3 Simple models of heat pumps.

3.1 Introduction

The idea of constructing miniature versions of engines,onsodnd pumps has been an in-
teresting one. The earliest theoretical construct of sudewace is probably Feynman’s
ratchet and pawl model discussed in [49]. In this articlerfregn uses this simple micro-
scopic model to demonstrate why a Maxwell's demon cannokwdn the same article
he also shows how this model can be used to construct a mopisieeat engine and dis-
cusses itsficiency. There have been a number of recent detailed studidsegawl-and-
ratchet model and some subtle flaws in Feynman’s originalraemts have been pointed
out [48—- 50,62 63,68, 69]. A different class of ratchet models have also been studied in
[70—77]. In these models Brownian particles, kept in an asymmpgrtiodic potential and
acted upon by periodic time-dependent forces, are founghibie directed motion. A num-
ber of variations of this model has been studied{B2]. Among its applications it has been
proposed that this could provide a mechanism of transportatbrs in biological cells [85].
Ratchet models which work on somewhaffelient principles are models of quantum
pumps which are recently being studied theoretically {830] and have also been exper-
imentally realized [93, 94]. Since these pumps also worlead remperature it appears that
noise is not an essential feature, which is unlike the casedoal ratchet models. Moti-
vated by the quantum particle pump model, Segal and Nitzae peoposed a model for a
heat pump [95]. In this model a molecule with two allowed gydevels interacts with two
heat reservoirs kept atfeerent temperatures. The energy levélatience is modulated in a

periodic way. Thus unlike the other particle pump modelstanly a single parameter is
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Figure 3.1: Schematic representation of the experimestarably by Switkest al. [93].

varied. An asymmetry is incorporated by taking reservoiith @ifferent spectral properties
and diferent couplings to the molecule. This seems to lead to thieedesumping of heat
from the cold to the hot reservoir.

We will briefly discuss few of the experiments done on the quanpump. One of the
first experiment was by Switkest al. [93], who used the quantum pumping mechanism to
produce a>C current in response to the cyclic deformation of the confjrootentials in an
open quantum dot. The assembly of the the experiment is agmsinadhe Fig. (3.1). Three
gates marked with red circles control conductance of poimtact leads that connect the
dot to electronic reservoirs. In this experiment two codg@antum dots are separately in
contact with particle reservoirs which are at the same ctalnpotential. One appliegiC
gate voltaged/;, = Vpcoswt) andVy, = Vycoswt + ¢) to the two dots respectively. This
leads to a net flow of particle current between the two resexvehose sign depends on the
phasep. This can be seen in Fig. (3.2) where the voltage across thetdoh is proportional
to the current is plotted as a function of phas@edlences. A sinusoidal dependence @ris
observed.

The physical picture of such processes can be understooti@agd. In Fig. (3.3) we show
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Figure 3.2: Plot oWy0(¢) as a function of phasge.

a schematic representation of the quantum pump model. kgbliase dierence between
the voltages be = n/2. In step &), a particle from right reservoir is trapped in a potential
well V, = =V, in the next stepk), V; = -V andV, = 0, so particle goes to the left hand side
well. In step €), V> = Vo, hence particle cannot go back to the right hand side hernogpg

to left reservoir and in steql], sinceV; = V,, particle cannot hop back. Hence it can be seen
that a net charge is transferred from right to left bath, aspibtentials vary periodically in
time. Also the direction of current depends upon the phaserdinces. Another experiment
by Leeket al. [94] looked charge pumping across a carbon nanotube. Theriexgntal set
up is as shown in the Fig. (3.4). A carbon nanotube is attathi¢dde surface of a quartz

crystal and connected to reservoirs ( source (S) and the (iPg). A surface acoustic wave
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Figure 3.3: Two quantum dots in presence of oscillatingagss. Right hand figures show

the two potentials at efierent times in a cycle. A net charge is transferred in one
cycle.

was sent through the quartz crystal, and this produceslliray@otential wells inside the
nanotubes. It was found that an electron current can be giegkacross the nanotube as a
function of the gate voltage. In this system, the transpbdharge resembles the pumping
of water by an Archimedean screw ( see Fig. (3.5) ). In the Ameldean screw, due to the

chirality of the pump by rotating the handle water can be pedni a higher level.
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Figure 3.4: Schematic representation of the experimestarably by Leelet al. [94].

Figure 3.5: Archemedian screw.
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Figure 3.6: System of two Ising spins in contact with two Hesths and are driven by exter-
nal time dependent magnetic fields.

Motivated by these quantum pump models, we examine cldssigdels of heat pump

which have the same basic design. We consider tffergint models:

1. A spin system consisting of two Ising spins each driven éyqgalic magnetic fields

with a phase dierence and connected to two heat reservoirs.

2. An oscillator system of two interacting particles driv@nperiodic forces with a phase

difference and connected to two reservoirs.

In both cases we analyze the possibility of the models to waher as pumps or as engines.
Our main result is that the spin system can work both as a purd@a an engine. On the

other hand the oscillator model fails to perform either tiorc

3.2 Spin System

Our first model consists of two Ising spins driven by time-@legent magnetic fields, (t)

andhg(t) respectively and each interacting with separate heatveisg, see Fig. (3.6). The
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Hamiltonian of the system is given by:
H = —JO’10'2 - hL(t)O'l - hR(t)O'z , 012 = i'l, (31)

whereJ is the interaction energy between the spins. The magneldsfleave the forms
h (t) = hocosQt) andhg(t) = hgcosQt + ¢). The interaction of each spin with the heat
baths is modeled by a stochastic dynamics. Here we assutnia¢htime-evolution of the
spins is given by Glauber dynamics [96], generalized to #meof two heat baths, with
temperature3, andTg. Thus the Glauber spin flip rates for the two spins, arisiogfthe

left and right reservoirs are respectively given by:

rl}m =1 (1-y.0102) (L-vo1)

(R o, =1 (1= yro102) (1 - vro2), (3.2)

where

YLr = tanh@/ks T Rr)

vigr = tanhf r/KsTiRr) (3.3)

andr is a rate constant. The master equation for evolution of pire distribution function

P = [P(+, +, 1), P(—, +,1), P(+, —, 1), P(—, -, 1)]T is then given by:

A

oP -
—=TP, 3.4
o (3.4)
where
L R L R
L A r-, r— 0
L L R R
7 = rs. -rz, —r-, 0 re_
- rR 0 —rt —rR rk
++ +- +-— -
0 R, rt —rt_—-rR

We defineQ,, Qg to be the rates (averaged over the probability ensemblehatvheat
is absorbed from the left and right baths respectively while Wk are the rates at which

work is done on the left and right spins by the external magfiieid. These can be readily
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expressed in terms of the spin distribution function andver@us transition rates. Thus we

find:
QL = Z P(O‘l, o, t)rlo'.lo_zAEl(O'l,O'z)
01,02
QR = Z P(O-l’ g2, t)rslo—zAEZ(o-l’ 0-2)
01,02
W, = —(o1)h =-h Z o1P(01, 02, 1)
01,02
W = —(o2)hgr=-hr Z 02P(01, 02, 1), (3.5)
01,02
where

AEl = 2 (\]0'10'2 + h|_0'1)

AEz = 2 (JO'10'2 + hRO'z) (36)

are the energy costs in flipping the first and second spin céisply. The average energy of

the system is given by

U= (H)= Z H(o1, 02, 1) P01, 02, 1). (3.7)

01,02

Differentiating Eq. (3.7) with respect to time, we get

U= > H(os,oo0) Plonoat) + > H(ow,oz1) Pler, 02,). (3.8)

01,072 01,02
Differentiating Eq. (3.1) with respect to time and using Eqgl)@nd (3.5) in Eq. (3.8), itis

easy to verify the energy conservation equation:
U = QL + QR + WL + WR. (39)

From Floquet's theorem we expect probability distributi®nat long times to be periodic

with time periodr = 2r/w. We will be interested in the following time averaged ratés o
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Figure 3.7: Plot oy, gr, W versusy with both baths at the same temperature. Inset shows
the currents for the case where the right bath is slightlgeol

heat exchanges and work done, evaluated in the steady state:

f QL,R dt,
0

f W g dt. (3.10)
0

qL,R =

WLRr =

NI A

We numerically solve the master equation Eg. (3.4) and tkatuate the various steady-
state energy exchange ratgs andw, g. In all our numerical calculations we set= 0.5
andJ/kg = 1 and all other quantities are measured in these units. IN(8ig) we consider
the parameter valueg. = Tg = 0.5, hy = 0.25, 7 = 225 and plofg,, gr andw = W + WR

as functions of the phasge It can be seen that, for certain values of the phase, dqpoémd
Jr are negative whilev is positive. Following our sign conventions, this meang #dibthe
work from the external driving is getting dissipated inte two baths. More interestingly
we find that for certain values of the phase we cangget 0 andgr < 0 which means that
there is heat floirom the left reservoito the right reservoir. The direction of heat flow can
be reversed by changing the phase. From continuity argunitastclear that this model can

also sustain heat flow against a small temperature gradibos the inset of Fig. (3.7) shows
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Figure 3.8: Plot ofy., gr, W versusg for parameter values chosen such that the model per-
forms as an engine.

the currents when the right reservoir is kept at a slightlydotemperaturdr = 0.499. In
the absence of any driving we would get a steady cumgent —¢r = 1.41x 10* from
the left to right reservoir. In the presence of driving angathase value = 2.2 we get
Or = 3.674x 1074, g. = —1.025x 10°2 which means that heat flovesit of the cold reservoir.
Thus we see that our model can perform as a heat pump or aerafiag. Similarly we find
that the model can also perform like an engine and convetttba@ork. This can be seen in
Fig. (3.8) where we consider the parameter vallies: 1.0, Tgr = 0.1, hg = 0.25,7 = 190.
In this case we find that for certain valuesgoive can havev'< 0 which means that work is
being done on the external force. For typical values of patars that we have tried we find
that the éiciency of the engine is quite low. For example for Fig. (3.8hw = 0.7z, we
find = W|/¢. = 1.75x 1072,

Finally in Fig. (3.9) we plot the time-dependent energy $fanrates given by Eqg. (3.5)
for parameter values corresponding to the refrigeratoreargine modes of operation. In

both cases the initial configuration was chosen ¢k, +,t = 0) = 1. At long times we
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Figure 3.9: Plot ofQ,, Qg, W as a function of time for parameters corresponding to pump

and engine (inset).

see that all quantities vary periodically with time with $eme period as the driving force.

Fig. (3.9) corresponds to the parameter valliegs= 0.5, Tr = 0.499 hy = 0.25, 7 = 225

and¢ = 2.2 while the inset corresponds to the engine paramatees 1.0, Tg = 0.1, hg =

0.25, 7 = 190 and = 2.2.

3.3 Oscillator System

The second model of our engine consists of two particleshvbgparately interact with two

reservoirs kept at éierent temperatures ( see Fig. (3.10)). The particles icttevith each

other and are also driven by two external periodic forcel wiphase dierence. We consider

the system to be described by the Hamiltonian

H=-L 2 +—kx§+%kx§+%kc(xl—X2)2 = (fL(t) X + fr(t) X2).

(3.11)

The two particles are acted on by external periodic forcesrgby f (t) = f, cost) and

fr(t) = fo cosQt + ¢) respectively, wheré is a phase dierence. Theféect of the heat baths
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Figure 3.10: System of two Brownian particles in contact vinth heat baths and are driven
by external time dependent forces.

at temperature$, andTr is modeled by Langevin equations. Thus the equations ofamoti

are

mXy —(K+ Kke)Xy + KeXo — X + 1 + fi(t)

mX; = —(K+k)xo+keXp —yXe +7r + fr(t) ,

where the two noise terms are Gaussian and uncorrelatedasisfy she usual fluctuation-
dissipation relationg;_r(t)n r(t")) = 2ks T ryd(t—t’). Multiplying the two equations above

by x; andx, respectively and adding them up we get:
H = (—y%a + 1)k + (=y% + 1R)%e — fLt)xi — fr(t)%e, (3.12)

which has the obvious interpretation of an energy conservagquation. Averaging over

noise we get

U = QL+QR+WL+WR, (313)
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where the various energy exchange rates have the sameratétigns as in the previous

discussion and are given by,

Q = ((~y%a+n)%),
Qr = (~y%+1mR)%),
W = —(fixa),

WR = —<fRX2>. (314)

As before we define the average energy transfer rates ingadsstate), , gr, W, Wr. The
present model being linear, it is straightforward to exactimpute these as we now show.
We first obtain the steady-state solutions of the equatiémsodion. We write the equa-

tions of motion in the following matrix form:
MX = —®X — I'X + (t) + f(t), (3.15)

whereX =[x, %]", 7 = [, nr]", f = [focosQt), focosQt + ¢)]", M andI are diagonal
matrices with diagonal elemenis andy respectively andb is the force constant matrix.

The steady state solution of this equation is:

X = Xn()+Xo(t),
where Xy(t) = f i dwe™'G(w)ij(w) ,
Xo(t) = REGQ)fe™],
with G(w) = [® - w?M +iwl]™?, (3.16)

andii = [ dwe @ p(t), f = {1,e)T. Itis easy to see that the matr®(w) has two

independent elements and we denote them as,

Aw) = Gy1 Gz = [K + ke — mw? — iyw] /[(K + ke — Mw? — iyw)? — K]

B(w) = G]_z Gz]_ = kc/[(k + kc — ma)z - I’)/(,t))2 - kg] (317)

Using the above solution in Eg. (3.16), and after some bitlgélaraic simplifications, we
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obtain the following results:

20 Keyke(TL T

q = _OT [ A(Q) + Bi(Q) cosp) + D(Q) sin@) ] + z(géki((k: kc;)/Z) :
f2Q kerke(Te =T

R = _07 [ A(Q) + Bi(2) cosp) — D(QY) sin(p) ] + 2(rr?ékc+((lf+ kC)L)),Z) ’

f2
W= S [AQ)+8(2)c0s6) - B(Q)sin) ]
2

fsQ
Wr OT [ A(Q) + Bi(R2) cosg) + Br(2) sin@) 1, (3.18)

whereAg, A, Br, B, are the real and imaginary partsAfandB respectively and(Q) =
2y?Q%k./Z(Q) whereZ(Q) = |(k+k. —mQ2 —iyQ)?—k2|2. From the expressions in Eq. (3.18)
it is clear that the heat transfer rates can be separatedat¢oministic parts (depending on
the driving strengtH,) and noise parts (dependent on temperature of the two EsBVI he
work terms are temperature independent. We now note thaletieeministic parts ofl_ and
fr, are both negative. This can be shown by using the facts’hat0 andA? — B2 — D? =
y2Q?[(k + k. — mQ?)? + y2Q? — k?]?/Z? > 0. This means that fof_ > Tg, we always get
Jr < 0 and hence we can never have heat transfer from the cold hotheservoir. Thus this
cannotwork as a heat pump. Also we note that whileandwg can individually be negative,
the total work donev, +Wg Iis always positive. This means that this mod@hnotwork as an
engine either. These conclusions remain unchanged evendiefine work aSNL = (fLx),
Wk = (fr%). In Fig. (3.11) we plot the dependence of the rates of heastea and work
done in the system on the phasé&eliencep. The figures correspond to the parameter values
k=2 k =3 m=1 f, =1 v =1andT, = Tg = T. The plots are independent of
the temperatur@. Note that the only fect of the driving is to pump in energy which is
asymmetrically distributed between the two reservoire asymmetric energy transfer into
the baths is an interestingfect considering that there is no inbuilt directional asyrirgniz
the system.

In this model the heat baths and the external driving seencttandependently on the
system. Itis clear that the linearity of the model leads i® $leparability of theféects of the

driving and noise forces and this could be the reason thamtuel is not able to function as a
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Figure 3.11: Plots of heat transfer and work done as a fumctighase dterencep in the
two particle model. Her& = 2r/3.

heat pump. Hence it is important to consider tife@ of non-linearity. We have numerically
studied the ffect of including a nonlinear part of the forafx; + X5 + (X, — X2)*]/4, in the
oscillator Hamiltonian. From simulations with a large raraj parameter values we find that
the basic conclusions remain unchanged and the model doegrio either as a pump or
as an engine. In Fig. (3.12) we show some typical results eedst here also even though
two worksw, andwr become negative, still total work done is always positivemiarly
heat transferred is always negative. In Fig. (3.13) we plettbtal work done on the system,
due to non-linearity we find that this work done now dependthertemperature unlike the

linear model.
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Figure 3.12: Plots of heat transfer and work done as a fumctigghase dterencep in the
two particle model with non-linearity. Her®@ = 27/3 and other parameters

same as in Fig. (3.11).
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Figure 3.13: Plots of total work done as a function of frequeq in the two particle model
with non-linearity. Herep = 7/2 and other parameters same as in Fig. (3.11).
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3.4 Conclusions

In conclusion, we have studied two models which have the sagredients as those on
which recent models of quantum pumps have been construdtedind that the first model
performs as a heat pump to transfer heat from a cold to a hetvas Thus pumping is not
an essentially quantum-mechanical phenomena. Also ouehpmiforms as an engine to
do work on the driving force. It is useful to compare our modgh the other well-studied
microscopic model of a engine, namely the Feynman ratcheétpawl. Recent detailed
studies have shown that this model can function both as amermmnd as a refrigerator
[53, 54]. One diterence of this model from ours is that there is no periodiere driving.
However this also means that in order for the model to workagdic way, at least one of
the degrees of freedom has to be a periodic (or angular)blaridhis may not always be a
desirable feature in realistic models. Surprisingly owosel model, though apparently built
on the same principles, fails to perform either as a pump anangine. We have also tried
the double well potential of type;1 kx¢ + ; ax} — 1 kX3 + 7 @3, which resembles the two
levels (in spin case ). Though we have tried large range @rpater values, still it is not
clear as to what are the necessary conditions for the pumglnmdork.

The important dierence between microscopic models of heat engines, subbsesgtud-
ied here, and usual thermodynamic heat engines is thatheedddcts of thermal fluctuations
are important. A secondfilerence is that here the system is simultaneously in contigict w
both the cold and hot baths. The understanding of these stiepic models requires the
use of non-equilibrium statistical mechanics and thereareently no general principles as
in classical thermodynamics. It is clear that further stgdire necessary to understand the
pumping mechanism in simple models of molecular pumps asa#m perhaps lead to more

realistic and practical models of molecular pumps and eagyin
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