
Chapter 3 

Int ernalisat ion of Rafts 

We have seen that domains on the exoplasmic leaflet of the plasma membrane, rich in 

cholesterol and sphingolipids, bear dense and tiny clusters of GPI-anchored proteins at  the 

nanometre scale. We also know that components of 'rafts', as these domains are called, are 

internalised by the cell along a path that does not intersect the path of clathrin-mediated 

endocytosis at  all (recall section 1.3). 

As discussed in the section 1.3, the major difference between the 'raft-mediated' and 

the clathrin-mediated pathways, is that the former path of entry into the cell does not in- 

volve the vast troop of membrane deforming proteins including the cytosolic coat protein, 

clathrin, and GTP-ases like dynamin. Dynamin and other GTP-ases can exert forces on 

the coated pit either by allosteric modification of the structure of the protein itself or by 

reorganising cytoskeletal fibres around the pit and linking motor proteins that tread on 

the fibres with proteins embedded in the pit. Neither any coat nor any large GTP-ase 

like dynamin has been observed to be associated with rafts. So we shall work on the 

premise that the membrane of the raft itself, owing to the special composition of lipids, 

is deforming the surface of the cell to trigger the process of endocytosis, without any help 

or impediment from the cell cortex. 

The endocytosis of rafts is a constitutive process, no external agent signaling its com- 

mencement - the signal must be in the special environment on the exoplasmic leaflet 

created by cholesterol and sphingolipids. Though GPI-anchored proteins find themselves 

clustered in rafts, it is the special milieu of lipids in the raft rather than the clustering 

of proteins that lead to the new endocytic pathway. If a certain species of GPI-anchored 

protein is crosslinked by an antibody then the induced cluster fails to be endocytosed 

along the new pathway, the crosslinked species enters the cell through clathrin-coated 

pits. In this chapter we search for a mechanism of endocytosis based entirely on the lipid 

composition of the membrane absorbed by the cell. In the fifth section we ask: is there any 

domain of the cell, other than rafts, where a similar composition of lipids is encountered? 

The answer is Yes, in caveolae. Our theory not only suggests a plausible mechanism of 

the endocytosis of rafts but also explains the unique morphology of caveolae. 



42 Chapter 3. Internalisation of Rafts 

3.1 Ways to forma bud 

We discuss three ways, not mutually exclusive, in which a lipid domain with a sharp 

boundary on the outer leaf of a fluid bilayer membrane can form a bud. 

3.1.1 Budding induced by line tension 

The energy of a macroscopic domain of a fluid membrane of area A (= r R 2 )  and perimeter 

L can be expressed as 
K 

E = o o ~  + - J (c - c ~ ) ~  
2 A 

(3.1) 

a 0  is the line tension and K the elastic modulus for bending deformations (Lipowski; 1992). 

co, the spontaneous curvature of the membrane, is a measure of the dissimilarity in the 

composition of the two leaves of the bilayer forming the domain. c, the mean curvature, 

takes the value ! for a domain in the shape of a part of a sphere of radius r .  Let us ignore 

co for the moment, then the energy of a plane domain is Eplane = 2raoR, while that of a 

spherical domain will be Ebud = 27r~  (L = 0). Therefore if R exceeds a threshold, rbud, 

then Ebud becomes smaller than Eplane, and as a result, the domain will form a bud. 

The value of K has not been measured for the plasma membrane; but it must be of the 

order of 10-l2 erg. Meleard and his collaborators have studied the effect of cholesterol on 

the bending elasticity of artificial membranes by creating giant (20 micron diameter) qua- 

sispherical vesicles and observing, by phase-contrast video microscopy, the spontaneous 

wriggling of the vesicles due to thermal fluctuations (Meleard et al; 1997). The statistical 

properties of the wriggling shapes are governed by only two characteristics of the mem- 

brane - K and the surface tension. By comparing their theoretical picture of the shape 

deformations with the experimental results they have arrived a t  the best-fitting value of 

K - at  40" C, K = 3 x 10-l2 erg for a 30 mole per cent mixture, and K = 4 x 10-l2 erg for 

a 50 mole per cent mixture of cholesterol in DMPC. Interestingly, they have also noticed 

that the value of K is insensitive to the presence of electric charges on the lipids. 

The energy of thermal agitation at  T = 40" C is kBT e 4 x 10-l4 erg. K >> 
kBT, therefore deformations of the membrane due to thermal fluctuations are utterly 

insignificant in the process of budding. 

The line tension of a domain formed by microphase separation in a lipid bilayer mem- 

brane has not been measured. However we can borrow the results of observations on 

a langmuir monolayer (a film of insoluble amphiphilic molecules at  the air-water inter- 

face) composed of a long chain fatty acid. Riviera and his collaborators have studied the 

shape deformations of a liquid domain in the monolayer surrounded by a less dense liquid 

(Riviere et al; 1995). The deformation is because of the electrical attraction between the 

dipoles of the domain with those of a neighbouring domain - by recording the surface 
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potential of the monolayer they have been able to deduce the strength of the electrical 

attraction. And the line tension of the domain resists the electrical pull. These opposite 

tendencies dictate the shape of the domain, hence observing the shape of the domain by 

fluorescence microscopy, they arrive at  an estimate of the line tension, 00 dyne. 

Baumgart and his coworkers have produced giant unilamellar vesicles in which liquid- 

ordered domains, rich in cholesterol and sphingolipids, coexist with liquid-disordered 

patches consisting mainly of unsaturated phospholipids (Baumgart et al; 2003). Record- 

ing the shapes of the domains in axisymmetric vesicles, they have been able to calculate 

the line tension, 00, by comparing the shapes they obtain with those predicted by the- 

ory (Julicher and Lipowski; 1996). Their best-fitting value of a 0  concurs with the value 

measured on a monolayer. 

Plugging the numbers we have gleaned into Equation 3.2, we arrive at  rbud N lpm. 

Since the dimension of clathrin-coated pits and of rafts in living cells are around 50 nm 

(and certainly smaller than 100 nm), clearly, we have to seek a different mechanism to 

understand the process of internalisation of rafts from the plasma membrane. 

3.1.2 Budding induced by spontaneous curvature 

The inherent asymmetry of the cytosolic and the exoplasmic layers of a raft may induce 

the membrane to deform. The transverse asymmetry could be due to  (i) differences in 

lipid composition (recall that sphingolipids are present only in the outer leaf), (ii) the 

presence of a cortex on one side of the cell surface or (iii) the recruitment of cytosolic 

proteins onto the lower leaf of the plasma membrane. Furthermore, the gross shape of 

the molecular constituents of the membrane, crudely dictated by the ratio of the cross- 

sectional areas of the hydrophilic part and the hydrophobic part of the molecule also 

contributes to the spontaneous curvature of the membrane. Recently, Sens and Turner 

have suggested that the protein caveolin, known to be associated with caveolae, generates 

forces on the lower leaf of the membrane, leading to an effective spontaneous curvature 

(Sens and Turner; 2003). However, the sizes of buds their theory predicts (N  lpm) are 

still too large to account for the existence of the structures found at  the plasma membrane. 

3.1.3 Budding induced by chirality 

Let us, for the moment, treat the lipid bilayer membrane as a plane and the raft as a 

circular patch of constant area residing on the plane. We will argue in the next section 

that the special constitution of rafts, namely cholesterol and sphingolipids, allows for a 

decoration of the circular patch by a vector field possessing chirality. For now, let us 

imagine that every point within the circle is associated with a vector of unit magnitude. 

If the vector field possess sufficient strength of chirality then it will take the form of an 

Archimedes spiral, diverging from C, the centre of chirality, and everywhere subtending 

half a right angle with respect to the local radial. C is a defect core and the chiral 
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Figure 3.1: (L) Chiral texture on a flat membrane, the plane of the paper; C is the centre 
of chirality. (R) A spherical bud induced by chirality, connected to the plane S by an 
infinitesimal neck; C1 and Cz are centres of chirality. 

interaction is strongest at  that point, falling off inversely as the square of the distance 

from C. Therefore, if the plane be deformable, then the spiral can close itself on the 

opposite pole of a sphere, producing two centres of chirality, C1 and C2, instead of one. 

Thus a spherical bud is produced if the chirality of the vector field be sufficiently strong 

to overcome the rigidity of the membrane. 

Why does the raft on the plane not split into two, each with a spiral texture, thus 

forming two centres of chirality, instead of bulging out in the form of a sphere? It is 

a property of chiral systems to abolish mirror symmetry. The Archimede's spiral is not 

symmetric with respect to reflection on any mirror except one - the mirror that coincides 

with the plane of the raft. A chiral object can not be made to lie on a plane. Not only 

the spiral, a helix is also a texture favoured by chirality. In fact a look at  Figure 3.1 will 

convince the observer that the spiral texture on the sphere is equivalent to one pitch of a 

deformed helix - imagine a pitch of a helix drawn on a cylinder of radius r and length 2r, 

where r is the radius of the spherical bud; now squeeze the ends of the cylinder till they 

shrink to points, leaving the middle of the cylinder unchanged - the resulting texture is 

indeed what has been shown in Figure 3.1. 

We now understand that chirality does indeed force a raft on a plane into the shape 

of a spherical bud. 

3.2 Vector fields to decorate a raft 

In the previous chapter we have seen that GPI-anchored proteins with different ectodomains, 

but not transmembrane isoforms of those proteins, inhabit the same nanocluster. There- 

fore the clusters are formed by lipid-based mechanisms. We can take one step further 

to assert that not only proteins with sphingolipid tethers, but sphingolipids themselves 

form clusters in conjunction with cholesterol. Let us call these lipid clusters condensed 
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complexes. If an individual condensed complex is composed of only a few molecules (like 

a protein cluster) so that it is not big and circular in shape, then we can assign a vector to 

each condensed complex to represent an axis fixed to the body of the complex. Assuming 

that the rotational diffusion of the condensed complexes in a raft is hindered, the time- 

averaged projection of the body-fixed axis on the plane of the membrane is non-vanishing. 

We shall assume that the density of the complexes in a raft is constant, as a result the 

magnitude of the vector field at  every point of the raft is also a constant. 

Though we have to be cautious in applying the results of studies on artificial sys- 

tems to understand the membrane of a living cell, it is worthwhile noting that the 

presence of condensed complexes has been inferred from a knowledge of the phases in 

which a monolayer of cholesterol and chosen lipids can exist at  the air-water interface 

(Radhakrishnan et al; 2000). Epifluorescence microscopy of mixtures of lipids and choles- 

terol often exhibit three coexisting fluid phases: a lipid-rich phase, a cholesterol-rich phase 

and a condensed complex-rich phase. To understand the composition of the condensed 

complex, a theoretical model has been constructed of a ternary mixture of cholesterol 

C, and two lipids, S and U (Anderson and McConnell; 2002). S refers to lipids such 

as sphingolipids or phosphatidylcholines with long saturated fatty acid chains that form 

complexes with cholesterol. U is a lipid such as a phosphatidylcholine with unsaturated 

fatty acid chains that does not form complexes. (Phosphatidylcholines with saturated but 

short chains also do not form complexes.) C and S undergo a reversible reaction to form 

a complex: 

nqC + npS ++ CnqSnp (3-3) 

n is the degree of oligomerisation and p, q are relatively prime numbers indicating the 

stoichiometry of the condensed complex. Theory agrees with observed phase diagrams 

for p = 2, q = 1, and n varying from 3 to 10. 

Thus an artificial lipid monolayer spawns condensed complexes with as many as 15 
to 30 molecules in an individual complex. However, given the evidence of nanoscale 

clusters of GPI-anchored proteins, we believe that in a raft on a living cell, the condensed 

complexes will be much smaller, enabling us to decorate the raft with a vector field where 

the vector at  each point is a coarse-grained picture of the axes fixed to the complexes 

around that point. 

We propose another vector field to decorate the raft. Unlike the field described in the 

previous paragraph, this vector owes its origin to the structural features of individual lipid 

molecules forming the raft. In the special environment of the raft, the saturated fatty acid 

chains of a constituent lipid could assume the all-cis configuration, thus becoming rigid. 

Along the frozen chains of such a lipid molecule one can draw a vector aiming toward the 

head group. The projection of that vector on the plane of the membrane could serve as 

the field with a chiral interaction. 

There are essentially two possible origins of chiral interactions between molecules. The 



46 Chapter 3. Internalisation of Rafts 

first is quantum mechanical and best thought of as a generalisation of the van der Waals 

dispersion to chiral molecules. The electrostatic potential between a pair of molecules is 

expanded to include dipole-quadrupole as a well as dipole-dipole interactions. This leads 

to a 2-body intermolecular potential of the form 

where Band 2 are unit vectors along the chosen principal axes of the molecules separated 

by 2. The second mechanism can be described in classical terms, arising from central force 

potentials (including hard-core repulsion) between atoms constituting chirally shaped 

molecules. Imagine a collection of screws arranged along a line. At low densities these 

chiral "molecules" are free to rotate about any axis and so chirality does not propagate over 

large scales. On increasing density, the "molecules" interact: the interlocking screws twist 

relative to  one another, the protrusion of one fitting into the notch of the other, resulting 

in an increased packing density. This mechanism can transmit molecular chirality over 

large scales resulting in a macroscopic structure which is chiral. 

Is it not an astonishing fact that of the 256 enantiomers, corresponding to 8 chiral 

centres in a cholesterol molecule, exactly one occurs naturally in a living cell? Condensed 

complexes do form in artificial systems with different enantiomers of cholesterol; it seems 

plausible to us that a pure chiral species of cholesterol in a raft is the agent transmitting 

chirality over macroscopic scales (Sarasij et al; 2004). Or it could be that the source of 

chirality is in the shape of the condensed complexes, molecular chirality of cholesterol 

enhancing the strength of the chiral interaction among the complexes. 

3.3 Energy of the raft 

Though the system of rafts embedded in the cell membrane need not be in thermodynamic 

equilibrium we shall assume that a single raft, imagined to be a stable circular region of 

area A on the membrane, attains a conformation minimising the free energy of that single 

raft. This assumption tacitly entails another: the fluctuations in the size of the raft due 

to molecules leaving the raft and entering it from the surrounding membrane are small 

compared to A. Furthermore, all macroscopic quantities associated with the raft, such as 

its energy, its texture, or its shape, are evaluated not a t  a single instant of time but are 

averaged over a period long compared to the time scale of fluctuations in A. 

We shall henceforth treat a raft as a region of perimeter L drawn with a sharp boundary 

on a mathematical surface. Our aim is to understand the nature of budding induced by 

chirality; we shall simplify the system and focus especially on chirality. We shall ignore 

the spontaneous curvature of the raft and take the energy of the system to be 
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Figure 3.2: Definition of the divergence and the curl of a vector field 6 at  the point P on 
a curved surface. 

where K is the curvature of the surface and y is the completely antisymmetric tensor 

defined on that surface. The meaning of these tensors as well as the full expression of the 

energy will be elucidated in an appendix; here we shall illustrate the effect of chirality 

through a few examples. 

There is no difficulty in extending the definition of divergence (div) and curl (curl) for 

a planar vector field 6 to the case when 6 is defined on a curved surface. For calculating 

d iv  m and cur l  m at  a point P, we draw a small circuit, C, around P (Figure 3.2). C is 

labeled at  every point by two vectors, ;and Z. ;is tangent to C and Z is perpendicular to 

always aiming away from P, both being on the surface. Let A1 be the perimeter of C 

and 61 an element of it, then d iv  m and cur l  m are obtained in the limit of C shrinking 

to the point P as follows: 

1 
d iv  m = lim - / 61(6 . Z) 

alto AA c 

cur l  m = lim - ' / 6 1 ( 6 - g  
alto AA c 

where AA is the area of the surface enclosed by C. 

Obviously, for a two-dimensional vector field 6, cur l  m is a scalar, not a vector. In 

fact it is a pseudo-scalar because its sign depends on whether the tangent Ftraverses the 

circuit C in a clockwise or in a counter clockwise sense. 

Unfortunately, the values of the coefficients, kl, k2, kc and cg have not been determined 

for a lipid bilayer membrane, nor for a langmuir monolayer. So we are forced to surmise 

their orders of magnitude from studies of bulk liquid crystals. In a cholesteric liquid 

crystal the director field, 6, (aiming locally along the average orientation of the axes 

of the constituent rod-like molecules) has a helical conformation (Figure 3.3). One can 

imagine the bulk of a cholesteric to be sectioned into parallel planes, Z at  every point 

of a plane being parallel to one another while ii at  successive sections gradually twisting 

around a fixed axis perpendicular to the planes (de Gennes and Prost; 1993). The energy 
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Figure 3.3: Helical conformation of the director n of a cholesteric liquid crystal 
(de Gennes and Prost; 1993). 

density of this system is given by the Frank expression 

K1 K2 2 K3 E = - ( d i ~ n ) ~  + - (n . cur ln  + q) + -(n x c ~ r l n ) ~  
2 2 2 (3.8) 

where 27r/q is the pitch of the helical conformation of 6. (This formula for E is valid when 

the pitch is much larger than the length of the molecule.) 

Comparing the energy density of a raft with that of a cholesteric, we set 

where the length scale a is of the order of the thickness of the bilayer bearing the raft. 

Since the second term in E has a part varying linearly with cur l  n therefore we assume 

that 

kc - aK2 (3.11) 

It is known that K1 - K2 - K3 - lop6 dyne. Taking a N 10W, we arrive a t  the estimate 

kl - k2 - kc - 10-l3 erg. Since kl, k2 and kc are almost an order greater than kBT a t  

30" C, we may ignore the effect of thermal agitation on the ordering of 6 in a raft. 

We still have to take into account the electrical forces in a raft arising from the charges 

and dipole moments associated with the hydrophilic groups of the constituent lipids. 

Sphingolipids are zwitterions, as part of a membrane in water, their head groups carry 

a dipole moment (3 of magintude 1fl - 1 debye = 10-l8 esu cm (Israelachvili; 1998). 

is almost parallel to the plane of the membrane and is at  the same level as the bridge 

group (almost touching the interface of the hydrocarbon chains and water). The strength 

of interaction of neighbouring sphingolipids is of the order lf12/a3 where a - 10A is the 

separation of the lipid dipoles. This energy is of the order of 10-l5 erg, as a result, dipolar 

interactions can not challenge the order imposed on 6 by the Frank parameters kl, k2 

and kc. But if there be a lipid with a net charge q in the raft (usually in the form of the 

anion 0- in the phosphate radical of the bridge group; GPI-anchored proteins too are 
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Figure 3.4: Defining the local coordinate systems on three elementary surfaces (L) a 
saddle (RT) a sphere (RB) a cylinder. 

negatively charged), then the strength of electrical interaction is considerably enhanced. 

The electrical energy is now of the order Ip'lq/a2 N 10-l3 erg for q z 4 x 10-lo esu and 

a % 8A. Now the charged lipid would draw the dipoles around itself and arrange them into 

a shield where each dipole aims radially into the charge, impairing the order of 6 created 

by the Frank parameters. However, this charge-dipole interaction can be weaker than 

expected, depending on the pH of the surrounding medium and the nature of dissolved 

counter ions - factors we have ignored in our analysis. In the rest of this chapter we 

shall assume that the conformation of the raft is dictated solely by the Frank parameters 

- it is the conformation (the shape and the texture) that minimises the Frank energy for 

a given area A of the raft. 

Our aim then is to find that conformation. We shall take the variational approach 

(guessing the right conformation, expressing it in a few parameters, and obtaining the 

optimal values of the parameters). In some cases our guesses will be educated by computer 

simulations but primarily our guesses are based on intuition and a general understanding 

of chiral structures. 

Let us so set our units of length and energy that 

As a result, the unit of length of our choice becomes Icl/ao = lop5 cm, and in these 

units, the elastic modulus of bending, n N 10, and thermal energy kBT 1. In what 

follows we have set k2 = 1, but kc and c;, the measures of chirality, are variable parameters. 

One of the features that distinguish the chiral from the achiral terms in the energy of the 
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Figure 3.5: Textures (solid lines) on a sphere and their reflection (broken lines) on a 
mirror that lies on the plane of the paper (containing the arc BAC). 

raft is that the sign of the chiral terms depend on which side of the surface bearing the 

raft is called "inside" and which is "outside", because the direction of $, the local normal, 

and hence the sign of curl m, as well as the sign of K!, the local curvature, depends on 

our definition of "outside" and "inside". We do not know how the asymmetric situation 

of the raft on the plasma membrane (the cytosol and the cytoskeleton being inside and 

the exoplasmic fluid outside) affects the sign of the chiral terms in the Frank expression; 

we shall arbitrarily set $ everywhere aiming toward one side of the raft and call that side 

the "outside". 

We shall now illustrate the meaning of the chiral terms in a few simple cases. We 

shall see how these terms lead to textures on a surface that can never be made to coincide 

with its mirror image no matter where we place the mirror. Any small chip off a surface 

can be approximated by a plane, a sphere, a cylinder or a saddle (Spivak; 1970). For the 

moment we shall ignore the plane because a chiral object can not lie on a plane. (Notice 

that none of these elementary surfaces is chiral.) Naturally, we shall so place the mirror 

that the bare surface (stripped off its decoration, m) coincides with its reflection. Then 

we shall decorate the surface, looking for a texture that maximises the contribution of the 

chiral terms. 

Let us start with the sphere. Any point on it is specified by the colatitude 0 and the 

longitude q5 (Figure 3.4). The tangent plane at  any point on it is framed by the unit 

vectors 6 (along the direction of increasing 6 and constant 4)  and 6 (along the direction 

of increasing q5 and constant 6). The texture at  any point is defined by 
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f f 

Figure 3.6: Textures (solid lines) on a cylinder and their reflection (broken lines) on a 
mirror that lies on the plane of the paper (containing the axis and the edge AB). 

Any mirror passing through the centre will leave the sphere unchanged after reflection, 

let us place the mirror along the arc BAC where A is the pole (8 = 0, Figure 3.5). If the 

texture consists of lines parallel to the equator (me = 0, rn4 = 1) or if it consists of great 

circles diverging from the pole (me = 1, rn$ = 0) then its mirror image coincides with 

itself. Under these conditions we expect no contribution from the chiral terms. But if the 

texture consists of lines obliquely cutting the circles of latitude and longitude everywhere 

on the globe then it is impossible to superpose its mirror image on itself. In fact we expect 

the chiral term to be greatest when the lines at  every point bisect the right angle formed 

by the intersection of the circles of latitude and longitude, because under this condition 

the lines of the image will deviate most strongly from the lines in the original texture 

(they will cut each other at  right angles). Indeed that is the case - we calculate the 

contribution of chirality: 

c ~ y i j m h m " ~ ~  = 0 (3.16) 

for any texture on the sphere; and taking me and rn4 to be constant, we get 

cot 8 
kc (divm) (curlm) = kc (-)2rnsrn+ T 

where r is the radius of the sphere. The term vanishes when either me or m4 vanishes, 

and is greatest when me = rn4 = I/&, confirming our guess. 

Now we turn to textures on a cylinder. Every point on the cylinder is specified by 

its altitude z from a reference plane perpendicular to the axis of the cylinder and by its 

longitude $ from a reference plane containing the axis (Figure 3.4). The tangent plane 

at  any point of the cylinder is defined by the unit vectors (along increasing z, 4 being 

constant) and t i  (along increasing $, z being constant). The texture is 
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The surface will not be changed by reflection along any mirror on which lies the axis, 

let us place our mirror on the plane of the paper, containing the axis and the line AB 

on the cylinder (Figure 3.6). (The following argument, if repeated with the mirror held 

perpendicular to the axis, leads to exactly the same conclusion.) Obviously, if the texture 

consists of lines parallel to the axis (m, = 1, m+ = 0) or perpendicular to it (m, = 0, 

m4 = 1) then its mirror image is inseparable from itself. For these textures we expect 

chirality to have no effect. The chiral term should be greatest when the lines are inclined 

to the axis at  half a right angle because under that condition the lines of the image concur 

least with those of the original (they cut each other at  right angles). Calculations fully 

support our guess. Taking m, and m+ to be constant, 

Ic,(divm) (curlm) = 0 (3.20) 

and 

where r is the radius of the cylinder. The term vanishes if either component of m vanishes, 

and is maximum when m, = m4 = 1 / a .  Observe that the texture with equal and 

constant components of m is a helix, and that the chiral term is inversely proportional 

to r. Therefore a large value of c;S would wrap m in a helix around a narrow tube, 

the pitch of the helix being proportional to the radius of the tube. The same effect 

of molecular chirality on the shape of tilted fluid bilayer membranes, anisotropic solid 

membranes and ferroelectric liquid crystals has been described by Helfrich and Prost 

(Helfrich and Prost; 1988). 

Like a cylinder, a saddle too has an axis of symmetry, we choose a plane P, bearing the 

axis and place the mirror on it. Unlike a cylinder, however, not any plane perpendicular 

to the axis is a plane of symmetry for the saddle: there is only one such plane, call it 

Pp. B is the point on the saddle common to P, and P p  (Figure 3.7). The other common 

point, opposite to B, is on the half of the saddle not shown in the figure. For simplicity 

we shall assume that the lines of intersection of the surface with P, and Pp are circles: 

call them C, and Cp respectively. Any point on the surface is specified by a and P, angles 

of rotation measured from fixed reference points over C, and CB respectively (Figure 3.4). 

(For instance, a = 0 at  any point on Cp, and likewise any point on C, has a fixed value of 

p.) In tune with our method of defining the tangent plane, we construct unit vectors t; 
and t i  and describe the texture on the saddle as 

If the texture consists of lines parallel to P p  (m, = 0, mp = 1) or if the lines be on 

planes passing through the axis (m, = 1, mp = 0) then they are symmetric with respect 
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Figure 3.7: Textures (solid lines) on a saddle and their reflection (broken lines) on a mirror 
that bisects the saddle along the line ABC and is normal to the surface a t  B. 

to reflection on Pa. The chiral part should vanish for these textures, and, extending our 

knowledge gained from a sphere and a cylinder, we expect the chiral part to be maximum 

when the lines of 6 bisect the angle between t: and 6.  For constant m, and mg we have 

i k j -  1 cosa 
c;'Yiyijm m Kk - c;(- + -)mama 

R, RB 

where R, and Rp are the radii of C, and Cg respectively. And 

sin a 
kc (divm) (curlm) = ~c,(-)~m,m~ (3.25) 

RB 

The chiral part is indeed greatest for m, = mg = 1/fi and is zero when either component 

of 6 is zero. 

3.4 Chirality and budding 

We now understand, fairly clearly, the role of chirality in shaping a raft. If kc is large 

enough the raft will overcome the elastic resistance to bending and become a spherical bud. 

Then with increasing values of cT, the bud becomes prolate, the pole from which the lines 

of m radiate drawing farther and farther away from the pole where those lines converge. 

For sufficiently large ci ,  the raft takes a flask shape (a cylinder with a spherical cap). 

In what follows these guesses are corroborated and quantified by variational calculations; 

before we look a t  budding, however, it is instructive to observe chiral textures on a plane. 
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Figure 3.8: (L) Close up of a texture generated by a monte carlo simulation, and (R) its 
continuum representation by a mathematical formula. On the shaded portions div m is 
positive and curl m is negative, just the reverse on the clear portions. 

3.4.1 Simulation on a flat membrane 

Let us rewrite the Frank expression as 

1 
E = L + (divm + c ~ r l m ) ~  + (Ic,  - 1) (divm) (curlm) 

neglecting the curvature of the raft since m is very large. Naturally the raft would assume 

a texture with a very high curl and whose divergence is exactly equal and opposite to the 

curl. We have seen such a texture at  the beginning of this chapter - the Archimedes 

spiral. In polar coordinates, the origin being a t  the centre of the raft, the spiral described 

by 6 has constant radial and tangential components everywhere in the raft. 

m, divm = - 
r 

m4 curlm = - 
7- 

The texture sought for is m, = I/& rn6 = -I/& The energy of this conformation is 

where R = A / f i  is the radius of the raft, r, the radius of the defect core at  the centre 

and E ,  is the energy of the defect. The chiral term is infinitely large a t  the centre of the 

raft but falls off inversely as the square of the distance from the centre. Is there a texture 

whose chiral strength is great not just at  one point but over the entire raft? 

A monte carlo simulation led us to such a solution (Figure 3.8). Let us place the origin 

of coordinates on the periphery of the raft and let the x-axis be along a diameter. The 
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Figure 3.9: Phases of a raft on a plane (1) uniform (2) spiral 6 ,  = 0, r, = 0.005 (3) striped 
l* = 0.01. 

texture is parametrised as 

The texture consists of stripes of width T I  parallel to the y-axis. The energy of this 

conformation is 

The stripes tend to be vanishingly thin ( I  + 0 )  in order to minimise the energy; so we 

arbitrarily set a cut-off l* on 1. 

3.4.2 Implication for a deformable membrane 

If ,% be finite and if c: vanishes then the raft will be a spherical bud. We have drawn the 

texture on the bud and parametrised it in the previous sections. If ro be the radius of the 

neck through which the bud is attached to the rest of the membrane then the energy of 

the raft is 

R T-00 cos2 8 
E = 2717-0 + T K ( - ) ~  - a(L ,  - 1) / do(-) + E ,  + ek 

Tbud Oc sin 0 

where 8, = T ~ / T ~ ~ ~  is the angle subtended by the defect core at  the centre of the bud and 

E ,  is the energy of the defect. The area of the raft being a constant we have 

where 80 = ro/rbud is the angle subtended by the neck at  the centre of the bud and ~k is 

the energy of the neck. If we assume ~k = 0 then our variational calculation suggests that 

ro -+ 0 because when the neck is infinitesimal the bud has two perfect defects, instead of 

one, and the effect of chirality is most strongly felt at  those points. The assumption of a 

vanishingly small cost to produce a neck is a safe one; in fluid lipid bilayers the principal 
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Figure 3.10: (L) Texture of a prolate bud, (R) change in the shape of the bud ( E  = ,:::;;,) 
with ci - K = 10, kc = 2. R = 1 for a, R = 0.5 f o r b .  e,  = 0, r, = 0.005, ek  = 0, 
ro = 0.005. 

radii of curvature of the saddle-shaped neck (one of them positive, the other negative but 

both of great magnitude) are so delicately balanced that their sum equals the spontaneous 

curvature of the membrane and hence the neck costs little energy (Fourcade et al; 1994). 

As we shall see later, chiral interaction of a vector decorating the neck reduces the cost 

further. 

Comparing Equation 3.33 with Equation 3.29, and noting that the contribution of the 

chiral terms are roughly equal in the two cases, we find that the bud has less energy than 

the planar configuration if 27rR > 47r~.  (We have set ro = 0.) This is the familiar condition 

for budding induced by line tension. But there is another piece to the chiral interaction, 

ci, and this has tremendous potential of creating buds of dimension comparable to that 

of rafts and clathrin-coated pits found in living cells! 

Upon turning ci on, the bud is stretched, the defect being drawn away from the neck. 

We can model this prolate bud as a cylinder with hemispheres on either side. The texture 

on the cylinder is the helix we have studied in the previous section; note that the lines of 

& on the cylinder smoothly join the spiral lines of each hemisphere. The energy of this 

conformation is 

where 1 is the length of the cylindrical portion of the bud. We have numerically obtained 

the optimum shape of the bud, the shape minimising this expression of El of course with 
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Figure 3.11: Budding due to chirality. /E = 10, kc = 2. In the region marked A a raft of 
area A = rR2 prefers to be on a plane, while in the region B a bud is the energetically 
favoured conformation. 

the constraint that the area of the bud 

is constant. The prolateness of the bud, (&bud + 1)/2rbud, starts increasing sharply when 

c; becomes of the order K/R. Unfortunately we can not prescribe a value of c: for a raft, 

it has not been measured for any real system, neither a lipid bilayer nor a liquid crystal in 

bulk. However, we shall attempt a very crude estimate. By introducing a chiral moiety in 

the acyl chain of a phospholipid, Schnur and his colleagues have observed the spontaneous 

aggregation of these lipids in a mixture of water and alcohol into hollow tubular struc- 

tures (approximately 1 pm in diameter) below the chain-melting temperature of the lipid 

(Schnur et al; 1994). They imagine these tubules to be decorated like a barber's pole by a 

vector field representing the projection of the rigid chains of the lipid molecules on to the 

plane of the membrane. The theory developed by Nelson and Powers suggests that the 

radius of these tubules, rtubule N (Nelson and Powers; 1992). For this system, then, it 
c;, 

turns out that c; N 10. Without any knowledge of the structure of condensed complexes 

and their interaction with cholesterol, it is impossible to estimate the magnitude of c: in 

a raft; in all the figures we have drawn we have restricted c;, rather arbitrarily, in the 

range 0 to 100. 

We do not have to worry about the sign of c: as long as it is the same as that of kc. We 

have taken kc and c; everywhere to be positive, had they been negative we would simply 

reflect the texture shown in Figure 3.10 on a mirror passing through the axis of the raft. 

From the phase diagram shown in Figure 3.11 it can be seen that for /E = 10 and 

kc = 2, a modest value of c; = 75 will make an area with R = 0.01 (corresponding to 

a "real" raft of size 10 nm) pop out of the plane in the form of a bud! As promised, 

rafts which are too small to have a significant energy of line tension can be fashioned into 
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buds by the mechanism of chirality. Being a phenomenon of the bulk, budding induced 

by chirality preempts budding induced by line tension. Thus it seems we have revealed 

the power that makes a tiny raft enter the cell as if of its own accord - requiring no 

assistance of the cell cortex or of cytosolic coat proteins: chiral interaction among the 

condensed complexes floating in the raft could be the hidden source of the power! 

3.4.3 Fragmentation of the bud 

For a moment let us return to the raft on a plane and suppose that it breaks into n equal 

parts, each part bearing the same spiral texture. The total area being conserved, each 

part will be of radius R l f i .  The total energy of this system is 

Since the logarithmic dependence on n is extremely weak, it is obvious that if E(') be 

negative then E(") is more so ( ~ ( " 1  < ~ ( l )  < 0). Therefore, under the action of chirality 

(kc  > I ) ,  the raft is inclined to split. 

But, wait a moment. While writing down the expression for the energy of a raft in 

Equation 3.5 did we not presume that the raft has already been assembled from its molec- 

ular components, never to be torn apart by any means? If we now wish to calculate E(") 

instead of E(') then we are obliged to include in Equation 3.5 terms that account for the 

interaction of neighbouring molecules in the raft. We are still very far from an understand- 

ing of the nature of molecular forces that hold a raft in place (is it hydrogen-bonding? van 

der Waals forces? hydrophobic shielding? or a combination of all these?). In spite of its 

shortcoming, we shall carry the argument begun in this section to a conclusion, assuming 

that forces ordering the 6 field in a raft overpower any other molecular interaction. Even 

with this assumption Equation 3.5 cannot be applied to rafts that are extremely small, 

higher order terms need to be incorporated. But coefficients of the higher order terms, 

especially those of chiral origin, are practically impossible to estimate. So let us restrict 

ourselves to small values of n ,  trust Equation 3.5 the way it stands now, and proceed. 

The overriding urge to split is evident in a spherical bud too. Assuming that the sphere 

is complete (the neck connecting the bud to the parent membrane is infinitesimally thin) 

we have for n equal parts, each with the same texture, the total energy, 

For the optimum conformation with kc > 1, E(') is always negative and E(") is more so 

( ~ ( " 1  < ~ ( l )  < 0). Again, the raft is inclined to split. 

What is the optimum number of parts (n) of a raft? We cannot address this question. 

Observe that there is no favoured length scale for chirality - once the chiral strength 

exceeds a certain threshold, the size of a raft is no longer dictated by the parameters of 
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Figure 3.12: (L) Rafts pooled into caveolae. (GPI-AP: GPI-anchored protein) The hair 
pin structures represent caveolins, their ends are dipped into the cytosol. (R) Close-up of a 
part of a caveola showing the oligomerisation of caveolins. (CS: cholesterol, GS: glycosph- 
ingolipids, P: phospholipids, C: carboxyl terminus, N: amino terminus) Horizontal lines 
between caveolins represent oligomerisation, broken lines near C represent palmitoylation 
(Parton and Simons; 1995). 

our continuum theory. This is in stark contrast with other modes of budding. Therefore, 

once we accept the role of chirality in endocytosis, we are forced to  view the coat proteins 

associated with the process of budding in a new light. One of the functions of the coat 

is to maintain the unity of the bud, overcoming the disruptive agent of chirality. Bare 

buds, such as those involved in pinocytosis, are minute, chirality not only moulding their 

shape but also preventing their growth into large structures on the plasma membrane. 

On the other hand, the elaborate invaginations of the caveolae on the plasma membrane 

are shaped by chirality into spheres connected by tubules, and the caveolae owe their 

relatively large size to caveolin, a coat protein nullifying the splitting action of chirality 

(Figure 3.12). 

Caveolae ("small caves") are flask-shaped invaginations of the plasma membrane found 

in mammalian cells, especially abundant in endothelial cells (lining the interior of blood 

vessels and other organs). Their size is of the order of 100 nm, nearly an order of magnitude 

larger than the speculated size of rafts. However molecules associated with rafts are 

also present in abundance in caveolae (Kurzchalia and Parton; 1999). Furthermore, cells 

in which caveolae are not normally found can be induced to form these structures by 

expressing caveolin in them (Fra et al; 1995). Fra and collaborators expressed VIP21- 

caveolin in a lymphocyte. If the concentration of the protein on the cell membrane 

crossed a limit then the cell responded by creating stable structures on its surface that 

bore a striking resemblance to the structure of caveolar pits. Even more remarkably, these 

structures were able to concentrate GPI-anchored proteins, as was evident by linking the 

proteins with antibodies! 

Caveolins are able to bind cholesterol and glycosphingolipids and thereby stabilise 
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Figure 3.13: (L) 
geometry of the 
(R) geometry of 
membrane. 

1 The texture of a flask, horizontal lines mark out the two necks (M) 
neck connecting the spherical part of the flask to the cylindrical part 
the neck connecting the cylindrical part of the flask to the rest of the 

the caveolar pits - they have an intriguing structure (Parton and Simons; 1995). Both 

the amino terminus and the carboxyl terminus of these proteins are in the cytosol, a 

semi-circular domain of thirty three amino acids spans almost the entire thickness of 

the hydrophobic region of the lipid bilayer. They are palmitoylated (anchored to the 

membrane by a 16-C saturated fatty acid chain). It has been suggested that the ability 

of caveolins to bind cholesterol and to oligomerise helps them to detect rafts on the 

other leaflet and to sequester the rafts into bigger structures (Monier et al; 1996). These 

observations suggest that caveolae are large aggregations of rafts - but unlike rafts, 

they are not internalised spontaneously by the cell. Caveolae are stable structures, their 

internalisation is a regulated process, usually triggered by an extracellular signal (for 

instance, the simian virus enters a cell by attaching itself to  a caveola) (Norkin; 1999). 

3.5 Rafts and caveolae 

Henceforth we shall assume that the lipid composition of caveolae is so similar to that 

of rafts that the energy of a caveola is couched in the same Frank expression we have 

put forward for a raft. Of course the values of the coefficients of chirality, Ic, and c;, and 

the value of the elastic modulus, K, for a caveola need not be equal to the corresponding 

values for other forms of rafts; we shall treat these coefficients as variable. 

Our aim in this section is to find out the conditions under which a raft, instead of 

forming a bud, would prefer the shape of a flask. We shall see that, in agreement with 

experimental observations, the flask shape is more favourable than the bud if (a) the area 

of the raft ( A )  is sufficiently great, (b) the membrane is sufficiently stiff, or, in other 

words, K is sufficiently great, and (c) ci is sufficiently great. (c) is a necessary condition; 

even a big and stiff raft can not form a caveola unless c; is large enough. 
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Figure 3.14: Variation of the shape (y = Rc/Rs) of a caveola with the chiral coefficients. 
(6 = 10, r, = 0.05, 6, = 0). (L) R = 5. a, b and c correspond to the values 40, 50 and 60 
of cg respectively. (R) R = 3. A, B and C correspond to the values 60, 70 and 80 of cg 
respectively. 

The last condition (c) is the easiest to interpret. We know that a large cg tends to 

wrap the lines of 6 into a helix around a thin tube. We have seen the effect of this term 

in the previous section - a spherical bud lengthens into a tubular form upon the action 

of cg. But. so far we have only dealt with small values of ct; if ct be great then it is much 

easier to stretch the narrow neck into a tube and decorate it with a helix rather than 

tampering with the much fatter spherical portion of the bud. The following paragraphs 

will put these ideas in a quantitative form. 

In order to understand the essential features of budding we had ignored the energy 

(ek) of the neck joining the bud to the rest of the membrane. We can not do so any more 

because in a caveola the neck could constitute a sizable portion of the tube that joins the 

spherical part of the flask to the membrane. So our first task in this section is to model 

the shape and the texture of the neck and to calculate its energy. Contrary to our first 

impression, a raft does not necessarily have to incur a cost to produce a neck; in fact, as 

we will see, for high enough cg a neck is a favoured conformation (ek << 0). 

We model the neck as a saddle. Any plane passing through the axis of the saddle 

cuts the saddle along a pair of circles, and any cross-section perpendicular to the axis 

is also a circle. We have described this saddle in a previous section and have seen that 

the texture favoured by chirality is the one in which the line of f i  at  any point bisects 

the right angle between the transverse and the longitudinal sections of the saddle passing 

through that point (see Figure 3.7). The neck begins a t  the smallest cross-section of the 

saddle (the circle Cp of radius Rp, represented by a = 0) and fans out to the maximum 

angle a = a,,, where the radius of the cross-section is Rp + R,(1 - cos a,,,). 

A caveola has two necks - the first one connects the spherical part to the cylinder and 

the second connects the cylinder to the plane of the surrounding membrane (Figure 3.13). 

The spiral texture of the first neck merges smoothly with the texture of the cylinder on 

one side and with the texture of the sphere on the other. In a like manner the texture of 
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Figure 3.15: Lines separating the two phases of the raft - to the left of each curve is the 
bud phase, and to the right is the flask phase. (L) K = 10. a, b and c correspond to the 
values 2, 5 and 8 of kc respectively. (R) kc = 2. a, b and c correspond to the values 10, 
20 and 30 of K respectively. (In every case r, = 0.05 and 6 ,  = 0.) 

the second neck merges smoothly with that of the cylinder. 

The first neck subtends an angle 00 at  the centre of the sphere, therefore a::, = 00. 

And ~ f )  = Rc, the radius of the cylinder. If Rs be the radius of the sphere then 

The energy of this neck is 

and its area 

A;' = 27~~:) [(R?) + RC)Oo - R:) sin Oo] (3.42) 

If the second neck has to join the caveola smoothly with a flat surrounding membrane 

then we must have agh, = s /2 ,  and as we had before, R!) = Re. This creates a 

periphery of length 27r(RL2) + Rc) through which the surrounding membrane interacts 

with the caveolar pit. The energy of the neck is 
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Figure 3.16: Discontinuity of the transition from the bud to the flask. kc = 2, R = 5 .  To 
the left of the broken line LC = 0, so the optimum shape is a bud. The profiles of the 
raft, drawn to scale, show the optimum shapes just to the left and just to the right of the 
broken line. 

+~IT(R?) + Rc)  

and its area 

Denoting the length of the cylindrical part by LC and the radius of the spherical part 

by Rs, we finally arrive at  the total energy of the system. 

T-00 cos2 9 
+ 2 n ~ ( l +  cos 90) - a(k, - 1) J dB(-) + r ,  

8, sin 9 

We have numerically obtained the optimum shape of the caveola (the values of Rs, Rc, 

R,'), R?) and LC that minimise E), always satisfying the constraint of the conservation 

of area. 

A = ?rR2 = A;) + A%) + 2aR;(l+ cos $) + 2rrRCLC (3.46) 

The different shapes we have found for the caveola fall into two classes - (A) the 

shape of a bud, where the spherical part is attached to the parent membrane without 

any cylindrical bridge (LC = O),  and (B) the shape of a flask, where the spherical bud is 

held apart from the parent membrane by a cylinder (LC > 0). In every bud we find that 

RL.) << Rs and RL2) << Rs; in every flask R:) << Rs and R?) << LC. Therefore the 

necks are narrow and the shape of the flask is almost wholly determined by the dimensions 

of the spherical and the cylindrical parts. 
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For fixed values of R and kc there is a threshold of cT, that has to be crossed to get 

into the flask shape, any smaller value will produce only a bud. The threshold value of 

c; increases with increase in kc or decrease in R,  as shown in Figure 3.15. The transition 

from the bud to the flask is not a smooth one. Keeping R and kc fixed, as we increase the 

value of cT, from zero, we find that LC jumps discontinuously from zero to a finite value 

as cT, crosses the threshold (Figure 3.16). 

Since the lipid and sterol composition of the membrane varies little from one raft 

to another, or even between a raft and a caveola, we expect the values of the chiral 

coefficients for the different microdomains to vary within a narrow margin. Given a fixed 

pair of values of kc and c:, we have a minimum size, Rmi,, for a raft to be in the shape 

of a flask. Observations of cells with caveolae support our theoretical prediction of the 

existence of a minimum size of a flask. 

We would also like to know how the stiffness of the membrane governs the shape 

of a raft. The covering of the inner leaflet of a caveola with caveolin, a protein that 

oligomerises and binds to the cholesterol of the membrane and whose hydrophobic region 

spans the thickness of the membrane, will certainly increase the effective value of K for 

the bilayer. As a result the caveolar pit will become bigger. From Figure 3.15 it can be 

seen that for fixed values of kc and c;, the minimum size of a raft capable of taking the 

shape of a flask (Rmi,) increases with K. 

We may now take a step ahead and ask: instead of being in the shape of a flask (a bulb 

with a tubular stalk), can a caveola take the form of a string of spherical bulbs connected 

by a system of tubules? We know that if the area of the domain becomes sufficiently large 

then a competition would ensue between the two chiral properties, kc and cT,: the first 

would like to produce spheres, bunching the lines of & into tight spirals toward the poles, 

and the other would prefer long cylinders wrapped in a helical texture. It is fruitful to 

ask how the area of the domain partitions into the two conformations. 

We extend the parametrisation of the flask shape to include spheres (S1, S2, S3, ...) 
connected to  cylinders (TI, T2, T3, .. .) by saddles (Nl, N2, N3, . . .) and the whole structure 

Figure 3.17: Shape of a caveola attached to  the surrounding membrane by the neck No 
and consisting of two bulbs, each of radius Rs, and two identical tubules, each of length 
LC. The necks Nl, N2 and N3, connecting the tubules with the bulbs are geometrically 
identical. 
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Figure 3.18: Optimum shape of a caveola with n bulbs connected by n tubules. The label 
(1, 2, 3) in each region of a graph refers to the optimum value of n, while in the region 
marked a there is no tubule. (TL) R = 5, K = 10 (TR) R = 5, K = 20 (BL) R = 3, 
K = 10 (BR) R = 3, K = 20. 

joins with the rest of the membrane through the neck No (Figure 3.17). Each of these 

components is robed in exactly the same texture as we have described for the flask-shaped 

caveola. For simplicity we take all the tubules to be of the same dimension (length LC 

and radius Rc), all the bulbs to be of the same radius (Rs), and all the necks except 

No, the one a t  the base, to be of the same outer radius (R,) and the same inner radius 

(RB = Rc).  

The results of the variational calculation (displayed in Figure 3.18) bear out our ex- 

pectations. Given a pair of values of kc and c;, the bigger the domain and the less stiff it 

is the more the number of bulbs and tubules will it sprout. While for a fixed size and a 

fixed elastic modulus of the domain, the greater is c; the fewer the number of bulbs and 

the longer the tubules joining them. There is a threshold that c; must cross in order for 

the domain to have any tubular part at  all - any smaller value of c; leads to the result 

LC = 0 and the domain takes the form of a necklace of spheres connected by infinitely 

narrow necks. The multitude of spherical buds is simply the result of the splitting pro- 

clivity of chirality that we have described in the previous section, we shall not deal with 

it here. 

The plasma membrane of skeletal muscle cells develop long and slender invaginations 

that surround each myofibril inside the cell. These invaginations, called the transverse 
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Figure 3.19: An electron micrograph of caveolae (scale bar - 200 nm). They can exist as 
single caveolae (arrows) or as chains of multiple caveolae (asterisks). Caveolae are linked 
to the periphery of the cell, the identity of the Y-shaped tubular structure inside the cell 
is not clear (van Deurs et al; 2003). 

tubules, serve to relay the signal from the motor neuron rapidly to the sarcolemmal 

vesicles around each myofibril and thus induce a simultaneous shortening of all the fibres 

in the cell (Parton et al; 1997). Parton and his collaborators, after an investigation of the 

biogenesis of the transverse tubules, have arrived at  the observation that these intriguing 

structures develop from large aggregations of caveolae! They have studied the distribution 

of caveolin in a muscle cell and have found that caveolin is restricted to the sarcolemmal 

membranes in a fully developed muscle cell but large patches of the plasma membrane 

are associated with caveolin in a growing cell. These patches take the shape of bulbs 

connected by tubules (like bunches of grapes) and give rise to the intricate system of 

transverse tubules in the mature muscle (Figure 3.19). 

3.6 Appendix 

3.6.1 Formula for the calculation of energy 

Any point on the surface of the membrane is specified by the vector @a) where x = 

(xl,  x2) forms a two dimensional manifold. The tangent plane at  any point on the surface 

is defined by the covariant vectors 

where a = 1,2. The metric tensor is 

An element of the surface bounded by the sides dxl and dx2 is 
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With the help of the metric tensor and its inverse, we can convert any covariant tensor, 

e: for instance, into its contravariant form: 

A vector field, 6, on the tangent plane, is defined by the covariant tensor, ma, where 

~ is the unit normal to the surface and the curvature tensor 

For any scalar field, $, we can easily construct a covariant tensor as its gradient. 

In order to calculate the divergence of a vector field, &, however, we have to use the 

covariant derivative, D, of 6. 

Similarly, the curl of 6 is given by 

where yab is the completely antisymmetric pure covariant tensor. 

We can now use this formula to calculate the quantities in the expression of the 

energy of the raft on a spherical, cylindrical or a saddle-like surface, all the surfaces being 

parametrised by the coordinates introduced in section 3.3. For a sphere, 

1 ame 1 am4 cot 0 d i v 6 =  --+-- 
r 80 r sin0 a$ + (-)me r 

+ l a m 4  I dme cot 0 curlm = -- - -- 
r a0  rs in0 a$ + (->mdJ r 

For a cylinder, 
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Figure 3.20: Effect of anisotropic line tension on the texture of an achiral circular domain. 
(L) a boojum of charge 2; (R) texture of a domain of radius R whose centre is a t  a distance 
a from the core of the boojum. 

lam4 am, div&= --+- 
r a4 ax 

+ lam, dm4 curlm= -- - - 
r ad d x  

And for a saddle 

1 COS a 
~ 1 -  - , ~ 2  - 0  ~ 1 - 0  ~ 2 -  -- 

1 - 
R, 

1 -  7 2 -  1 2 -  
RP 

. + 1 dm, 1 dma s ina  
divm = - - +--+- 

R, d a  Rg d,B Rp ma 

+ 1 dmg 1 dm, s ina  curlm = -- - -- + -mg 
R, da Rg d p  Rp 

3.6.2 Conformation of a planar achiral raft 

We shall now study the shape and texture of a planar domain of area A that does not 

have any chiral interaction in the bulk (kc  = 0). The energy of this domain is 

where L is the perimeter of the domain. al and a2, the coefficients of spontaneous bend 

and spontaneous splay respectively, are in fact the components of an anisotropic line 

tension: 

f and ii are respectively the unit tangent and the unit normal to the perimeter of the 

domain, both being on the plane of the domain. Pettey and Lubensky have shown that 
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Figure 3.21: Stretching action of strong anisotropic line tension. (TR) variation of with 
a for a domain of effective radius R = 1 (thin line), and variation of the prolateness of 
the same domain with a (thick line). (TL) and (B) show the conformation of the domain 
for a = 6.5 and a = 9.5 respectively. 

the optimum texture for any pair of values of a1 and 0 2  can be obtained from the texture 

minimizing the energy 

by rotating 6 at  every point through a fixed angle (Pettey and Lubensky; 1999). As a 

result, in spite of the spontaneous splay being a chiral term, the domain can never assume 

a chiral conformation in the absence of a chiral interaction in its bulk. 

6 can be represented by the angle 4 it makes with a fixed axis passing through the 

centre of the domain. If we set kl = k2 = k then the energy of the domain is in the form 

Any texture that is a local minimum of this energy must satisfy the laplace equation 

Obviously, if a = 0 then 6 will everywhere aim in the same direction to minimise the 

energy of the domain and the solution sought for is q5 = 0 (or any fixed angle). If a does 

not vanish then 

$(r, 0) = NO + clr sin 0 + c2r2 sin 20 + c3r3 sin 30 + ... (3.79) 



70 Chapter 3. Internalisation of Rafts 

The resulting texture is a boojum of charge N whose core is a t  the origin of coordinates 

(Figure 3.20). In order to specify the shape (R) of the domain let us temporarily shift 

the origin from the core of the boojum by a distance a to the centre of the domain. 

R(0) = Ro(l + a1 cos 0 + a 2  cos 20 + a3 cos 30 + ...) (3.80) 

0 varies from 0 to 27r. Since the area of the domain has to be A, we must have 

We set our units of length and energy to make k = 1 and a 0  = 1; then, for given values 

of R and a, minimise the energy as a function of the parameters N ,  a ,  cl, c2, CQ, ... , a ~ ,  

a 2 ,  a ~ ,  ... . 
The best value of N is always 2. We also find that including terms in the texture 

with coefficients c,, whose n exceeds 1, reduces the minimum value of E by at  most 

l%(Sarasij and Rao; 2002). So we parametrise the texture in the simpler form 

where y is the distance of any point from the axis of the domain. As a is increased from 

0, the core of the boojum approaches the centre of the domain but the domain remains 

almost circular. As a is raised beyond a threshold the core begins to recede from the 

centre and the domain bulges out a t  the equator (Figure 3.21). For large values of a it 

is a good approximation to set q5 = cly and take the domain to be a rectangular block 

bracketted a t  the equator by two semicircular caps. 


