4 Particle pump with symmetric
exclusion process.

4.1 Introduction

The symmetric exclusion process (SEP) is one of the simplestvell studied models of a
stochastic interacting particle system. In this model Wwitian be defined ondidimensional
hypercubic lattice, particles movefliisively while satisfying the hardcore constraint that
two particles cannot be on the same site. A number of exacltsdsave been obtained for
this model, particularly in one dimension [9597]. If the model is defined on a ring and
conserves the total density, the system obeys the equitibcondition of detailed balance
in the steady state and thus does not support any net cuidottof attention has also been
given to non-equilibrium steady states of driven SEP in Wlhin@ particles can enter or leave
the bulk at the boundaries. For this model, the time-depanciarelation functions [100]
and dynamical exponents have been obtained using the é&qnaéesof the transition matrix
(W-matrix) to the Heisenberg model [101]. Recently, large déwn functional and current
fluctuations have also been calculated for the driven SE@{1102]. Experimentally it has
been shown that SEP can be used to model tfiesion of colloidal particles in narrow pores
[103-108].

Here we study the SEP for the case where hopping rates aredépendent. This is
one of the few studies of a many-particle interacting stettbanodel with time-dependent
transition rates and as we demonstrate shows a lot of ititegdsehaviour. The initial mo-
tivation for this study comes from quantum pump models dised in the previous chapter

[85,88,90—- 92 109- 117]. We saw there that classical heat pumps could be budtroi
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lar principles. Here we investigate the question whethggding similar driving protocols,
particle pumping can be achieved in a classical stochastaem

Classical pumping of particles in time-dependent stocbastidels of non-interacting par-
ticles has earlier been studied [11820] and seen in experiments [123]. Systems exhibiting
pumping €fect have often been modeled as Brownian ratchets in whichmeracting par-
ticles move in an external periodic potential and we haveudised various such models in
chapter (1). Our model ffers from such models in that here we are dealing with a many bod
particle system with interactions, and particle inter@atsi seem necessary for the pumping
effect.

We have studied the time-dependent SEP by simulations aodaalalytically by using
perturbation theory. The first perturbation uses the dgiramplitude as the small parameter.
The other uses the inverse of driving frequency as a smalhpater. Within this perturbative
approach, we are able to obtain exact expressions for wphwsical quantities, and find
very good agreement with simulation results. The mostéstamg result is that in the model
with time-dependent rates at all sitesD& current of order unity can be obtained. We note
that the hopping rates though time-dependent, are stillhsgtmc and hence our result is

surprising.

4.2 Definition of Model

The model is defined on a ring with sites ( see Fig. (4.1)). A site= 1,2,3,...L can be
occupied byn, = 0 or 1 particle and the system contains a totalNof pL particles where
p is the total density. A particle at sitdhops to an empty site either on the left or right with

equal rates given by:

U fo + f1V|

where v, a Sin(t + @) = vt + vie ! (4.1)

Here the site-dependent complex amplitudes are defined by, €?/2i with o, as a real

amplitude andf;, is chosen such that all hopping rates are positive.
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Figure 4.1: Schematic representation of the SEP model vatlogic boundary conditions
where a particle hops to next or previous unoccupied site @qual rates. Blue
and white colors denote occupied and unoccupied sitesatgglg. For example
particle at site 2 can hop to site 1 or 3 with equal probabikityere as particle
at site 5 can hop to the previous site but not to the next sithisaparticular
configuration.

A configuration of the system can be specified by thggtl = 1,2,...L. Let us define
P(t) as the probability vector in the configuration space, widnmentsP(C, t) giving the
probability of the system being in the configuratidn= {n;} at timet. Then the stochastic

dynamics of the many particle system is described by theenaguation:

? = W(t) P(t) = W, P(t) + W1(t) P(t) (4.2)

whereW is the transition matrix, which we have split into a time-@peéndent and a time-
dependent part. One can also consider the time-evolutioat®mns form-point equal-time
correlation function<C, 1,1, _i.(t) = (M..n) = Xy M-, PN, 1), Thus, for example,

the densityp(t) = (n;) and the two-point correlation functidd, (t) satisfy the following
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equations:

0
g + 2U|p| — U-101-1 — U10141 = U (C|_1,| + C|,|+1) - UI+1CI,I+1 - UI—1CI—1,I (43)
aCLm

ot + 2( U + Un )Cl,m —U-1 CI—1,m — U1 CI+1,m — Umn-1 CI,m—l — Ums1 Cl,m+1

= W(Cum+Ciizm) +Un(Cim1m+ Cimme1) —U-1 Ciogym — U1 Crvam

—Um-1 CI,m—l,m — Umy1 CI,m,m+1a for |I - ml #1
0C 41
ot + (U + U1 )Cs1 — U1 Ciiagir — U2 Ci i
= U Crym+ U4 Crrez — U1 Ciiagger — U2 Crsage - (4.4)

From Floquet's theorem [124], it is expected that the longetistate of the system ( as-
sumed to be unique ) will be periodic in time with period= 27/w. Here we will be mainly

interested in thé®C currentJ defined as
-1 T
J = T f Jia(t) dt, (4.5)
0
where the curreni,,; in a bond connecting sitésand| + 1 is given by
Jij+1 = Ulor = Cyir1) — Uiea(orer — Cijaa) (4.6)

and the local density, = (n;). From the periodicity of the state and particle conservatio
follows that theDC current is uniform in space and therefore, using Eq. (4.€)can write

for the DC current:

_ 1 T L
1= =) IZl]J.,l+1(t) dt (4.7)
fi (7w
= ﬁfo ;(VI+1_VI)CI,I+1dt (4.8)

Thus, to find theDC current, we need to compute 2-point correlation functp,(t). In
this chapter, we will first develop a perturbation theory, deneralv;, and then apply it to
some special cases.

Note that forf, = 0, the above model reduces to the homogeneous SEP with jgeriod
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boundary conditions whose properties are known exactlyhiicase the steady state is an
equilibrium state which obeys detailed balance and here@avthrage current is zero (This
result holds even when thgs are site dependent, but time independent). In the steath, s
all configurations are equally probable iR(C) = 1/(y) whenf; = 0. Then one can show

that the density and correlation functions for the homogereSEP are given by:

N
P|(O) = P=T
o _ (N-1)
C, = p(L—l)
L-m) (L
0
Clatetotn = (N_ m)/(N). (4.9)

4.3 Perturbation theory in  f;

For f; # 0, the knowledge of the exact steady state of homogeneousS&tites us to set

up a perturbation expansion fi of various observables. We now describe this perturbation
theory within which we calculate an expression BE currentJ in the bulk of the system.

A similar perturbation technique was developed for a tvaiessystem in [125]. We expand
various quantities of interest with as the perturbation parameter about the homogeneous

steady state correspondingfo= 0. Thus we write

p®) = @)y =p+ > o) (4.10)
r=1
Cim) = (M®N(t)y =C? + i fiC () (4.11)
r=1

and similar expressions for higher correlations. Pluggiigg. (4.11) into Eq. (4.8), we find

that the lowest order contribution tis atO(f2) and given by:
SR &
2
SCES fo 21(\/, ~ Vi) CY, dt (4.12)

To develop our perturbation theory and find'@@;s, we start with the time evolution equa-

tion for densityp,(t) which is given by Eq. (4.3). Plugging in the expansions irs.Hg.10)
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and (4.11), we get the following equation for the dengftyatr™ order:

(9p(r)

ot

- foAlp(r) +2V|/0(r Y-y 110|(r 11)_V|+1p|(111)

= W(CTL + CiY) — vl - vl (4.13)

whereAg = g1 — 29, + g._1 defines the discrete Laplacian operator. Thus the density at
order is obtainable in terms of density and two point cotietafunction at ( — 1) order.
We check that at the zeroth order, we obtain the homogeneBBsf@& which the density
and all equal time correlations are given by Eq. (4.9). At firsler, the above equation then
gives:

1)

apl

ot f0A|p|(l) = oAV, (414)

whererg = p — C(o) The solution for this equation is the sum of a homogeneottsygach
depends on initial conditions and a particular integrallofig times the homogeneous part

vanishes while the particular integral has the followingnagtotic form:
pP(t) = APt - A Dgriot, (4.15)
Substituting Eq. (4.15) in Eq. (4.14) we obtain the follog/iequation fof A™M):
(iw + 26) A — oA, — foAY = ro(vivs — 2v + 1) . (4.16)
This can be written in matrix form as:
Z(w) A =-roB®, (4.17)

where

Zm = —fooima+ (lw+2fg) 61m— fodim1
BIm - _5I,m+1 +2 6I,m - 5I,m—1
A = (ADAD AT ® = (v, v, )T, (4.18)
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and periodic boundary conditions are implicitly taken. HBi@ve equation can be solved for

A and we get:
A = -1, G(w) B, (4.19)

whereG(w) = Z}(w). Both G(w) and B are cyclic matrices and so can be diagonal-
ized simultaneously. The eigenvaluesZgfy) areiw + 4f, sir?(pr/L), while that of B are
4 sirf(pr/L) with p = 1,2, ..., L, and eigenvector elements @&P/t/L%2. HenceA™ can

be written as:

Iy = et sird(pr/L)
n_ _*0 4.20
A L ;; iw + 4fy sir?(pr/L) ym (4.20)
which in the largd. limit gives:
A = Loy Irow LZL: [Z™ 4 2™y (4.21)
= - - m» "
fO f02 Z —Z m=1

where,z. = y/2 - [(y/2)? - 1]¥?, z. = 1/z_ andy = 2 + (iw/ fy).

To compute the(f?2) contribution toJ, we need to evalua@&)q, which we now proceed
to obtain. Inserting the perturbation series in Egs. (4al@) (4.11) into Eq. (4.4) we get the
following equation for the correlatioﬁl(% atr™ order forjm— I # 1:

o)
ot

- fo(A+An) C|(rr)n + 2V Cl(f,;” v C' Y — v, cY

I-1,m I+1,m

—1 -1 -1
+ 2Vny C,(’rm ) — Vi1 C|(,rm_)1 — Vmi1 C|(,rm+i

= vi(C P +Ch D Y +vm(Cl Y +CIY )

1-1,l,m I,I+1,m [,m-1,m I,mm+1

(r-1) (r-1) (r-1) (r-1)
- Vi C:I—l,l,m — Vi1 C|,|+1,m —Vm-1 CI,m—l,m — Vmi1 Cl,m,rml’

while for m=1+1:

ac(f)
I1+1 () (r) r)
ot + fo(2C),, -Cl1 —Clln)
_ (r-1) (r-1) (r-1) (r-1)
= V2 (Gl = Cie) + Vi (Gl — Clypiig)
(r-1) (r-1) (r-1) (r-1)
- V(G — Cli) — v (Cy — G- (4.22)
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At first order we get:

8C(l)

I.m  _
ol fo(AI + Am)Cy 1 = Ko(AVi + AmVim)
acy)

6It|+1 + fo(2C, - Cha - Cﬁlz) ko(Vi-1 + Vis2 = Vi = Viy1), (4.23)

whereko = C% - C® | and these are known from Eq. (4.9). The computation of even th
homogeneous solution of the above set of equations is irrgeseontrivial task because of
the form of the equations involving nearest neighbor insli@ed requires a Bethe ansatz or
dynamic product ansatz [99, 100]. However it turns out thatlbng time solution can still

be found exactly and is given by:
Cin(®) = [p(”(t) +pR 0] = Ajpe + A, (4.24)

WhereAf’ln)1 = (ko/ro)(Afl) + AY). Itis easily verified that this satisfies Eq. (4.23) forlath.
To determine whether the system indeed has a product megsyuiges a more detailed
analysis of the higher order terms in the perturbation senl higher correlations. We have
verified that, at first order in perturbation theory, all &ation functions in fact have the
same structure as the two-point correlation function in(Bg4).

We now plug the solution in Eq. (4.24) into Eq. (4.12) for threrage current in the system

and after some simplifications obtain:
J® = k° Z (A% + ADv = AWy — A, (4.25)

with Afl) given by Eq. (4.21). For any given choice of the ratgghis general expression
can be used to explicitly evaluate the &E current in the system.

We now consider two special choices of the rdigs
(i) The choicer; = o = 1, all othera; = 0, andg; = 0, ¢, = ¢ corresponds to the two-site

pumping problem. In the limit of largk, this gives:

Jo = (fo) ko“’LS'n"’ Relz]. (4.26)
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Figure 4.2: Plot of currend versus the phaseftierencep. For parameters as in Fig. (4.4).
The solid lines are from the perturbation theory.

Writing z, = re”, we find that foro <« w* = 2f,, the magnitude ~ 1+ Vw/w* and the
anglen ~ Vw/w*. In the opposite limity ~ 2w/w* andn ~ /2 - w*/w. Usingz, = 1/z,
we find that the current has the scaling form:

3o _ ffkosin¢G( w )

oL 2% (4.27)

where the scaling functioB(x) = 2x for x < 1 and ¥ x for x > 1. We summarize the most
interesting features of the above result. These are: (DCAcurrentJ is obtained, which
decays with system size as J ~ 1/L. (2) TheDC currentJ_depends sinusoidally on the
phase dierence between rates at two sites. (3) The dependenfm)blriving frequency
w shows a peak at a frequeney with J — 1/w asw — o« andJ — w asw — O.
The latter result means that a finite number of particles meoelated even in the adiabatic
limit. We discuss this point in detail in Sec. (4.5). We hawfprmed direct numerical
simulations of the time-dependent SEP and compared thelmowit analytic results. We

plot Jversus phase flerencep and driving frequencw in Figs. (4.2) and (4.3) respectively.
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Figure 4.3: Plot of currentd versus driving frequencw for the same parameters as in
Fig. (4.4). Solid lines are from perturbation theory.
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Figure 4.4: Plot ofDC densityp, across the ring fofy = 0.3, f; = 0.2, w = 0.27r and¢ = 7/2
at half filling for two system sizes obtained from simulagoinset:DC current
(from simulations JJ ~ 1/L as shown by solid line of slopel.
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Figure 4.5: Plot of time-dependent densities at the foeisf aL = 4 lattice. In the initial
configuration, sites 1 and 2 have one particle each and ottesr are empty.
The averages over one time period gigg:= 0.503493 p, = 0.498702 p3 =
0.497417 p, = 0.500388 and) = 0.000514. The points show the curpet+
f1) + 1202, [Parametersfy = 0.4, f; = 0.1, ¢ = 7/2 andw = 0.2x].

In the simulations we have also looked at the steady statstgigorofiles. The results from
simulation are shown in Fig. (4.4). The linear profile is estpd since in the bulk of the
system we havd = —Vp. From Eq. (4.15) it is clear that at first order correcti@®C part
pM vanishes. Hence, we need to look at the higher order cotiiipinamelyp!(t). This

can be found exactly and has the form:

pP(t) = o + APt | APlgrizot (4.28)
The general expression for tieC part is given by:

p? = bl+h,1=2.,L-1

2
p? = b+h+ T Rep; (A — AM)]

2
pP = bL+h+ T Repi (AY,, - A, (4.29)
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where the slopé of the linear density profile is given by

2 * *
Re[vl(A(lg - Ag%g) + vL(Afg - A(Ll_)l’L)] i (4.30)

b:L_fo

and the interceph can be found using the particle conservation condiipp® = 0. This

agrees with the form seen in results in Fig. (4.4). Finallizigy. (4.5) we plot the densiiyi(t)

as a function of time fot. = 4 andN = 2 problem, which can be exactly solved numerically.

As can be seen, the results from the perturbation theorymvaity well with the exact ones.
We also note thal is independent of, for largex. This can be seen by writing the master

equation as:

P fo f1
qan = o WoPM + ZWP(O). (4.31)

Forw > fo, the first term on the right hand side can be neglected thusggilie probability
distribution to be a function of;/w.

(if) The second case we consider is one whgke 1 at all sites ang, = gl, whereq = 2rs/L
with s=1,2...L/2, so that there is a constant phadéedenceq between successive sites. In

this caseAfl)’s given by Eq. (4.20), evaluated at larhaives:

iro ;

AD = Z—fOeM'a (4.32)
where a ﬂ
y/2 — cosq

and from Eq. (4.25) we get for the average current:

2

f
J@ = —lf—ko sing Im[a]
0

2 2 ko w sing (1 — cosq)

T OTw? 42 (1-cosg)?] (4.33)

Thus we see that for most valuesive get a finite current, even in the linlit— oco. For
q~ 1/L andq ~ 7 — 1/L, the current goes to zero for large system sizé as.—3. From the

current expression in Eq. (4.33), we can find out the vaglgeq®, at which the current is a
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maximum. By diferentiating Eq. (4.33) with respectdove get:

cosl’) = (1 + Q2 — V(1 + Q22— (1-Q?), (4.34)

whereQ = w/2fy. It turns out that for large) the maximum is at|" = 27/3, while for small
frequencies we get' ~ vw. Also we find from Eg. (4.33) that in the adiabatic and fast@ri

limits, the currents are respectively given by:

f2ko
7@ {_ 37 CotA/2) w  w/fo << (1-cosa) (4.35)

= 2f2kosing(l—cosq) 2 w/fo>>1.

The perturbation theory results turn out to be quite aceyras can be seen from the
comparisons with simulation results, shown in Figs. (4r&) &.7), for diferent choices of
g namelyq = n/2 andq = 2x/L, for case (ii) discussed above. In these figures we have
plotted the current for dierent system sizes and verify the- L° dependence andi~ L3
dependence for these twgs. Using the expression fdg in Egs. (4.26, 4.33), we find that
J@ . p%(1 - p) which has a maximum at = 2/3 and breaks particle-hole symmetry. This
particle-hole asymmetry can be understood easily. Frondéfiaition of the model we see
that, unlike the particles, the hopping rates of a hole atesyimmetric: a hole at sitehops
towards right with ratey,; and left withu,_;. In Fig. (4.8) we have plotted simulation results
for the average current as a function of particle densitydifierent system sizes, and find
good agreement with our perturbative result, even at aivelgtiarge value off; / f,.

In simulations we have looked at the density profiles and fivad the site wise density
profile p; in case (ii) is flat. This is unlike in case (i), where we foundhhdensities at
the two special sites and then a linear density profile in thk psee Fig. (4.4) ). The flat
density profile, for case (ii), is understood because henetare no speciglumpingsites. It
is interesting that we can get current in the system evereialisence of Fick’s law. We also
note that even if the hop-out rates are made biased in onetidinelike in the asymmetric

exclusion process (ASEP), we can still get a current opasiis bias (for small biases).
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Figure 4.6: Plot ofDC currentJ versus system size for parameterd, = 0.5, f; = 0.1,
w = 0.2r and forq = n/2. Continuous line from perturbation theory and dotted
line from simulations.J goes to a constant value can also be seen from Eq. (4.33)
for this phase dierence.
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Figure 4.7: Log-log plot ofOC currentJ_( dotted line from Eq. (4.33), numerical values )
versus system siZefor q = 2r/L. The current decays agl1® (continuous line)
as predicted by Eqg. (4.33). Parameter valuesfare0.5, f; = 0.4, w = 0.27.
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Figure 4.8: Plot oDC currentJ versus densitp = N/L for parameterdy = 0.5, f; = 0.4,
w = 0.2r and¢, = nl/2 for system sizes = 16,32 and 64. Both the results
from simulations (symbols connected by dotted lines) aachfthe perturbation
theory (lines) are plotted.

4.4 Perturbation theory in  1/w

In this section, we find thBC current within sudden approximation following the proceslu

of [126]. Callingd = wt, the master equation Eq. (4.2) can be rewritten as

PO~ 2 o + wy(0] PO (4.36)
w

which can be expanded in powers gtdby usingP(d) = 3o, w"P™(6) to give

)
dg’g 0 (4.37)
L
dpde(e) ~W,(0PQ = WPO (4.38)

and so on. From the zeroth order equation, we seePfais independent of. In fact, for
w — oo, We expect the system to behave as the unperturbed homage8&® for which
W,P© = 0 is satisfied and as discussed in Section 4.2, all the elsmétiie vectoP© are

known. Using this fact, the first order correctiBff) can be found by integrating Eq. (4.38)
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overd. Following steps as those leading to Eq. (4.12), we now gelvarage currentls, at

orderO(1/w). This is given by:

_ f, 2n L
o f fo do ;(VM —w)cl, (4.39)

where we have expanded the nearest neighbor correlatiatidarC,; = .., w‘“C,[”l‘Ll
in powers of Jw and again use the expression @f, = C)), given by Eq. (4.9). The
first order correction to correlation function can be obedirby perturbatively expanding
EqQ. (4.4) and obeys the following simple equation:
I
do

= fiko (V42 + Vics — Vi — Viy1) - (4.40)

We now again discuss the two special choices of rgtefiscussed in the previous section.
(i) In this case, only two sites have time-dependent hoppiresraSolving the equations

above for the correlation function, we get:

Cl) = fiko(cosg) — cos + ¢)) + Cr2 (4.41)
CH, = —fiko(cos) — cos@ + ¢)) + CL 11 (4.42)
Cll = fiko(cosp) +cos@ + ¢)) + CLs (4.43)

wherec’s are constant of integration (which do not contribute torent). Using the above
equations in the expression fa", we finally obtain

2f2ko sing

o -
s wlL

(4.44)

Thus, we find that to leading order ind (and arbitraryf;), the DC current is the same as
the one obtained by taking largelimit in the current expression Eq. (4.27) obtained from
the f; expansion.

(i) In this case withy, = 1 at all sites, the equations for the first order correlatigrctions

can be solved for arbitrary phasgsand we get:

Clil, = kof1[COSE + ¢)) + COSO + ¢1.1) — COSE + ¢1_1) COSO + ¢1.2)] - (4.45)
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Using these in the current expression and after some siogildns, we get:

ORI IR
0 = 2L [25in6 - ¢) - sinra - dr-0)]. (4.46)
1=1

Note that the above expression depends on the phé&gseetice between nearest and next
nearest neighbor sites. F@r = gl, we recover the result stated in the second line of

Eqg. (4.35).

4.5 Adiabatic calculation

We now discuss an adiabatic calculation similar to that duAsan for a two state model
[123]. The model considered by Astumian consists of a sisggconnected to two reser-
voirs with input rates (t), a(t) and output rate8; (t), 8»(t). The rate equation of the particle

density at the site is given by:

d
d_? =t (4.47)
where I; = a1(1-Q)-51Q, lL=a(1-Q)-5.0Q.

The instantaneous rates satisfy the conditiomg(t)/B:(t) = a(t)/B(t) = €O and
as(t)/aa(t) = Bo(t)/B(t) = €D, For low driving frequencief(t) can be expanded about
the instantaneous equilibrium soluti@®(t) asQ(t) = QO(t) + wQW(t), whereQ©®, QW

satisfy the following equations:

@1(1- Q) - 81,Q? = ap(1- Q) - B,Q¥ = 0 (4.48)
0)
d;{ = —w(ay +P1 + az + B2)QY (4.49)

The instantaneous equilibrium solution, from Eq. (4.48) is

o @ _ 1 4.50
Q a1+ B l+ec’ ( )

78



The net particle transpo®¥ (from reservoir 1 into system) over one peridd= 2r/w can

be written as:

T T
N = f |1dt = - f (a/l +,81)(1)Q(1)dt
0 0
T 0)
0 C

a1 +B1+ax+ B dt

1

with F m ,

(4.51)

and Wherefc denotes the integral over a cycle.

In our case formally one can obtain an exact expression ®mgt particle transport.
For this we start with the master equatiéR/ot = W(t)P. Let PO(t) be the instantaneous
equilibrium solution satisfyingV(t)P© = 0. Then, for slow rates, P(t) will have the form
PO(t) + wPW(t) where the correction is given byoP® = W1 gPO/ot . The net particle

transported across any bond in one time cyslecan then be expressed as:

~ T ~ Z Wz (%) O
N—fo dtZC:J(C)P(C,t)——fO dxg;J(C)TP (C',x), (4.52)

where J refers to the current on any given bond. Thus we have a forwpkession, for
the net particle transported, in terms of an integral oveequilibrium averageof some
guantity. However this expression does not appear to havsiaple physical interpretation
and neither is it easy to obtain any explicit results, uniitiefast case treated in section (4.4).
The above equation has to be interpreted carefully, Siideas a zero eigenvalue aid!

is not strictly defined.

4.6 Conclusions

Here we have considered a lattice model @ifidiing particles with hard core interactions and
shown that if the hopping rates at various sites are madedmpendent, but still symmetric,
then aDC current can be generated in the system. Thus, a ratdfest és obtained in

the sense that a directed current occurs even though the@ applied external biasing
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force. Unlike many other examples of models of classicalhets, there is no asymmetric
potential in our model. However asymmetry is incorporateithe modulation of the hopping
rates, and this is best seen when we consider the case wleengotifulation is given by
vi(t) = sin(wt — gl). This of-course corresponds to a wave travelling igiveen direction.

A non-trivial aspect of the problem studied is the fact tint ¢fect goes away as soon as
we switch df the hard-core interactions. For non-interacting B@ current is given by

J = (1/LT) fOT dt Z|L:1 up — U041, and is seen to be exactly zero, for arbitrary choice
of the time-dependent rates. On the other hand, havingaittiens in the system is not a
suficient condition to generate@C current. For the models considered in this chapter, the
hopping rate is site-wise symmetric. But if the hopping raessymmetric bond-wiseg.,

the hop ratey ;1 from sitel tol + 1 is the same as that frol 1 tol, then theDC current is
zero for any choice of phases To see this, consider the density evolution equation abeye

by bond-wise symmetric SEP:

0
% = U_1i(oi-1 = 1) + Uys1(ois1 — o1) (4.53)

Unlike Eq. (4.3) for site-wise symmetric SE®, = p is a solution of the above equation
for any choice of rates;. In fact, an inspection of the master equation shows than ev
with a time-dependentV-matrix, all configurations are equally likely, thus leaglito the
zero current. Thus the exclusion process with bond-wisensgimc rates does not give the
ratchet éect. It is not completely clear as to what are the necessatguaiicient conditions
to get a directed current.

For the model considered here, since the equations fongoynt correlation function do
not close, it does not seem simple to solve the model exatyhave therefore studied the
system analytically using a perturbation theory in the atugé f; and the inverse frequency
1/w. In this study, we have been able to obtain € current at orderf? by solving
the evolution equations for density and two point correlatiunction to orderf;. Also,
we have been able to obtain results for large driving frequday solving the correlation

function alone by such perturbative approaches. Comparitigsimulations we find that
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the perturbative results turn out to be quite accurate.

Finally, we point out that an experimental realization af "fect observed in our model
should be possible in colloidal systems. For instance,idens colloidal suspension in an
externally applied laser field. This constitutes a systerdifb@isive interacting particles in
an external potential (generated by the laser field) of tha #(x, t) = Vo sin(wt — gX). This
system is similar to the model that we have studied. Theresamge diferences, namely,
in this case because the external field is space dependect tiee &ective hopping rates
are not symmetric in the forward and backward directionsvdtild be interesting to study
this model to see if a current can be generated here, andpsedme can make detailed

predictions for experimental observation.
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