matrix of lipids supporting proteins that 

control the state of the cell is no longer tenable. Lipids actively organise proteins on 

the surface of the cell. The intracellular organelles have distinct compositions of the 

enzymes in their lumens and also of the proteins and lipids forming their membranes. 

Not surprisingly, lipids, along with proteins, are sorted at  the surface in the process of 

endocytosis. 

We have demonstrated a hierarchy of organisation on the plasma membrane (Figure 

4.2). The a priori structures consist of nanoscale oligomers of proteins held by cholesterol. 

Then the cell organises these clusters into larger structures whose character depends on 

the nature of the perturbation to which it is exposed and of course, on the state of the 

cell. Though the individual protein clusters are small (not containing more than four 

molecules), they can be induced by specific extracellular perturbations to form larger 

aggregates that are potential agents of transducing intracellular signals. The smallness of 

the a priori clusters could be a strategy adopted by the cell to maintain the clusters below 

the threshold of signalling in the unperturbed state, while the higher level organisation 

(raft) would enable the perturbing agent (an antibody, for instance) to  cross the threshold. 

Depending on the function the cell has to perform, rafts may coalesce to form structures 



76 Chapter 4. Epilogue 

a t  an even higher level of the hierarchy - these structures could be stabilised to form 

permanent invaginations such as the caveolae, or they could serve as platforms to trigger 

endocytosis. 

A new model of the plasma membrane has begun to emerge in which lipids are as 

active as proteins in responding to the state of the cell. Such a model has to describe 

the lipid-dependent hierarchical organisation on the surface and the reaction of such an 

organisation to specific perturbations. 
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